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Abstract

In 2 × 2 coordination games with Pareto-ranked equilibria, two

types of coordination failures can occur. The first is an equilibrium se-

lection problem, where both players coordinate their actions but reach

a Pareto-inferior equilibrium. The second is miss-coordination, where

players fail to coordinate and do not reach any pure strategy equilib-

rium. This paper examines the relationship between the probability

of these two types of coordination failures and the accuracy of private

information within the framework of 2 × 2 global games. Our find-

ings indicate that as the accuracy of private information improves, the

probability of miss-coordination decreases, whereas the probability of

selecting a Pareto-inferior equilibrium may increase.

1 Introduction

While increased information, whether public or private, is generally benefits

for a single decision maker facing uncertainty, this advantage does not al-

ways extend to multi-player games. Previous literature has highlighted that

in coordination games, the higher accuracy of public information does not

necessarily increase individual payoffs or social welfare.

Morris and Shin (2002, 2004) demonstrated that when players receive

public information in addition to private information, fundamental uncer-

tainty decreases, but their overall welfare does not necessarily improve due to
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coordination effects. Morris and Shin (2004) explained that while accurate

private information can reduce fundamental uncertainty, it does not resolve

the strategic uncertainty about others’ decisions. Even with infinitely precise

private information, fundamental uncertainty persists, leading to significant

inefficiencies.

In this paper, we shift our focus from public information to a setting

where only private information is available, examining whether greater ac-

curacy of private information reduces coordination failures and enhances

player payoffs.

In 2× 2 coordination games with Pareto-ranked equilibria, two types of

coordination failures can arise: equilibrium selection problem, where both

players coordinate their actions but end up in a Pareto-inferior equilibrium,

and miss-coordination, where both players fail to coordinate and do not

achieve any pure strategy equilibrium. This paper investigates the relation

between these two coordination failures and the accuracy of private infor-

mation in the framework of global games. Our results show that as the ac-

curacy of private information increases, the probability of miss-coordination

decreases while the probability of selecting a Pareto-inferior equilibrium may

increase. This means that player payoffs do not necessarily improve counter-

ing the common perception that more precise information inherently leads

to better outcomes for players.

Our initial motivation was to investigate how more accurate private in-

formation influences both the probability of miss-coordination and the prob-

ability of reaching a Pareto superior (or inferior) equilibrium. However, in

global games, equilibria are determined solely by deviation losses. Without

explicitly specifying payoffs, either of the two equilibria, given these devi-

ation losses, could be Pareto superior or inferior. Therefore, our analysis

shifts to exploring how the accuracy of private information affects both the

probability of miss-coordination and the probability of reaching one equi-

librium or the other, considering deviation losses, rather than focusing on

Pareto-ranking the equilibria.

We consider a global game on a class of 2 × 2 games where the state is

uniformly distributed and determined by nature, and each player observes

it with small noise, also uniformly distributed. In a Bayesian Nash equi-

librium of the global game, both players use a “switching strategy” with

some threshold. If the realized state is far from the threshold or the noise
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is small, both players receive signals that are either below or above the

threshold. This leads them to choose the same action and the global game’s

outcome achieves an equilibrium of the (complete information) game at that

state. However, if the realized state is near the threshold and the noise is

somewhat larger, then the signals each player observes may differ, leading to

different actions between players, resulting in miss-coordination. From this

perspective, higher accuracy of private information is more likely to reduce

miscoordination.

Conversely, decreased noise, or higher accuracy of individual informa-

tion, can reduce the range in which players select an equilibrium that is

“less risky” in the sense that the Nash product ( the product of deviation

losses) is larger. If this less risky equilibrium corresponds to the Pareto su-

perior equilibrium, the reduction in this range results in a lower probability

of selecting the Pareto superior equilibrium. This intuitively explains why,

despite reducing miss-coordination, increased private information accuracy

may still decrease the likelihood of selecting a Pareto superior equilibrium.

Our study is also related to several experiments on coordination games.

Experiments involving 2×2 coordination games with Pareto-ranked equilib-

ria, such as those by Cooper et al. (1990, 1994), are representative.1 These

experiments have shown that a Pareto inferior equilibrium is always chosen

in one-shot games rather than the Pareto superior equilibrium to avoid mis-

coordination. In global games, which are games of incomplete information,

increasing the accuracy of information makes the game more closely ap-

proximate a complete information game. As Morris and Shin (2004) noted,

while higher information accuracy reduces fundamental uncertainty, it can

simultaneously increase strategic uncertainty. Consequently, as informa-

tion accuracy improves, the likelihood of miscoordination decreases, but

the probability of resulting in a Pareto inferior equilibrium may increase.

Therefore, the impact of more accurate private information depends on the

trade-off between reducing miscoordination and the increased risk of Pareto

inferior outcomes.

1There are several studies about global games. Cabrales et al. (2007) conducted ex-
periments on incomplete information games equivalent to global games. Additionally,
Heinemann et al. (2009) conducted experiments on coordination games and estimated
global games by assuming that subjects have private information about the payoff func-
tions. These results indicate that in symmetric games, like those addressed in this paper,
global games provide good predictions. Heinemann (2024) pointed out that in asymmetric
games, global games do not necessarily provide accurate predictions.
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For our analysis to be meaningful, it is crucial that the global game pos-

sesses a unique equilibrium. By introducing a few additional assumptions to

the standard global game model, we demonstrate that if the equilibrium in

which both players adopt switching strategies is unique, then this unique-

ness holds not only among switching strategies but across all possible mixed

strategies. While this result has been previously proven through the iterated

elimination of interim-dominated strategies by Carlsson and van Damme

(1993) and Morris and Shin (2003), we offer a simplified proof by assum-

ing that both the state and the noise are uniformly distributed, making the

argument more straightforward.

The uniqueness of an equilibrium in global games is a central issue for

equilibrium selection and has been extensively studied (see, for example,

Carlsson and van Damme (1993), Frankel et al. (2003), Basteck and Daniëls

(2011), and Hoffmann and Sabarwal (2019)). These studies focus on the

limit case where noise approaches zero, considering it a method for select-

ing equilibria in complete information games. In contrast, we consider the

case where the noise is sufficiently small but non-zero, treating global games

as games of incomplete information reflecting significant economic phenom-

ena. Applications of this framework include Morris and Shin (2004), who

examined coordination in investment rollovers, and Goldstein and Pauzner

(2005), who discussed bank runs. In such cases, multiple equilibria may ex-

ist. For scenarios where both the state and noise are normally distributed,

the conditions for equilibrium uniqueness have been explored by Hellwig

(2002), Morris and Shin (2003), and Morris and Shin (2004). Our modest

contribution is to present a condition for equilibrium uniqueness when both

the state and the noise are uniformly distributed, along with an explicit

proof. While this result may seem intuitive in light of prior research on

global games, the proof has not been explicitly documented in the litera-

ture.

The remainder of this paper is organized as follows. Section 2 introduces

a model for global games with certain assumptions. Section 3 discusses

properties related to the existence and uniqueness of equilibria under these

assumptions. Section 4 examines the probability of miscoordination and

equilibrium selection. We derive a necessary and sufficient condition that the

increased accuracy of information reduces the probability of occurring one

equilibrium. Section 5 considers two examples. The first example involves
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a class of linear payoff functions with respect to the state and the second

example is a somewhat artificial payoff function. In the first example, the

probability of achieving both equilibria always increases with the accuracy

of noise whereas in the second example the probability of achieving a single

equilibrium decreases as the accuracy of the noise increases.

2 Model

We consider a symmetric game with two players, denoted by 1 and 2, and

two actions, denoted by A and B. The payoff of the player depends on a

state θ and the payoff of player i is denoted by u(ai, aj , θ) when player i and

the other player j choose actions ai and aj under state θ.

We assume that θ is uniformly distributed over [−d, 1+ d]. Let h be the

density function of θ: h(θ) = 1/(1+2d) if θ ∈ [−d, 1+d], otherwise h(θ) = 0.

Each player i observes noisy signal xi = θ+ei where the noise ei is uniformly

distributed over [−ϵ, ϵ] for some ϵ > 0. Let ϕ and Φ be the density function

and the distribution function of ei: ϕ(ei) = 1/2ϵ if −ϵ ≤ ei ≤ ϵ, otherwise

ϕ(ei) = 0 and note that Φ(k − θ) is given by

Φ(k − θ) =


1 θ ≤ k − ϵ
1
2ϵ(k − θ + ϵ) k − ϵ ≤ θ ≤ k + ϵ

0 θ ≥ k + ϵ.

(1)

We assume that 0 < 2ϵ < d: ϵ is small relative to d.

Let g(A, θ) and g(B, θ) be “deviation losses” from action profile (A,A)

and (B,B), respectively under state θ. A deviation loss of an action profile

is the loss that a player deviates unilaterally from the action profile, formally

defined by

g(A, θ) = u(A,A, θ)− u(B,A, θ), g(B, θ) = u(B,B, θ)− u(B,A, θ).

We make the following assumptions on g:

A1 g(A, θ) is strictly increasing and g(B, θ) is strictly decreasing in θ.

A2 g(A, 0) = g(B, 1) = 0.

A3 For any θ ∈ [−2ϵ, 1 + 2ϵ], g(A, θ) + g(B, θ) > 0.
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To use a usual argument of global games, we require the existence of

dominance regions of θ for both actions. A1 and A2 imply that g(A, θ) > 0

and g(B, θ) < 0 for any θ > 1, and this means that A is strictly dominant

for θ ∈ (1, 1 + d]. Similarly, B is strictly dominant for θ ∈ [−d, 0). When

θ ∈ [0, 1], a complete information game at θ becomes a coordination game;

that is, (A,A) and (B,B) are the Nash equilibria.

Assumption A3 is not so restrictive because g(A, θ) + g(B, θ) > 0 is

always satisfied by A1 and A2 with respect to θ ∈ [0, 1]. This also holds for

[−2ϵ, 0) and (1, 1 + 2ϵ] when g is continuous and ϵ is sufficiently small.

3 Equilibrium

In this section, we show the existence and the uniqueness of Bayesian Nash

equilibria under A1–A3. As in the usual global game literature, we consider

equilibria for “switching (or monotone) strategies”. A strategy of player i

is called a switching strategy with switching point k if the player chooses

action A if x > k, and chooses action B if x < k when player i receive signal

x. Let π(x, k) be the gain of the expected payoff of player i choosing A

rather than B when player i receive signal x and opponent player j plays a

switching strategy with switching point k. π(x, k) is given by

π(x, k)

=

∫ 1+d

−d

[(
u(A,A, θ)

∫ ϵ

k−θ
ϕ(ej)dej + u(A,B, θ)

∫ k−θ

−ϵ
ϕ(ej)dej

)
−
(
u(B,A, θ)

∫ ϵ

k−θ
ϕ(ej)dej + u(B,B, θ)

∫ k−θ

−ϵ
ϕ(ej)dej

)]
h(θ|x)dθ

=

∫ 1+d

−d
{g(A, θ)(1− Φ(k − θ))− g(B, θ)Φ(k − θ)}h(θ|x)dθ,

where h(θ|x) is the conditional density function of θ observing signal x.

For x ∈ [−d+ ϵ, 1 + d− ϵ], h(θ|x) is given by

h(θ|x) =

{
1
2ϵ if x− ϵ ≤ θ ≤ x+ ϵ

0 otherwise,
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and π(x, k) is rewritten as

π(x, k) =
1

2ϵ

∫ x+ϵ

x−ϵ
{g(A, θ)− (g(A, θ) + g(B, θ))Φ(k − θ)}dθ. (2)

From assumptions A1 and A2, we immediately see that the following

proposition holds.

Proposition 3.1. For all k, π(x, k) < 0 for x ∈ [−d−ϵ,−ϵ] and π(x, k) > 0

for x ∈ [1 + ϵ, 1 + d+ ϵ].

Assumptions A1, A2, and A3 imply the following proposition.

Proposition 3.2. For any x ∈ [−ϵ, 1 + ϵ], π(x, k) is strictly increasing in

x and π(x, k) is strictly decreasing in k .

Proof. Since both g(A, θ)(1−Φ(k−θ)) and −g(B, θ)Φ(k−θ) is increasing in

θ and either of them is strictly increasing in θ, π(x, k) is strictly increasing

in x by (2). Since A3 implies that g(A, θ)+ g(B, θ) > 0 for x− ϵ ≤ θ ≤ x+ ϵ

when x ∈ [−ϵ, 1 + ϵ], the integrand in (2) is strictly decreasing in k. Hence,

π(x, k) is strictly decreasing in k.

Proposition 3.1 imply that there exists k∗ in (−ϵ, 1+ϵ) such that π(k∗, k∗) =

0 if π is continuous on (x, k). By Proposition 3.2, a strategy profile that

both players choose a switching strategy with switching point k∗ satisfy-

ing π(k∗, k∗) = 0 is an equilibrium because π(x, k∗) > 0 for x > k∗ and

π(x, k∗) < 0 for x < k∗.

Proposition 3.2 does not imply that monotonicity of π(k, k) in k, so that

k∗ satisfying π(k∗, k∗) = 0 may not be unique. But, if such k∗ is unique

and π(x, k) is continuous on (x, k), then a strategy profile that the switch-

ing strategy with switching point k∗ is the essentially unique equilibrium

not only among switching strategies, but among all mixed strategies by the

argument of the iterated elimination of interim-dominated strategies shown

by Carlsson and van Damme (1993) and Morris and Shin (2003). We prove

this fact in Appendix. Our examples shown in Section 5 satisfies that π(x, k)

is continuous on (x, k) and k∗ satisfying π(k∗, k∗) = 0 is unique so an equi-

librium is unique in our examples.
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4 Probability of Miss-coordination and each equi-

librium

This section examines ex ante probability of occurring each action profile in

a global game when both players choose the same switching strategy.

Suppose that both players choose a switching strategy with switching

point k for −d + ϵ < k < 1 + d − ϵ. Consider the partition of (θ, xi, xj)-

region defined as follows:

IA = {(θ, xi, xj)|k + ϵ < θ ≤ 1 + d, θ − ϵ ≤ xi ≤ θ + ϵ, θ − ϵ ≤ xj ≤ θ + ϵ}
IB = {(θ, xi, xj)| − d ≤ θ < k − ϵ, θ − ϵ ≤ xi ≤ θ + ϵ, θ − ϵ ≤ xj ≤ θ + ϵ}
IAA = {(θ, xi, xj)|k − ϵ ≤ θ ≤ k + ϵ, k ≤ xi ≤ θ + ϵ, k ≤ xj ≤ θ + ϵ, }
IBB = {(θ, xi, xj)|k − ϵ ≤ θ ≤ k + ϵ, θ − ϵ ≤ xi < k, θ − ϵ ≤ xj < k, }
IAB = {(θ, xi, xj)|k − ϵ ≤ θ ≤ k + ϵ, k ≤ xi ≤ θ + ϵ, θ − ϵ ≤ xj < k, }
IBA = {(θ, xi, xj)|k − ϵ ≤ θ ≤ k + ϵ, θ − ϵ ≤ xi < k, k ≤ xj ≤ θ + ϵ, }

When θ belongs to k + ϵ < θ ≤ 1 + d, action profile (A,A) is always

realized for any signal xi and xj if both players choose a switching strategy

with switching point k. Similarly (B,B) must occur when −d ≤ θ < k − ϵ.

IA and IB correspond to these areas. Otherwise, when k − ϵ ≤ θ ≤ k + ϵ,

every strategy profile, (A,A), (B,B), (A,B) and (B,A) can be realized.

IAA, IBB, IAB and IBA correspond to the areas in which action profiles

(A,A), (A,B), (B,A) and (B,B) occur, respectively.

Let P (I) be the probability of occurring area I. P (IA) is calculated by

P (IA) =

∫ 1+d

k+ϵ

∫ θ+ϵ

θ−ϵ

∫ θ+ϵ

θ−ϵ
ϕ(xi − θ)ϕ(xj − θ)h(θ)dxidxjdθ

=

∫ 1+d

k+ϵ

∫ ϵ

−ϵ

∫ ϵ

−ϵ

1

2ϵ

1

2ϵ

1

1 + 2d
deidejdθ

=
1

4ϵ2(1 + 2d)

∫ 1+d

k+ϵ

∫ ϵ

−ϵ

∫ ϵ

−ϵ
deidejdθ

=
1 + d− k − ϵ

1 + 2d
.

Similarly, we obtain

P (IB) =
1

4ϵ2(1 + 2d)

∫ k−ϵ

−d

∫ ϵ

−ϵ

∫ ϵ

−ϵ
deidejdθ =

d+ k − ϵ

1 + 2d
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P (IAA) =
1

4ϵ2(1 + 2d)

∫ k+ϵ

k−ϵ

∫ ϵ

k−θ

∫ ϵ

k−θ
deidejdθ =

2ϵ

3(1 + 2d)

P (IBB) =
1

4ϵ2(1 + 2d)

∫ k+ϵ

k−ϵ

∫ k−θ

−ϵ

∫ k−θ

−ϵ
deidejdθ =

2ϵ

3(1 + 2d)

P (IAB) =
1

4ϵ2(1 + 2d)

∫ k+ϵ

k−ϵ

∫ ϵ

k−θ

∫ k−θ

−ϵ
deidejdθ =

ϵ

3(1 + 2d)

P (IBA) =
1

4ϵ2(1 + 2d)

∫ k+ϵ

k−ϵ

∫ k−θ

−ϵ

∫ ϵ

k−θ
deidejdθ =

ϵ

3(1 + 2d)
.

Thus, as long as both players choose the same switching strategy, the

probability of miscoordination is independent of the strategy because P (IAB)

and P (IBA) do not depend on k. Let Pmiss be the probability of miscoordi-

nation. Pmiss is given by:

Pmiss = P (IAB) + P (IBA) =
2ϵ

3(1 + 2d)
(3)

As ϵ increases, the probabilities of the occurrences of (A,B) and (B,A),

which represent miss-coordination, increase, resulting in a decrease in the

sum of the probabilities of the occurrences of (A,A) and (B,B), which

are equilibria in the complete information game. However, the change in

the switching point k might lead to an increase in the probability of either

equilibrium occurring. Let us focus on the probability of (A,A) occurring

and denote it by PA. PA is given by

PA = P (IA) + P (IAA) =
3(1 + d− k)− ϵ

3(1 + 2d)
.

To simplify the discussion, let us assume that k is differentiable by ϵ. Dif-

ferentiating PA by ϵ implies

dPA

dϵ
= − 1

(1 + 2d)

(
dk

dϵ
+

1

3

)
.

Thus, the necessary and sufficient condition for the probability of (A,A)

occurring to increase is as follows.

Proposition 4.1. dPA
dϵ > 0 if and only if dk

dϵ < −1
3 .
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5 Examples

This section presents some examples of the function of deviation losses. We

examine the probability of miscoordination and one of equilibria with respect

to increasing accuracy of private information. Our original interest is the

probability of a Pareto superior (or inferior) equilibrium, but equilibria of

the global game depends only on the function of deviation losses. Even

if the function of the deviation losses are the same, the relation of Pareto

dominance between equilibria changes with the specific payoffs.

We will proceed with the payoff function where u(A,A) = g(A, θ),

u(B,A) = −g(B, θ), and u(B,A) = u(B,B) = 0, as illustrated in the

payoff matrix at the top of Figure 1. In this payoff function, since (A,A)

is a Pareto superior equilibrium, we are interested in how the probability of

occurring (A,A) changes with respect to the accuracy of the players’ noise

ϵ. Note that the same function of deviation losses also holds for the payoff

function where u(B,A) = −g(A, θ), u(B,B) = g(B, θ), as illustrated in the

payoff matrix at the bottom of Figure 1. In this payoff function, (A,A)

becomes a Pareto inferior equilibrium.

A

B

A1
2

(g(A, θ), g(A, θ))

( 0 , 0 )

B

(-g(B, θ),-g(B, θ))

( 0 , 0 )

A

B

A1
2

(-g(A, θ),-g(A, θ))

( 0 , 0 )

B

(g(B, θ),g(B, θ))

( 0 , 0 )

Figure 1: two games with the same deviation losses

Note that the Bayesian equilibrium is solved by π(k, k) = 0 and from (1)
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and (2) π(k, k) is given by

π(k, k) =
1

2ϵ

∫ k+ϵ

k−ϵ
{g(A, θ)(1− Φ(k − θ))− g(B, θ)Φ(k − θ)}dθ

=
1

4ϵ2

∫ k+ϵ

k−ϵ
{2ϵg(A, θ)− (g(A, θ) + g(B, θ))(k − θ + ϵ)}dθ.

5.1 Simple Linear Case

Suppose that g(A, θ) = mAθ and g(B, 1) = mB(1 − θ) where mA > 0 and

mB > 0.2 π(k, k) is

π(k, k) =
1

6
{3k(mA +mB)− 3mB + (mA −mB)ϵ} .

Thus, switching point k of an equilibrium is

k =
mB

mA +mB
− mA −mB

3(mA +mB)
ϵ.

Since dk/dϵ is always greater than −1/3, so that PA must be decreasing

with respect to ϵ for any mA and mB.

5.2 An example of increasing the probability of achieving an

equilibrium

We give an example of an increase of the probability of achieving (A,A)

when ϵ increases. Suppose that g(A, θ) + g(B, θ) = 1. Then π(k, k) is

π(k, k) =
1

4ϵ2

∫ k+ϵ

k−ϵ
{2ϵg(A, θ)− (g(A, θ) + g(B, θ))(k − θ + ϵ)}dθ

=
1

2ϵ

∫ k+ϵ

k−ϵ
g(A, θ)dθ − 1

2
.

Let g(A, θ) be

g(A, θ) =


θ θ < 1

2

a
(
θ − 1

2

)
+ 1

2
1
2 ≤ θ ≤ 2a+1

4a
a

2a−1

(
θ − 2a+1

4a

)
+ 3

4 θ > 2a+1
4a

2In this example, we immediately find that assumptions A1 and A2 hold. Assumption
A3 holds when mA = mB , or mA > mB and ϵ < mB

2(mA−mB)
(or mA < mB and ϵ <

mA
2(mB−mA)

).
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for some constant a > 1.

When k < 1
2 − ϵ, π(k, k) = k − 1/2 < 0. Suppose that k > 1

2 + ϵ. For

any θ ∈ [k − ϵ, k + ϵ], g(A, θ) > θ. holds by a > 1. This implies that

π(k, k) >
1

2ϵ

∫ k+ϵ

k−ϵ
θdθ − 1

2
= k − 1

2
> ϵ > 0.

When 1
2 − ϵ < k < 1

2 + ϵ,π(k, k) is given by

π(k, k) =
1

2ϵ

(∫ 1/2

k−ϵ
θdθ +

∫ k+ϵ

1/2

{
a(θ − 1

2
) +

1

2

}
dθ

)
− 1

2

=
−(1− 2k + 2ϵ)2 + a(−1 + 2k + 2ϵ)2

16ϵ
.

Solving π(k∗, k∗) = 0, we have

k∗ =
1

2
− ϵ(1 + a± 2

√
a)

a− 1
.

Since

1

2
− ϵ(1 + a+ 2

√
a)

a− 1
<

1

2
− ϵ

we find that

k∗ =
1

2
− ϵ(1 + a− 2

√
a)

a− 1

is a solution and the unique equilibrium is a profile of a switching strategy

with switching point k∗.

Proposition 4.1 implies that if

dk

dϵ
= −1 + a− 2

√
a

a− 1
< −1

3

then, PA is increasing in ϵ. Then, a > 4 is a sufficient condition for an

increase of PA.

For example, when a = 9, the switching point of the equilibrium strategy

is given by

k∗ =
1

2
− ϵ

2
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and we have

PA = P (IAA) + P (IA) =
1

2
+

ϵ

6(1 + 2d)
.

We confirm that PA is increasing in ϵ.

Appendix

In the Appendix, we prove that if k∗ uniquely satisfies π(k∗, k∗) = 0 and

π(x, k) is continuous with respect to (x, k), then both players selecting a

switching strategy with the switching point k∗ is the unique Bayesian Nash

equilibrium, not only among switching strategies but among all mixed strat-

egy profiles under our assumptions.

Following the literature on global games, such as Carlsson and van Damme

(1993) and Morris and Shin (2003), we use the argument of iterated elimi-

nation of interim-dominated strategies. While the discussion of equilibrium

uniqueness in global games usually applies as ϵ approaches zero, our findings

hold for sufficiently small but non-zero values of ϵ.

Since π(x, k) is continuous on x, Proposition 3.1 implies that there exists

x ∈ (−ϵ, 1 + ϵ) satisfying π(x, k) = 0 for any k by the intermediate value

theorem. According to Proposition 3.2, this x that satisfies π(x, k) = 0 is

unique, and we denote it by b(k). Note that b(k) ∈ (−ϵ, 1 + ϵ). A switching

strategy with switching point b(k) is a best response strategy when the

opponent use a switching strategy with switching point k.

The following proposition shows monotonicity of b(k).

Proposition 5.1. b(k) is strictly increasing, i.e., if k′ > k, then b(k′) >

b(k).

Proof. Suppose that k′ > k. Since b(k) ∈ (−ϵ, 1 + ϵ), Proposition 3.2 im-

plies π(b(k), k′) < π(b(k), k), so that π(b(k), k′) < 0 from π(b(k), k) = 0.

Since π(b(k′), k′) = 0, we have π(b(k), k′) < π(b(k′), k′). π(x, k′) is strictly

increasing in x from Proposition 3.2, we conclude that b(k) < b(k′).

To examine the iterated elimination of interim-dominated strategies, we

defined b
n
,bn as follows:

b
n
=

{
1 + ϵ n = 1

b(b
n−1

) n ≥ 2,
bn =

{
−ϵ n = 1

b(bn−1) n ≥ 2.
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We find that sequence {bn} is non-increasing and {bn} is a non-decreasing

from Proposition 5.1. Let σi be a strategy of player i allowing probabilistic

choice. σi(xi) denotes the probability of choosing A for player i when player

i receive signal xi. Let V (xi, σj) be the gain of the expected payoff of player

i choosing A rather than B when player i receive signal xi and opponent

player j plays strategy σj . We denote a switching strategy with switching

point k of player i by s[k]i. s[k]i is identical to strategy σi which satisfies

σi(xi) =

{
1 xi > k

0 xi < k.

Proposition 5.2. If (σ1, σ2) is a Bayesian Nash equilibrium, then for any

n ≥ 1 and i = 1, 2, the following conditions hold:

σi(xi) =

{
1 xi > b

n

0 xi < bn.

Proof. The proof is shown by induction on n. Suppose n = 1. Then b
n
=

1 + ϵ and bn = −ϵ. For xi > 1 + ϵ, since the probability that θ is less than

or equal to 1 is zero, A is a strictly dominant action by assumptions A1 and

A2. Hence player i chooses A in an equilibrium, so σi(xi) = 1. Similarly,

σi(xi) = 0 for xi < −ϵ by the same assumptions. We have shown that the

statement holds for n = 1.

Next, we assume that the statement is true for n and prove it for n+ 1.

We will show that σi(xi) = 1 when xi > b
n+1

. Using a similar argument, we

can also show that σi(xi) = 0 when xi < bn+1.

From the inductive hypothesis, we know that σi(xi) = 1 if xi > b
n

and σi(xi) = 0 if xi < bn, so we only need to consider the case where

bn ≤ xi ≤ b
n
. Furthermore, since −ϵ ≤ bn and 1 + ϵ ≥ b

n
, we only need to

consider the case where −ϵ ≤ xi ≤ 1 + ϵ.

The inductive hypothesis also holds for j, so if xj > b
n
, then σj(xj) = 1,

and if xj < bn, then σj(xj) = 0. Therefore, for xj > b
n
and xj < bn, we

have σj(xj) = s[b
n
]j(xj), and for bn ≤ xj < b

n
we have σj(xj) ≥ s[b

n
]j(xj)

since s[b
n
]j(xj) = 0. Thus, for any xj with xj ̸= b

n
, σj(xj) ≥ s[b

n
]j(xj).

14



Calculating V (xi, σj)− π(xi, b
n
j ) gives:

V (xi, σj)− π(xi, b
n
)

=

∫ xi+ϵ

xi−ϵ

∫ b
n

bn

{
(g(A, θ) + g(B, θ))(σj(xj)− s[b

n
]j(xj))

}
f(xj , θ|xi) dxj dθ

=

∫ xi+ϵ

xi−ϵ
(g(A, θ) + g(B, θ))

∫ b
n

bn
(σj(xj)− s[b

n
]j(xj))f(xj , θ|xi) dxj dθ

where f(xj , θ|xi) is a conditional joint distribution of (xj , θ) given xi. Since

xi−ϵ ≥ −2ϵ and xi+ϵ ≤ 1+2ϵ, Assumption A3 implies g(A, θ)+g(B, θ) > 0,

and thus V (xi, σj) ≥ π(xi, b
n
).

Since π(b
n+1

, b
n
) = 0 and π(xi, k) is strictly increasing in xi, we have

π(xi, b
n
) > 0 for any xi > b

n+1
.

Therefore, for xi > b
n+1

, we have V (xi, σj) > 0, which means that A is

the unique optimal action, and σi(xi) = 1 must hold.

Since both {bn} and {bn} are monotonic and bounded sequence, they

converge to some limit point b
∗
and b∗, respectively. Continuity of π on

(x, k) implies that π(b
∗
, b

∗
) = π(b∗, b∗) = 0. This ensures the existence of an

equilibrium under the assumptions: a strategy profile both players choosing

a switching strategy with switching b
∗
or b∗ is an equilibrium.

Moreover, if k∗ satisfying π(k∗, k∗) = 0 is unique, b
∗
= b∗ = k∗ holds.

Hence, we obtain the following proposition from Proposition 5.2.

Proposition 5.3. If k∗ satisfying π(k∗, k∗) = 0 is unique, then an equi-

librium is essentially unique: player i chooses A and B for xi > k∗ and

xi < k∗, respectively.
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