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Abstract

We show that team-maxmin equilibrium due to von Stengel and Koller [Games and

Economic Behavior 21(1997):309–321] exists in a more general setting. We show that it

exists, as a pure strategy equilibrium of an infinite game of a team and an adversary,

if (i) the strategy sets are compact convex subsets of topological vector spaces, and (ii)

the payoff is bounded, upper semicontinuous on the team’s strategy profile set, concave

on each member’s strategy set, and lower semicontinuous and convex on the adversary’s

strategy set. We also show a corollary on the existence of a mixed strategy team-maxmin

equilibrium. Sion’s minimax theorem is used for the proof.

Keywords: team-maxmin equilibrium, Sion’s minimax theorem, zero-sum games, ex-

istence of equilibrium

JEL Classification: C72 (Noncooperative game)

1 Introduction

A team is a set of players who have identical payoffs and make a collective strategy choice.

Teams appear in games under various guises; e.g., zero-sum games of two teams (Ho and

Sun, 1974), non-zero-sum games of two teams (Palfrey and Rosenthal, 1983), and, more

recently, non-zero-sum games of any number of teams (Kim et al., 2022). We consider,

following von Stengel and Koller (1997), a multi-player, zero-sum, normal form game of one

team and one player called the adversary. It is assumed that the members of the team can

communicate before but not during the play. Thus, they cannot choose correlated strategies.

Also they cannot make a joint deviation from the chosen strategy profile; only a unilateral

deviation is possible. It is also assumed that, since zero-sum, the team seeks to maximize the

worst case payoff, and the members of the team collectively choose a team-maxmin strategy
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profile, a profile of uncorrelated strategies that serves for that purpose. In von Stengel and

Koller (1997), the game is a finite game, and the team-maxmin strategy profile is a profile of

generally mixed, uncorrelated strategies. They showed, in this setting, that a team-maxmin

strategy profile exists, and any team-maxmin strategy profile is part of an equilibrium, called

a team-maxmin equilibrium, which gives the highest payoff to the team members in the set

of equilibria of this multi-player zero-sum game.

If the game is finite, as in von Stengel and Koller (1997), a team-maxmin strategy profile

is guaranteed to exist in its mixed extension, in which there also exists an equilibrium by

the theorem of Nash (1951). An interesting point of their results is that the existence of

an equilibrium of an interesting kind is shown independently of Nash’s theorem, using the

duality of a linear programming problem. The purpose of the present article is to show

that team-maxmin equilibrium exists in a more general setting. To be specific, we show

that it exists, as a pure strategy equilibrium of infinite game, if (i) the strategy sets are

compact convex subsets of topological vector spaces, and (ii) the payoff is bounded, upper

semicontinuous on the team’s strategy profile set, concave on each member’s strategy set, and

lower semicontinuous and convex on the adversary’s strategy set. We also show a corollary on

the existence of a mixed strategy team-maxmin equilibrium. Our setting covers the original

one of von Stengel and Koller (1997),1 and extends the theory of team-maxmin equilibria

from mixed strategy equilibria of finite games to pure and mixed strategy equilibria of infinite

games, which may be useful for, say, applications to industrial organization.

Like von Stengel and Koller (1997), we do not use any fixed point theorem. Our proof

of main Theorem 3.1 goes in the same way as that of their Theorem, but, instead of using

the duality of linear programming problem, we use Sion’s minimax theorem (Sion, 1958).

Although von Stengel and Koller (1997) rather emphasized the distinction of the adversary’s

equilibrium strategy from a minmax strategy (in that it is vulnerable to multi-lateral de-

viations), their result (and ours) seems to imply a special, restricted form of a minimax

theorem, which we will present as our Theorem 4.1. We will also argue that, at a team-

maxmin equilibrum, we have a collection of zero-sum games of a member and the adversary,

and the equilibrium strategy of adversary can be seen as a common minmax strategy of the

adversary.

In Section 2, we provide preliminaries. In Section 3, we formally state and prove our main

results. In Section 4, we discuss the implications of our results. In Section 5, we conclude

1In fact, in the mixed extension of finite game, the strategy sets are identified with unit simplices of

Euclidean spaces and the payoff is continuous and multi-linear, satisfying all of our assumpions. For another

viewpoint, see a remark after Corollary 3.1 of current article.
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with some comments.

2 Preliminaries

Let S and T be sets and f : S×T → R. This defines a two-player zero-sum game Γ = (S, T, f),

where player one chooses a strategy s from strategy set S, two a strategy t from strategy

set T , and one receives the payoff f(s, t) and two −f(s, t). We only consider bounded payoff

functions, namely, f such that there exists M ∈ R and |f(s, t)| < M for any (s, t) ∈ S × T .

A maxmin strategy of player one (if any) is a strategy s ∈ S such that

min
t∈T

f(s, t) = max
s∈S

min
t∈T

f(s, t), (1)

i.e., a strategy of player one that sets the highest floor to the payoff of player one. A minmax

strategy of player two (if any) is a strategy t ∈ T such that

max
s∈S

f(s, t) = min
t∈T

max
s∈S

f(s, t), (2)

i.e., a strategy of player two that sets the lowest ceiling to the payoff of player one.

Suppose that S and T are in some topological spaces. If S and T are compact, and if f

is upper semicontinuous (usc) on S, and lower semicontinuous (lsc) on T , then there exist

a maxmin strategy s ∈ S and a minmax strategy t ∈ T . Here, f is usc on S iff the upper

contour set Ut(α) = {s ∈ S | f(s, t) ≥ α} is closed for any α ∈ R and t ∈ T ; lsc on T iff the

lower contour set Ls(α) = {t ∈ T | f(s, t) ≤ α} is closed for any α ∈ R and s ∈ S. Clearly,

min
t∈T

f(s, t) ≤ f(s, t) ≤ max
s∈S

f(s, t), (3)

so

max
s∈S

min
t∈T

f(s, t) ≤ min
t∈T

max
s∈S

f(s, t). (4)

If the equality (called the maxmin equality) holds in Eq. (4), and hence in Eq. (3), we have

f(s, t) ≤ f(s, t) ≤ f(s, t) ∀s ∈ S,∀t ∈ T, (5)

i.e., (s, t) ∈ S × T becomes a Nash equilibrium of Γ. Conversely, if Γ has an equilibrium

(s∗, t∗) ∈ S × T , then s∗ is a maxmin strategy of player one, and t∗ is a minmax strategy of

player two (Osborne and Rubinstein, 1994, Proposition 22.2). Thus, for a two-player zero-

sum game possessing an equilibrium, a pair of maxmin and minmax strategies is equivalent

to an equilibrium. As such, the equilibria are interchangeable in that if (s, t) and (s′, t′)

are equilibria of Γ, so are (s′, t) and (s, t′); also they are payoff equivalent in that f(s, t) is

constant for any equilibrium (s, t) of Γ.

In order for the inequality Eq. (4) to hold with equality, however, we need further re-

strictions for S, T , and f . We will make use of the following theorem.
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Theorem 2.1 (Sion (1958)). Let S and T be compact and convex subsets of two topological

vector spaces and f : S × T → R. If f is usc and quasiconcave on S, and if f is lsc and

quasiconvex on T , then

max
s∈S

min
t∈T

f(s, t) = min
t∈T

max
s∈S

f(s, t). (6)

Here, f is quasiconcave on S iff the upper contour set Ut(α) is convex for any α ∈ R and

t ∈ T ; quasiconvex on T iff the lower contour set Ls(α) is convex for any α ∈ R and s ∈ S.

If f is concave on S, then it is quasiconcave on S; if convex on T , then quasiconvex on T .

Here, f is concave on S iff f((1− θ)s+ θs′, t) ≥ (1− θ)f(s, t)+ θf(s′, t) for any s, s′ ∈ S and

θ ∈ [0, 1] for any t ∈ T ; convex on T iff f(s, (1− θ)t+ θt′) ≤ (1− θ)f(s, t) + θf(s, t′) for any

t, t′ ∈ T and θ ∈ [0, 1] for any s ∈ S.

Now, we introduce an (n+1)-player zero-sum game G = (X1, . . . , Xn, Y, u) of n members

of a team and an adversary of the team, where X1, . . . , Xn, Y are non-empty strategy sets of

players, Xi for a team member i, i = 1, . . . , n, Y for the adversary, and u : X×Y → R is the

payoff function of a team member, where X = X1 × · · · ×Xn, the set of all strategy profiles

of the team. Every member of the team has this identical payoff u : X × Y → R, and the

adversary’s payoff is given by the negative of the n times of u, i.e., by −nu : X × Y → R.

The following definitions are given by von Stengel and Koller (1997). First, a team-

maxmin strategy profile is a strategy profile x ∈ X such that

min
y∈Y

u(x, y) = max
x∈X

min
y∈Y

u(x, y), (7)

namely, a strategy profile of the team that sets the highest floor to the member’s common

payoff. Second, as a notion of equilibria of this (n+1)-player zero-sum game, a team-maxmin

equilibrium is an equilibrium (x, y) ∈ X × Y of G, where x ∈ X is a team-maxmin strategy

profile and y is a strategy of the adversary, namely, (x, y) such that

u(xi, x−i, y) ≥ u(xi, x−i, y) ∀xi ∈ Xi, ∀i, and u(x, y) ≤ u(x, y) ∀y ∈ Y, (8)

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈
∏

j ̸=iXj , as usual.

In von Stengel and Koller (1997), it is shown that a team-maxmin strategy profile exists

in the mixed extension of finite games, and any team-maxmin strategy profile is part of a

team-maxmin equilibrium (von Stengel and Koller (1997, Theorem)). We will extend the

domain of this result in the next section.

3 Main results

Let G = (X1, . . . , Xn, Y, u) be a game of a team and an adversary, and let X = X1×· · ·×Xn.

We consider the following set of conditions.
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Assumption 3.1. 1. X1, . . . , Xn, Y are compact convex subsets of topological vector

spaces.

2. u is bounded, usc on X, concave on each Xi, i = 1, . . . , n, and lsc and convex on Y .

Note that X is also compact endowing the product topology, and convex.

Theorem 3.1. Under Assumption 3.1, a team-maxmin strategy profile exists, and any team-

maxmin strategy profile is part of a team-maxmin equilibrium.

Proof. Since u(x, ·) are lsc on compact Y , miny∈Y u(x, y) exists for every x ∈ X. Since u(·, y)

are usc on compact X, and since pointwise minimum of usc function is usc, miny∈Y u(·, y)

is usc, and has a maximizer, which is a team-maxmin strategy profile. Let x ∈ X be a

team-maxmin strategy profile, and define vi : Xi × Y → R by vi(xi, y) = u(xi, x−i, y) for

each i = 1, . . . , n. Then their sum
∑

i vi =
∑n

i=1 vi is usc and concave on X and lsc and

convex on Y . By Sion’s theorem, it holds that

max
x∈X

min
y∈Y

∑
i

vi(xi, y) = min
y∈Y

max
x∈X

∑
i

vi(xi, y). (9)

Consider a two-player zero-sum game Γ1 = (X,Y,
∑

i vi), in which the maxmin equality

Eq. (9) holds true. We claim that

max
x∈X

min
y∈Y

∑
i

vi(xi, y) = min
y∈Y

∑
i

vi(xi, y), (10)

i.e., the team-maxmin strategy profile x is a maxmin strategy of x-player in Γ1. To see this,

notice that maxxminy
∑

i vi(xi, y) ≥ miny
∑

i vi(xi, y), and suppose to the contrary that

max
x∈X

min
y∈Y

∑
i

vi(xi, y) > min
y∈Y

∑
i

vi(xi, y). (11)

If x̂ ∈ X is a maximizer of the left-hand side, then miny
∑

i vi(x̂i, y) > miny
∑

i vi(xi, y). If

ŷ ∈ Y and y′ ∈ Y are minimizers of
∑

i vi(x̂i, ·) =
∑

i u(x̂i, x−i, ·) and
∑

i vi(xi, ·) = nu(x, ·),

respectively, then ∑
i

u(x̂i, x−i, ŷ) > nu(x, y′). (12)

Of course y′ also minimizes v1(x1, ·) = · · · = vn(xn, ·) = u(x, ·). Now, since u is concave on
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each Xi, i = 1, . . . , n, we have, for any ϵ ∈]0, 1[ and y ∈ Y ,

u((1− ϵ)x+ ϵx̂, y) = u((1− ϵ)x1 + ϵx̂1, . . . , (1− ϵ)xn + ϵx̂n, y)

≥ (1− ϵ)u(x1, (1− ϵ)x2 + ϵx̂2, . . . , (1− ϵ)xn + ϵx̂n, y)

+ ϵu(x̂1, (1− ϵ)x2 + ϵx̂2, . . . , (1− ϵ)xn + ϵx̂n, y)

≥ . . .

≥ (1− ϵ)nu(x, y) + ϵ(1− ϵ)n−1
∑
i

u(x̂i, x−i, y) + ϵ2A(ϵ, x̂, x, y)

= u(x, y)− nϵu(x, y) + ϵ
∑
i

u(x̂i, x−i, y) + ϵ2B(ϵ, x̂, x, y),

where A(ϵ, x̂, x, y) and B(ϵ, x̂, x, y) are expressions for ϵ ∈]0, 1[ that are bounded (due to the

boundedness of u).2 Moreover, for ϵ ∈]0, 1
n [, we have (1 − nϵ)u(x, y) ≥ (1 − nϵ)u(x, y′) and∑

i u(x̂i, x−i, y) ≥
∑

i u(x̂i, x−i, ŷ) for any y ∈ Y by the definition of y′ and ŷ, so

u((1− ϵ)x+ ϵx̂, y) ≥ u(x, y′)− nϵu(x, y′) + ϵ
∑
i

u(x̂i, x−i, ŷ) + ϵ2B(ϵ, x̂, x, y), (13)

for any y ∈ Y . Thus, for ϵ ∈]0, 1
n [, we have

min
y∈Y

u((1− ϵ)x+ ϵx̂, y) ≥ u(x, y′) + ϵ

(∑
i

u(x̂i, x−i, ŷ)− nu(x, y′)

)
+ ϵ2B(ϵ, x̂, x, yϵ), (14)

where yϵ is a minimizer of the left-hand side. Since the expression in the parenthesis is

positive by assumption and B(ϵ, x̂, x, yϵ) is bounded, we have for sufficiently small ϵ,

min
y∈Y

u((1− ϵ)x+ ϵx̂, y) > u(x, y′) = min
y∈Y

u(x, y), (15)

2Precise forms of A and B are as follows. Let N = {1, . . . , n} and xI := (xi | i ∈ I) for I ⊆ N . Since

u((1− ϵ)x+ ex̂, y) ≥
n∑

k=0

ϵk(1− ϵ)n−k
∑

I⊆N,|I|=k

u(x̂I , x−I , y)

= (1− ϵ)nu(x, y) + ϵ(1− ϵ)n−1
∑
i

u(x̂i, x−i, y) +

n∑
k=2

ϵk(1− ϵ)n−k
∑

I⊆N,|I|=k

u(x̂I , x−I , y),

we set

A(ϵ, x̂, x, y) =

n∑
k=2

ϵk−2(1− ϵ)n−k
∑

I⊆N,|I|=k

u(x̂I , x−I , y).

Since

(1− ϵ)n =

n∑
k=0

(
n

k

)
1n−k(−ϵ)k = 1− nϵ+ ϵ2

n∑
k=2

(
n

k

)
(−ϵ)k−2

and

ϵ(1− ϵ)n−1 = ϵ

(
1− (n− 1)ϵ+ ϵ2

n−1∑
k=2

(
n− 1

k

)
(−ϵ)k−2

)
= ϵ+ ϵ2

(
1− n+ ϵ

n−1∑
k=2

(
n− 1

k

)
(−ϵ)k−2

)
,

we set

B(ϵ, x̂, x, y) = A(ϵ, x̂, x, y) +

n∑
k=2

(
n

k

)
(−ϵ)k−2u(x, y) +

(
1− n+ ϵ

n−1∑
k=2

(
n− 1

k

)
(−ϵ)k−2

)∑
i

u(x̂i, x−i, y).
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i.e., x′ := (1 − ϵ)x + ϵx̂ sets a higher floor to the payoff of team members than x does,

contradicting that x is a team-maxmin stratgegy profile. Hence Eq. (10). Having established

that x is a maxmin strategy of x-player in Γ1 satisfying the maxmin equality Eq. (9), let

y ∈ Y be a minmax strategy of y-player in Γ1. Then the pair (x, y) constitutes an equilibrium

of Γ1. That
∑

i vi(xi, y) ≥
∑

i vi(xi, y) for any x ∈ X means that u(xi, x−i, y) ≥ u(xi, x−i, y)

for any xi ∈ Xi, for every i = 1, . . . , n. That
∑

i vi(xi, y) ≤
∑

i vi(x, y) for any y ∈ Y means

that u(x, y) ≤ u(x, y) for any y ∈ Y . Hence, (x, y) is also a team-maxmin equilibrium of

G.

The mixed extension of a game G = (X1, . . . , Xn, Y, u) is a game G = (M1, . . . ,Mn, N, ũ),

where M1, . . . ,Mn, N are the sets of mixed strategies of players, Mi for a team member i

and N for the adversary, which are the sets of all probability measures on X1, . . . , Xn, Y ,

respectively; ũ : M1 × · · · ×Mn ×N → R is the expected payoff of a team member given by

ũ(µ1, . . . , µn, ν) =

∫
X1×···×Xn×Y

u(x1, . . . , xn, y)d(µ1 × · · · × µn × ν). (16)

When we consider G, we do not need the sets of pure strategies X1, . . . , Xn, Y of G be convex,

nor the payoff u of G be concave on each Xi and convex on Y . The sets X1, . . . , Xn, Y even

need not be subsets of vector spaces, but, in order to use probability measures on them, we

assume that they are subsets of metric spaces. Thus, we assume the following conditions for

G:

Assumption 3.2. 1. X1, . . . , Xn, Y are compact subsets of metric spaces.

2. u is bounded, usc on X, and lsc on Y .

Inherently, the sets M1, . . . ,Mn, N are convex subsets of vector spaces and ũ is linear

on each of M1, . . . ,Mn, N . If X1, . . . , Xn, Y are compact subsets of metric spaces, then

M1, . . . ,Mn, N are compact under the weak* topologies (Aliprantis and Border, 2006, The-

orem 15.11). Let M = M1 × · · · × Mn, endowing the product topology. The boundedness

of u ensures the finiteness of the value of integral, and hence, the boundedness of function

ũ on M × N . If u : X × Y → R is usc on metrizable X and lsc on metrizable Y , then

ũ : M ×N → R is usc on M and lsc on N (Aliprantis and Border, 2006, Theorem 15.5). We

thus have:

1. M1, . . . ,Mn, N are compact convex subsets of topological vector spaces.

2. ũ is bounded, usc on M , linear on each Mi, i = 1, . . . , n, and lsc and linear on N .

Since linear function is both concave and convex, we have the following corollary.
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Corollary 3.1. Under Assumption 3.2, a mixed strategy team-maxmin strategy profile exists,

and any team-maxmin strategy profile is part of a team-maxmin equilibrium.

The mixed-strategy team-maxmin equilibra of finite games can also be viewed as an

example of this corollary: If G is a finite game, the finite sets X1, . . . , Xn, Y are compact

subsets of discrete metric spaces, and the bounded payoff u on finite sets X ×Y is usc on X

and lsc on Y under the discrete topology. Thus, it satisfies Assumption 3.2.

4 Discussions

In the proof of Theorem 3.1, we used the functions vi : Xi × Y → R defined by

vi(xi, y) = u(x1, . . . , xi−1, xi, xi+1, . . . , xn, y), i = 1, . . . , n, (17)

picking an arbitrary team-maxmin strategy profile x ∈ X (vi depends on x, but we omitted

it for simplicity). We then observed that the team-maxmin strategy profile x is a maxmin

strategy of x-player of game Γ1 = (X,Y,
∑

i vi) which satisfies the maxmin equality Eq. (9),

and that
∑

i vi(xi, y) ≤
∑

i vi(xi, y) for any x ∈ X means that u(xi, x−i, y) ≤ u(xi, x−i, y)

for any xi ∈ Xi for every i = 1, · · · , n, and that
∑

i vi(xi, y) ≤
∑

i vi(xi, y) for any y ∈ Y

means that u(x, y) ≤ u(x, y) for any y ∈ Y . Thus, Theorem 3.1 also suggests a special type

of minimax theorem as follows.

Theorem 4.1. Suppose X1, . . . , Xn, Y and u : X1×· · ·×Xn×Y → R satisfy Assumption 3.1.

Let x ∈ X = X1 × · · · ×Xn be such that

min
y∈Y

u(x, y) = max
x∈X

min
y∈Y

u(x, y), (18)

and let

X̂ :=
n∪

i=1

(
Xi × {x−i}

)
. (19)

Then

max
x∈X̂

min
y∈Y

u(x, y) = min
y∈Y

max
x∈X̂

u(x, y). (20)

Proof. Since the equilibrium (x, y) of Γ1 = (X,Y,
∑

i vi) is also an equilibrium of a two-player

zero-sum game Γ2 = (X̂, Y, u|X̂), (x, y) is a pair of a maxmin and a minmax strategies of Γ2

satisfying Eq. (20).

Also using the functions vi(xi, y), i = 1, . . . , n, Theorem 3.1 can also be viewed as follows.

We have a collection of n zero-sum two-player games Gi = (Xi, Y, vi), i = 1, . . . , n, in each

of which a team member i plays a zero-sum game against a common adversary. Under

8



Assumption 3.1, vi are usc and concave on Xi and lsc and convex on Y . Thus, by Sion’s

theorem, we have for each i = 1, . . . , n

max
xi∈Xi

min
y∈Y

vi(xi, y) = min
y∈Y

max
xi∈Xi

vi(xi, y), (21)

and there exists a pair (x′i, y
i) of a maxmin and a minmax strategies constituting an equi-

librium of Gi, i.e., (x
′
i, y

i) such that

vi(xi, y
i) ≤ vi(x

′
i, y

i) ≤ vi(x
′
i, y) ∀xi ∈ Xi,∀y ∈ Y. (22)

It can be shown (by a contrapositive argument) that the ith element xi of team-maxmin

strategy profile x is also a maxmin strategy of member i in Gi. Thus, by replacing x′i with

xi, we have for each i = 1, . . . , n

vi(xi, y
i) ≤ vi(xi, y

i) ≤ vi(xi, y) ∀xi ∈ Xi,∀y ∈ Y. (23)

The second inequalities are equal to u(x, yi) ≤ u(x, y) ∀y ∈ Y , for every i. Hence, vi(xi, y
i) =

miny∈Y u(x, y) for every i, and we have

v1(x1, y
1) = · · · = vn(xn, y

n) = max
x∈X

min
y∈Y

u(x, y). (24)

Thus far, we have found n minmax strategies yi of the adversary, each one for each game Gi,

only by using Sion’s theorem. (This remains valid even if we assume that vi are quasiconcave

on Xi, i = 1, . . . , n, and quasiconvex on Y , namely, even if u is quasiconcave on each Xi

and quasiconvex on Y .) Can we choose a common minmax strategy that works for all Gi?

Theorem 3.1 answers yes, if vi are concave on Xi, convex on Y , and bounded.3 In this

case the adversary can choose a common minmax strategy y by choosing a minimizer y of

maxx∈X
∑

i vi(xi, y).

5 Concluding comments

1. In von Stengel and Koller (1997), it is shown as a Corollary: Team-maxmin equilib-

ria are precisely the equilibria of the game with highest payoff to the team. This obser-

vation also applies to the game of our setting. Let (x, y) be a team-maxmin equilibrium

of G = (X1, . . . , Xn, Y, u) and (x∗, y∗) any equilibrium of G. Then u(x∗, ·) is being mini-

mized by y∗, i.e., u(x∗, y∗) = miny∈Y u(x∗, y); but, since u(x, y) = maxx∈X miny∈Y u(x, y) ≥

miny∈Y u(x∗, y), we have u(x, y) ≥ u(x∗, y∗) for any equilibrium (x∗, y∗) of G.

2. The boundedness of u in Assumptions 3.1 and 3.2 is playing different roles. In

Corollary 3.1, it is used for ũ to be bounded. In Theorem 3.1, it is used for B = B(ϵ, x̂, x, y)

3See the comment #2 in the next section.
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to be bounded, in particular, bounded below. Since u is assumed lsc on compact Y , A =

A(ϵ, x̂, x, y) is automatically bounded below (see footnote 2 for the precise forms of A and

B). Thus, it is acting on the rest part of B, involving the expressions u(xi, x−i, y) = vi(xi, y).

Therefore, what we really need is that u(x, ·) be bounded above on Y given any x ∈ X̂ (of

Eq. (19)). It seems, however, that u be bounded is not so stringent assumption for the payoff

functions of games.

3. It is not known whether the common minmax strategy in the last section survives

when we relax the concave–convex assumption to quasiconcave–quasiconvex one. We note

that a common minmax strategy, if it exists, sits in the set of minimizers of u(x, ·). Not every

minimizer of u(x, ·) can be a common minmax strategy (nor even a minmax strategy of a

subgame Gi), however. For example, in the first example of von Stengel and Koller (1997),

u(x, ·) is constant and any (mixed) strategy of the adversary is a minimizer, but the common

minmax strategy (and every minmax strategy in a subgame) is unique. If u is usc on X and

quasiconcave on each Xi, i = 1, . . . , n, and lsc and “strictly” quasiconvex on Y , then we will

certainly have a common minmax strategy of the adversary, because then u(x, ·) is strictly

quasiconvex and the set argminy∈Y u(x, y) is a singleton, hosting all the y1, . . . , yn above,

implying y1 = · · · = yn. However, this strictness condition precludes the original case of von

Stengel and Koller (1997), where u (viewed as a payoff function of mixed extension) is linear

on Y .
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