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Abstract

We show, in the context of school choice, that when the lists of preferences and

priority orderings are acyclic in the sense of Gutin et al. (2023), the outcomes of the

deferred acceptance and top trading cycle algorithms coincide. This implies that the

student-optimal stable matching is efficient. Furthermore, we show that if schools’ pri-

ority orderings of students are based on the sum of school-independent basic points and

school-dependent additional points, and if students’ preferences align with these addi-

tional points, then the lists are acyclic. Additionally, if students can and do decline the

addition of points that their preferences do not align with, then the lists become acyclic,

regardless of the preference list.

Keywords: School choice, Stability and efficiency of matching, Top trading cycle

algorithm, Acyclicity

JEL Classification: C78 (Matching Theory)

1 Introduction

Stability and efficiency are two desirable but often incompatible properties of matchings in

school choice. The student-proposing deferred acceptance (DA) algorithm, used in college

admissions (Gale and Shapley, 1962), produces a stable matching—specifically, the student-

optimal stable matching. In contrast, the top trading cycle (TTC) algorithm, adapted to

school choice, finds an efficient matching (Abdulkadiloğlu and Sönmez, 2003). However, their

outcomes do not always coincide. In the school choice model, where students are assigned

to schools with priority orderings and capacities, Ergin (2002) shows that DA’s outcome is
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efficient under any student preferences if and only if priority orderings and capacities are

acyclic. Kesten (2006) establishes that DA and TTC produce the same outcome under any

student preferences if and only if priority orderings and capacities are acyclic in his sense.

While important, these conditions are quite strong, as they require efficiency or equivalence

to hold under any student preferences.

In this paper we take a more modest approach, examining conditions under which DA

and TTC produce the same outcome given specific lists of student prefernces and school

priority orderings. We show that if these lists are acyclic in the sense of Gutin et al. (2023),

then DA and TTC produce the same outcome (Theorem 3.1). This acyclicity is equivalent

to the absence of simultaneous cycle as defined by Romero-Medina and Triossi (2013), which

ensures the uniqueness of stable matchings. Gutin et al. (2023) demonstrate its necessity in

their normal form of the matching model. In the following, we call a cycle in the sense of

Gutin et al. (2023) simply a cycle, and its absence acyclicity. A closely related but different

“cycle” that appears in the TTC algorithm will be called a TT cycle. A natural question is

how strong the acyclicity condition is. It is known that if all schools share a common priority

ordering based on points (e.g., exam scores), the lists are acyclic (Romero-Medina and Triossi,

2013). However, priority orderings often differ when schools adjust points by adding school-

specific factors (e.g., proximity or sibling presence). We show that if student preferences align

with these additional points (i.e., students prefer schools with higher additional points), then

the lists are acyclic (Theorem 3.2). Moreover, if students can and do decline the addition

of points that their preferences do not align with, then the lists become acyclic regardless

of their preference list (Corollary to Theorem 3.2). Thus, acyclicity can be achieved by

appropriately reflecting students’ preferences in the priority orderings.

The rest of the paper is organized as follows. Section 2 presents the model and provides

some preliminaries. Section 3 shows our main results.

2 The model

A school choice model is a tuple (I, S,≻I ,≻S , q), where I is a finite set of students, S is

a finite set of schools, ≻I := (≻i)i∈I is a list of total strict orders ≻i of i over S ∪ {ϕ},

≻S := (≻s)s∈S is a list of total strict orders ≻s of s over I, and q := (qs)s∈S is a list of

capacities qs ≥ 1 of s. We call ≻i the preference of i and ≻s the priority ordering of s. s ≻i ϕ

means that “i prefers school s to remaining unassigned.” We write s ⪰i s
′ when s ≻i s

′ or

s = s′. Matching is a function µ : I → S ∪ {ϕ}. µ(i) = ϕ means that “i is not assigned to

a school.” We consider many-to-one matching µ such that |µ−1(s)| ≤ qs for any s ∈ S. Let

2



(i, s) ∈ I × S. A matching µ is individually rational if s = µ(i) implies s ≻i ϕ. A pair (i, s)

blocks µ if s ̸= µ(i) and if (a•) s ≻i µ(i) and (b•) i ≻s j for some j ∈ µ−1(s) or |µ−1(s)| < qs.

Matching µ is stable if it is individually rational and no pair blocks µ. Thus, if µ is stable,

then for any pair (i, s) such that s ̸= µ(i), (a) µ(i) ≻i s or (b) j ≻s i for every j ∈ µ−1(s)

and |µ(s)| = qs. Let L be the set of stable matchings. Defining a binary relation ⪰I on L by

µ ⪰I µ′ iff µ(i) ⪰i µ
′(i) for all i ∈ I, (L,⪰I) is a lattice. The greatest element µ̄ of (L,⪰I)

is said to be student-optimal. Although students agree that µ̄ is the best among the stable

matchings, there could be a matching, not in L, that Pareto-dominates µ̄, i.e., a matching

µ such that µ(i) ⪰i µ̄(i) for all i ∈ I and µ(i) ≻i µ̄(i) for at least one i ∈ I. A matching µ̂

is efficient if there is no matching that Pareto-dominates µ̂. DA finds the student-optimal

stable matching. TTC finds an efficient matching. The outcomes of the two may differ

depending on the lists (≻I ,≻S). Meanwhile, Romero-Medina and Triossi (2013) show that

stable matching is unique if the lists (≻I ,≻S) are acyclic in the following sense.

Definition 2.1 (Gutin et al. (2023)). The lists (≻I ,≻S) have a cycle if there exist a subset

of I of size k and a subset of S of size k, where k ≥ 2, and an enumeration and an ordering

of the agents (s1, i1, s2, i2, . . . , sk, ik) such that

ih ≻sh ih−1 ∀h = 1, . . . , k (modulo k)

sh+1 ≻ih sh ∀h = 1, . . . , k (modulo k).

The lists (≻I ,≻S) are acyclic if they have no cycle.

In the following, we will alternatively write cycle (s1, i1, s2, i2, . . . , sk, ik) as

(ik, s1) → (i1, s1) → (i1, s2) → · · · → (ik−1, sk) → (ik, sk) → (ik, s1).

Example 2.1. Let I = {i1, i2, i3}, S = {s1, s2, s3}, q1 = q2 = q3 = 1, and, denoting

s2 ≻i1 s1 ≻i1 s3 by i1 : s2 s1 s3 and so on,

i1 : s2 s1 s3 i2 : s1 s2 s3, i3 : s1 s2 s3, s1 : i1 i3 i2, s2 : i2 i1 i3, s3 : i2 i1 i3.

The matching digraph (Gutin et al., 2023) of this example looks like this:

i1

i2

i3

s1 s2 s3
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(The horizontal arrows indicate the directions of preferences and the vertical arrows indicate

those of priority orderings.) There is a cycle (thick arrows) of length 4 (s1, i1, s2, i2), or,

(i2, s1) → (i1, s1) → (i1, s2) → (i2, s2) → (i2, s1) such that

i1 ≻s1 i2, s2 ≻i1 s1, i2 ≻s2 i1, s1 ≻i2 s2.

Note that 4 is the smallest length of the cycle of Definition 2.1 (where k = 2). It can be

checked that there is a unique stable matching {(i1, s1), (i2, s2), (i3, s3)} dominated by the

efficient matching {(i1, s2), (i2, s1), (i3, s3)}. DA finds the former and TTC finds the latter.

The latter is blocked by (i3, s1). This example suggests that acyclicity is only a sufficient

condition for the uniqueness of stable matching1 and that the uniqueness of stable matching

is not sufficient for its efficiency.

In the next section, we will show that, given (≻I ,≻S), the outcomes of DA and TTC

coincide if (≻I ,≻S) is acyclic.2

3 Main results

3.1 Acyclicity implies the coincidence of DA and TTC outcomes

Let (I, S,≻I ,≻S , q) be a school choice model. Our first result rests on the following unique-

ness result. We provide a proof in the context of school choice in the Appendix.

Lemma 3.1 (Romero-Medina and Triossi (2013)). If (≻I ,≻S) is acyclic, then stable match-

ing is unique.

Now, the TTC algorithm of Abdulkadiloğlu and Sönmez (2003) is summarized as follows:

Step 1: Initialize each school’s counter to qs. All students and schools are considered re-

maining at this step.

Step t ≥ 1: Each remaining school points to its highest-priority remaining student. Each

remaining student points to their most preferred remaining school or is removed if they

prefer to remain unassigned. If a student points to a school, there is at least one TT cycle

(s1, i1, s2, i2, . . . , sk, ik) such that s1 points to i1, ii points to s2, . . . , sk points to ik, and ik

points to s1. Every student in a TT cycle is assigned the school they are pointing to and

is then removed. Every school in a TT cycle reduces its counter by one and is removed if

the counter reaches zero. The algorithm terminates when there are no remaining student or

schools. Any remaining students at this point remain unassigned.

1However, it is necessary when the model is reduced to the normal form (Gutin et al., 2023).
2A condition on (≻S , q) that is necessary and sufficient for the uniqueness given any ≻I is given in Kesten

(2006).
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Note that 2 is the smallest TT cycle length, the length of the TT cycle (s1, i1) such that s1

points to i1 and i1 points to s1 (the case k = 1). Also, any TT cycle (s1, i1, s2, i2, . . . , sk, ik)

of k ≥ 2 can be seen as a cycle (ik, s1) → (i1, s1) → (i1, s2) → · · · → (ik−1, sk) → (ik, sk) →

(ik, s1) such that i1 ≻s1 ik, s2 ≻i1 s1, . . . , ik ≻sk ik−1, and s1 ≻ik sk.

Theorem 3.1. If (≻I ,≻S) is acyclic then the outcomes of DA and TTC coincide.

Proof. Let µ : I → S ∪ {ϕ} be the outcome of TTC. Then, µ is individually rational, i.e.,

s = µ(i) implies s ≻i ϕ, as s is what i has pointed to in a TT cycle. If (≻I ,≻S) is acyclic,

then any TT cycle is of the form (s, i) such that s points to i and i points to s. Thus,

s ̸= µ(i) implies (a) µ(i) ≻i s or, otherwise, (b) j ≻s i for every j ∈ µ−1(s) and |µ(s)| = qs

(i has never been the first-priority student of s). Hence, no pair (i, s) such that s ̸= µ(i)

blocks µ, and µ is stable. By Lemma 3.1, the stable matching is unique. Hence, µ coincides

with the outcome of DA.

3.2 Point-aligned preferences imply acyclicity

Hereafter, we make our model closer to actual school choice by making a couple of assump-

tions as follows.

Assumption 3.1. (i) Each student i has basic points r̂i ∈ R+ and knows possible ad-

ditional points at school s, p̂i,s ∈ R+, for each s ∈ S. Students apply to schools by

putting desired schools s (such that s ≻i ϕ) in the application form in the order of ≻i.

(ii) The admission office collects the forms and determines the set I of applicant students.

For each i ∈ I and s ∈ S, it decides i’s additional points at s, pi,s ∈ R+, as pi,s = p̂i,s

if s appears in the form of i (which occurs if s ≻i ϕ); otherwise pi,s = 0. The total

points ri + pi,s of i at s are determined by tie-breaking r̂i + pi,s in such a way that

ri + pi,s ̸= rj + pj,s, and ri + pi,s > rj + pj,s if r̂i + pi,s > r̂j + pj,s, for any i, j ∈ I and

any s ∈ S.3 The priority ordering of s ∈ S is determined by

i ≻s j ⇐⇒ ri + pi,s > rj + pj,s, ∀i, j ∈ I. (1)

Here, ≻s is a total strict order because the “greater than” relation > of real numbers is

a total strict order. The following property of preferences is crucial to our second result.

Definition 3.1. A preference ≻i aligns with additional points if for any s, s′ ∈ S,

pi,s > pi,s′ =⇒ s ≻i s
′. (2)

3Such a tie-breaking is always possible: Let ϵ := mins∈S minr̂i+pi,s>r̂j+pj,s, i ̸=j

(
(r̂i + pi, s) − (r̂j + pj,s)

)
and randomly choose ri ∈ (r̂i − ϵ

2
, r̂i +

ϵ
2
) for each i ∈ I.

5



Note that the antecedent is pi,s > pi,s′ , not p̂i,s > p̂i,s′ . That is, Eq. (2) claims that if

p̂i,s > p̂i,s′ and s ≻i ϕ then s ≻i s
′ (see Assumption 3.1 (ii) regarding how p̂i,s is translated

to pi,s). It does not require that an otherwise undesired s be preferred to a desired s′ just

because possible additional points at s are higher than at s′.

Theorem 3.2. Under Assumption 3.1, if ≻i aligns with additional points for every i ∈ I,

then (≻I ,≻S) is acyclic.

Proof. Suppose to the contrary that there was a cycle

(ik, s1) → (i1, s1) → (i1, s2) → · · · → (ik−1, sk) → (ik, sk) → (ik, s1)

such that

ih ≻sh ih−1, sh+1 ≻ih sh ∀h = 1, . . . , k (modulo k).

Let f : I × S → R be a function such that f(i, s) = ri + pi,s (total points of i at s). Then,

for each h = 1, . . . , k,

ih ≻sh ih−1 =⇒ f(ih, sh) > f(ih−1, sh)

by Eq. (1). Also, for each h = 1, . . . , k,

sh+1 ≻ih sh =⇒ f(ih, sh+1) ≥ f(ih, sh)

because the contrapositive of Eq. (2) implies pih,sh+1
≥ pih,sh . Thus, we have

f(i1, s1) ≤ f(i1, s2) < f(i2, s2) ≤ · · · ≤ f(ik, s1) < f(i1, s1),

a contradiction. Hence we must have that (≻I ,≻S) is acyclic.

It should be stressed that by “the preference aligns with additional points,” we do not

mean that preferences are affected by the addition of points; we mean that preferences are

“compatible” with the additional point system in the sense of Eq. (2). Thus, there could

be a case such that preferences do not align with additional points, e.g., a case such that

s′ ≻i s ≻i ϕ and p̂i,s > p̂i,s′ , which results in pi,s > pi,s′ and s′ ≻i s under the rule

s ≻i ϕ =⇒ pi,s = p̂i,s of Assumption 3.1. Giving a chance to decline otherwise favorable

additional points to students will save the situation.

Assumption 3.2. The office sets pi,s = 0 if student i declines adding points to school s.

Every student i declines adding points to school s if there is another school s′ such that

s′ ≻i s and p̂i,s > p̂i,s′ .

Corollary 3.1. Under Assumptions 3.1 and 3.2, (≻I ,≻S) is acyclic with any ≻I .
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Proof. If pi,s > pi,s′ then p̂i,s > p̂i,s′ . If s′i ≻i si then, by Assumption 3.2, we have a

contradiction 0 = pi,s > pi,s′ ≥ 0. Thus, pi,s > pi,s′ =⇒ s ≻i s
′. The rest are given by

Theorem 3.2.

Acknowledgement This work is supported by the Basic Research Fund at TMU.

A Appendix

A.1 Proof of Theorem 3.1

To prove the theorem, we use the result of Roth (1984), which states, in the context of

school choice, the following: If all priority orderings are strict, the set of students assigned to

schools is the same at every stable matching. Namely, if µ and ν are two stable matchings,

we have
∪

s∈S µ−1(s) =
∪

s∈S ν−1(s); thus, µ−1(ϕ) = ν−1(ϕ) also.

Proof. Suppose, by way of contradiction, that the set of stable matchings is not a singleton.

Then, by its lattice property, there are two matchings µ and ν such that ν ⪰I µ and µ ̸= ν.

Since µ−1(ϕ) = ν−1(ϕ), if µ−1(s) ⊆ ν−1(s) for all s ∈ S, then µ(i) = ν(i) for all i ∈ I, so

we must have µ−1(s) ̸⊆ ν−1(s) for some s ∈ S, i.e., µ−1(s) \ ν−1(s) ̸= ∅ for some s ∈ S.

In the following, we assume that every student has an (unwritten) ID number and, when

µ−1(s) \ ν−1(s) ̸= ∅, we always pick the student with the smallest ID number from this set.

Let s0 ∈ S be such that µ−1(s0) \ ν−1(s0) ̸= ∅, and pick i0 ∈ µ−1(s0) \ ν−1(s0), i.e.,

i0 ∈ µ−1(s0), i0 /∈ ν−1(s0).

The stability of ν implies (a) ν(i0) ≻i0 s0 or (b) j ≻s0 i0 for every j ∈ ν−1(s0) and |ν−1(s0)| =

qs0 . If (b) is true, however, |ν−1(s0)| = qs0 implies ν−1(s0)\µ−1(s0) ̸= ∅ (otherwise ν−1(s0) ⊆

µ−1(s0) and ν−1(s0) = µ−1(s0)), and for j ∈ ν−1(s0)\µ−1(s0), we have s0 ̸= µ(j), s0 ≻j µ(j)

(since s0 = ν(j) ⪰j µ(j) and s0 ̸= µ(j)), and j ≻s0 i0, with i0 ∈ µ−1(s0), i.e., (j, s0) blocks µ.

Hence, (b) is impossible. In (a), letting s1 = ν(i0), s1 ≻i0 s0 and i0 ∈ µ−1(s0) imply i ≻s1 i0

for all i ∈ µ−1(s1) and |µ−1(s1)| = qs1 . Then |µ−1(s1)| = qs1 implies µ−1(s1) \ ν−1(s1) ̸= ∅

(otherwise µ−1(s1) ⊆ ν−1(s1) and µ−1(s1) = ν−1(s1)). Pick i1 ∈ µ−1(s1) \ ν−1(s1). Then,

i1 ∈ µ−1(s1) \ ν−1(s1), s1 = ν(i0), and i1 ≻s1 i0, s1 ≻i0 s0. (3)

Starting from s0 such that µ−1(s0) \ ν−1(s0) ̸= ∅, we have derived i0, s1, and i1 satisfying

Eq. (3). The iteration of this procedure yields a sequence of (ih, sh) ∈ I × S satisfying

ih ∈ µ−1(sh) \ ν−1(sh), sh = ν(ih−1), and ih ≻sh ih−1, sh ≻ih−1
sh−1 for all h = 1, 2, . . . .
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However, since I and S are finite, this sequence includes a cycle of the form

ih ≻sh ih−1, sh+1 ≻ih sh ∀h = 1, . . . , k (modulo k)

where k is such that 2 ≤ k ≤ min{|I|, |S|}, contradicting the acyclicity of (≻I ,≻S).
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