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Long-term historical data on interest rates and credit spreads can be used to identify

different regimes, specifically, a calm regime with lower default risk and volatility and a
stressed regime with higher default risk and volatility. We propose a pricing and risk eval-

uation model of interest rate risk and credit risk with the Markovian regime-switching
property. We discuss the dynamics of a regime, the interest rate, and default intensity

under a physical measure and a pricing measure, and propose a simple tractable model.

In our model, the default-free interest rate and the default intensity are dependent on
the regime, and this dependence affects the defaultable zero curve. We propose an appro-

priate calibration method and demonstrate some numerical examples of the zero curves

with different credit ratings, which will show us various types of yield curves in the future.
We hope that such yield curve models will reveal some new methods and perspectives

for financial risk management, especially for asset liability management.

Keywords: Risk management; Regime-switching model; Term structure of default-
free/defaultable interest rates.

1. Introduction

The 21st century has witnessed a few financial distresses, with the 2008 worldwide

financial crisis being a predominant one. Financial institutions, financial regula-

tion agencies, and central banks have discussed ways to control financial risks and

have been constructing concepts, tools, and systems for risk management, financial

regulations, and financial policies. For many financial institutions, especially banks,

management of the interest rate and credit risks has been one of the most important

challenges.

From the long-term data on interest rates and credit spreads, a few different

regimes have been identified: typically, a calm regime with lower default risk and

volatility, and a stressed regime with higher credit risk and volatility. Since Hamilton

(1989) proposed a regime-switching model and analyzed the economic cycles, many

researchers have adopted such models for analyzing and modeling economic and
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financial dataa. Restricted to the studies on interest rates, Inoue & Okimoto (2008)

used regime-switching models for analyzing monetary policy and private sector be-

havior in Japan. Dai et al. (2007) used a discrete-time regime-switching Gaussian

term structure model, while Wu & Zeng (2005) applied a continuous-time affine

term structure model with regime-dependent parameters. Elliott & Siu (2009) con-

sidered a bond valuation as a derivative written on a Markovian regime-switching

instantaneous spot rate, and derived a Markov-modulated exponential-affine bond

price formula. Their results have been applied to the term structures of interest

rates, see Elliott & Nishide (2014).

In credit risk analysis, Gourieroux et al. (2013) derived a defaultable bond price

in a discrete-time setting and analyzed sovereign yield curves, and Monfort & Renne

(2013) analyzed the credit spreads of U.S. bonds. Fisher & Stolper (2019) analyzed

the behavior of the credit spreads and their key determinants, and Chun et al.

(2014) proposed a regression model of credit spreads with endogenous regimes, and

demonstrated that the model enhanced the explanatory power of the determinants.

In a continuous-time setting, Hainaut & Le Courtois (2014) proposed a default

intensity model described by regime-switching Lévy process to evaluate the survival

probability, and analyzed the Credit Default Swap (CDS) market. Li & Ma (2013)

discussed pricing options analytically, but the results are limited to the conditional

price considering a sample regime path.

In finance, most of the available research on regime-switching models involve

analyzing financial data and pricing securities. However, there have been limited

research on quantitatively evaluating financial risk using these models. If a high-risk

regime is included in the financial risk evaluation, it might give us a new assessment

of the future, and one such method is the stress test. In the stress tests, the potential

losses are calculated quantitatively under some given high-risk scenarios. Moreover,

if such a high-risk regime or scenario can be estimated from the observed data, the

forward-looking stress tests can be done with some statistical viewpoints.

In this study, we propose a consistent pricing and risk evaluation model of inter-

est rate risk and credit risk under a regime-switching environment in a continuous-

time setting. For the risk evaluation of an asset portfolio, we set a risk horizon,

which is a certain future time, and discuss the prices of the surviving securities at

the horizon and the accumulated loss by defaults up to the horizon. Such kinds of

risk evaluations for a bond portfolio are already discussed in Muromachi (2022).

Contrariwise, in this study, we focus on the construction of the default-free and de-

faultable yield curves and analyses of the movement of the curves in the future. We

think that these analyses of the regime-switching property are suitable for the eval-

uation of interest rate risk and credit risk, especially in asset liability management

(ALM) because the banks hold various kinds of liabilities sensitive to interest rate

risk. In ALM, the synthetic evaluation of the interest rate risk through a common

stochastic model is theoretically desirable, and we suggest that one of the promising

aAs an example of review papers, see Ang & Timmermann (2012).
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tools is the stochastic yield curve model with the regime-switching properties. Our

proposed model can combine such evaluation of liabilities with the risk evaluation

of the asset portfolio.

This article is organized as follows: Section 2 describes the construction of a

simple pricing and risk evaluation model. Based on a Markovian regime-switching

model, the default-free spot rate and the default intensity processes are described

under the physical measure, and the change of measure is discussed so that the

processes under the pricing measure are derived. In Section 3, we propose estimation

methods for model parameters and some estimated results. Although our methods

are suboptimal, the basic principles are quite straightforward. In Section 4, we show

some numerical examples of the term structure of default-free and defaultable zero

rates, and Section 5 concludes this article.

2. The Model

In this section, we discuss the construction of a simple pricing and risk evalua-

tion model in a regime-switching environment. Our model follows the framework

proposed by Kijima & Muromachi (2000). They discussed why two probability

measures, the physical and the pricing probability measures, are necessary for risk

evaluation based on market prices. When we calculate risk based on market prices,

we set a risk horizon, which is a certain future time, and discuss the future prices of

the securities at the horizon, the coupons/dividends, the accumulated loss caused

by the defaults, and so on up to the horizon. Given that the accumulated loss

and coupons are evaluated as realized values, they must be measured under the

physical probability measure. By contrast, when we discuss security prices, we use

the no-arbitrage prices not only at present but also at the risk horizon. The no-

arbitrage prices are given by the expectation of the discounted future cash flows

under the pricing measure equivalent to the physical measure. Therefore, we need

two probability measures. In order to maintain consistency between pricing and risk

evaluation, stochastic modeling is necessary not only in physical measure but also

in pricing measures. The physical measure part of the model is used for generating

scenarios up to the risk horizon, while the pricing measure part is used for pricing at

the present and the risk horizon. Since the stochastic model in the pricing measure

is obtained from the stochastic model in the physical measure and the scheme of

the change of measure, it is also enough information for describing the system to

give the scheme of the change of measure and the stochastic model either in the

physical or the pricing measure.

2.1. Stochastic processes under the physical probability measure

Consider a switching regime in a continuous-time and finite-state Markov chain

model. Let t, t ≥ 0, be time, and t = 0 is present. We consider a financial mar-

ket with a finite horizon T , 0 < T < ∞, and define a filtered probability space
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(Ω,F , (Ft)0≤t≤T , P ) under which all stochastic processes can be described. All prob-

ability spaces in this study satisfy the usual conditions.

We consider different states K ∈ N , which are called regimes. Let X(t) ∈
{e1, · · · , eK} be a K-dimensional vector and ej , j = 1, · · · ,K, are K-dimensional

unit vectors where the i-th component of ej is the Kronecker’s delta δij . X(t)

implies an economic state at time t, and is a Markov chain on (Ω,F , (Ft)0≤t≤T , P ).

Let Q ∈ RK×RK denote the infinitesimal generator matrix of X(t), and we assume

that Q is time-independent, so that we can express

Q = (qij)i,j=1,··· ,K , qij =


lim

∆t→0

P{X(t+∆t) = ej |X(t) = ei}
∆t

, i ̸= j

−
∑
k ̸=j

qkj , i = j

and we have

X(t) = X(0) +

∫ t

0

Q⊤X(s)ds+M(t), t ≥ 0 (2.1)

where the K-dimensional vector M(t) is a P–martingale. The transition probability

matrix is defined by

P(t) = (pij(t))i,j=1,··· ,K , pij(t) = P {X(s+ t) = ej |X(s) = ei} , s, t ≥ 0,

and is given by

P(t) = exp {tQ} =
∞∑
k=0

tkQk

k!
. (2.2)

The risk-free instantaneous spot rate at time t, denoted by r(t), follows the

stochastic differential equation (hereinafter, abbreviated as SDE)

dr(t) = µr(t, r(t),X(t))dt+ σr(t, r(t),X(t))dzr(t), t ≥ 0,

where zr(t) is a standard Brownian motion under P . Consider a risky security,

subject to its credit risk. Let τ > 0 be the default time of the security. Define

H(t) = 1{τ≤t} as its default process where 1A is the indicator functionb, and the

default intensity at time t, denoted by h(t), follows the SDE

dh(t) = µh(t, h(t),X(t))dt+ σh(t, h(t),X(t))dzh(t), t ≥ 0,

where zh(t) is a standard Brownian motion under P and dzr(t)dzh(t) = ρ(t)dt. For

any arbitrary time t, 0 ≤ t ≤ T , the filtration generated by the default process

is defined by Ht = σ(H(s) : 0 ≤ s ≤ t) and H = (Ht)0≤t≤T , while the filtration

generated by X(t) is defined by FX
t = σ(X(s) : 0 ≤ s ≤ t) and FX = (FX

t )0≤t≤T .

The filtrations generated by r(t) and h(t) are Fr
t = σ(r(s) : 0 ≤ s ≤ t), Fr =

(Fr
t )0≤t≤T and Fh

t = σ(h(s) : 0 ≤ s ≤ t), Fh = (Fh
t )0≤t≤T , respectively. The

complete filtration of this system is defined by F = FX ∨ Fr ∨ Fh ∨ H, that is,

Ft = FX
t ∨ Fr

t ∨ Fh
t ∨ Ht is satisfied for any arbitrary t, 0 ≤ t ≤ T . Additionally,

we use a useful filtration Gt = FX
T ∨ Fr

t ∨ Fh
t ∨Ht, 0 ≤ t ≤ T .

b1A = 1 when the event A is true, otherwise 1A = 0.
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2.2. Stochastic processes under a pricing probability measure

Consider a probability measure PX equivalent to P . Assume that the infinitesimal

generator matrix of X(t) under PX , denoted by QX = (qXij )i,j=1,··· ,K , is given by

qXij = (1 + κij)qij , i ̸= j, i, j = 1, · · · ,K

where κij > −1 is constant c. Then, the change of probability measure from P to

PX is written as

dPX

dP

∣∣∣∣
FX

T

= ηX(T ),

where the Radon-Nikodym derivative ηX(T ) is defined by

ηX(t) = exp

−
∫ t

0

K∑
k,ℓ=1

κkℓqkℓH
ℓ(u)du

 ∏
0<u≤t

1 +

K∑
k,ℓ=1

κkℓ∆H
kℓ(u)


Hi(t) = 1{X(t)=ei}, i = 1, · · · ,K,

Hij(t) =
∑

0<u≤t

Hi(u−)Hj(u), i ̸= j, i, j = 1, · · · ,K,

and ∆Hij(t) = Hij(t) − Hij(t−). Let PX(t) be the transition probability matrix

under PX . Then, the similar equations such as (2.1) and (2.2) are obtained only

if (Q,P(t),M(t)) are replaced with (QX ,PX(t),MX(t)) where MX(t) is a PX -

martingale.

We follow a standard discussion for modeling credit riskd. Let β(t) be a Ft-

adapted process and κh(t) > −1 be a Ft-predictable process, and define a new

probability measure P c equivalent to PX by

dP c

dPX

∣∣∣∣
GT

= ρh(T ),

where

ρh(t) =

∫ t

0

(βh(s)dzh(s) + κh(s)dMh(s))

and

Mh(t) = H(t)−
∫ t∧τ

0

h(s)ds.

Then, the process

zch(t) = zh(t)−
∫ t

0

βh(s)ds

cGenerally, κij is a Ft–predictable process.
dSee, for example, Kusuoka (1999) and Bielecki & Rutkowski (2002).
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becomes a standard Brownian motion under P c, and the process

hc(t) = (1 + κh(t))h(t)

is regarded as a default intensity under P c, because the process

M c
h(t) = H(t)−

∫ t∧τ

0

hc(s)ds

becomes a (F , P c)-martingale, which corresponds to the fact that Mh(t) is a

(F , PX)-martingale.

The following discussion is based on Elliott et al. (2007). Assuming that the

price of a risky asset at time t, denoted by S(t), follows

dS(t) = µ(t, S(t),X(t))S(t)dt+ σ(t, S(t),X(t))S(t)dzcS(t), t ≥ 0

where zcS(t) is a standard Brownian motion under P c. Define the Radon-Nikodym

derivative from P c to its equivalent probability measure P η by e

dP η

dP c

∣∣∣∣
GT

= exp

{∫ T

0

η(s)dzcS(s)−
1

2

∫ T

0

(η(s))
2
ds

}
where

η(t) =
r(t)− µ(t, S(t),X(t))

σ(t, S(t),X(t))
,

then, thanks to the Girsanov’s theorem, the process

zη(t) = zcS(t)−
∫ t

0

η(u)du

becomes a standard Brownian motion under P η, and the relative price of S(t)

with respect to the bank account B(t) = exp
{∫ t

0
r(u)du

}
becomes a (G, P η)–local

martingale. Assuming that the relative price is a (G, P η)–martingale, the price of a

European derivative given GT is given by

V (t|Gt) = EPη

[
exp

{
−
∫ M

t

r(u)du

}
G(S(M))

∣∣∣∣∣Gt

]
,

where G(·) is the payoff function of the derivative at its maturity M, t ≤ M ≤ T ,

and EPη

[·|·] is the conditional expectation operator under P η. From the chain rule

of the conditional expectation, given {τ > t}, the price V (t) is given by

V (t) = EPη

[V (t|Gt)| Ft] = EPη

[
exp

{
−
∫ M

t

r(u)du

}
G(S(M))

∣∣∣∣∣Ft

]
. (2.3)

Hereafter, we call P η the risk-neutral probability measure and denote it as P̃ , and

denote a standard Brownian motion under P̃ as z̃. Similarly, hc(t), QX , PX(t) and

eThis change of measure is called the risk-neutral regime-switching Esscher transform.
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MX(t) are denoted by h̃(t), Q̃, P̃(t) and M̃(t), respectively. Generally, a regime-

switching model derives an incomplete market so that many risk-neutral measures

might exist, and P η is one of them. However, according to Elliott et al. (2005), the

measure P η is the minimum entropy martingale measure of P , so that the price

given by (2.3) is a reasonable one.

Let Ft-predictable process λr(t) be the market price of risk against zr(t), then

the stochastic processes describing the market under P̃ are as follows:

dr(t) = µ̃r(t, r(t),X(t))dt+ σr(t, r(t),X(t))dz̃r(t), (2.4)

dh(t) = µ̃h(t, h(t),X(t))dt+ σh(t, h(t),X(t))dz̃h(t) (2.5)

h̃(t) = (1 + κh(t,X(t)))h(t) (2.6)

µ̃r(t, r(t),X(t)) = µr(t, r(t),X(t))− λr(t)σr(t, r(t),X(t)) (2.7)

µ̃h(t, h(t),X(t)) = µh(t, h(t),X(t)) + β(t)σh(t, h(t),X(t)). (2.8)

Consider a default-free discount bond with maturityM, t ≤M ≤ T . From (2.3),

its price at time t is given by

v(t,M, r,X) = Ẽ

[
exp

{
−
∫ M

t

r(u)du

}∣∣∣∣∣ r(t) = r, X(t) = X

]
.

Next, consider a defaultable discount bond with maturity M , and let τ > 0 be its

default time. Suppose the holder of the bond receives $1 at M if the bond survives

at M , while the holder receives $δ, 0 ≤ δ < 1 at M if default occurs up to M . From

(2.3), given {τ > t}, the price of the bond is given as

D(t,M, r, h̃,X) = Ẽ

[
exp

{
−
∫ M

t

r(u)du

}{
1{τ>M} + δ1{τ≤M}

}∣∣∣∣∣ r(t) = r, h̃(t) = h̃, X(t) = X

]
= δv(t,M, r,X) + (1− δ)p(t,M, r, h̃,X), (2.9)

p(t,M, r, h̃,X) = Ẽ

[
exp

{
−
∫ M

t

(r(u) + h̃(u))du

}∣∣∣∣∣ r(t) = r, h̃(t) = h̃, X(t) = X

]
.

(2.10)

Hereafter, we call p(t,M, r, h̃,X) the price of the “survival discount bond”, whose

payoff is $1 if and only if the bond survives at M .

2.3. A simple model

Here, we propose a simple model. Under the physical measure P , r(t) follows

dr(t) = a (⟨m,X(t)⟩ − r(t)) dt+ ⟨σ,X(t)⟩dzr(t), t ≥ 0, (2.11)

where m = (m1, · · · ,mK)⊤ and σ = (σ1, · · · , σK)⊤ are K-dimensional constant

vectors, a and σk, k = 1, · · · ,K are positive constants, and ⟨A,B⟩ is the inner

product of vectors A and B. Similarly, h(t) follows

dh(t) = ah (⟨mh,X(t)⟩ − h(t)) dt+ ⟨σh,X(t)⟩dzh(t), t ≥ 0, (2.12)
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where mh = (mh,1, · · · ,mh,K)⊤ and σh = (σh,1, · · · , σh,K)⊤ are K-dimensional

constant vectors, ah and σh,k, k = 1, · · · ,K are positive constants, and

dzr(t)dzh(t) = ρ(t)dt f . For simplicity, we assume that X(t) is independent of

(zr(t), zh(t)), and select the Vasicek model because model parameters can be cali-

brated easily by using the existing statistical tools such as Matlabg.

To make our model more tractable, we apply the following assumption.

Assumption 2.1. The market price of risk λr(t) is written by

λr(t) = ⟨Lr,X(t)⟩+ ψr(t) (2.13)

where Lr = (λr,1, · · · , λr,K)⊤ is a K-dimensional constant vector and ψr(t) is a

deterministic function of time t.

From (2.4), (2.7), (2.11) and (2.13), we have

dr(t) = (⟨ϕ(t),X(t)⟩ − ar(t)) dt+ ⟨σ,X(t)⟩dz̃r(t), (2.14)

where the deterministic function vector ϕ(t) = (ϕ1(t), · · ·ϕK(t))⊤ is given as

ϕ(t) = am− σ ⊗Lr − σψr(t),

and A ⊗ B is the Hadamard product of K-dimensional vectors A and B. Then,

the discount bond price v(t,M, r,X) is given by

v(t,M, r,X) = exp {⟨A(t,M),X⟩ −B(t,M)r} , (2.15)

where

B(t,M) =
1− e−a(M−t)

a

and A(t,M) = (A(t,M, e1), · · · , A(t,M, eK))⊤. Here, define Āi(t,M) =

exp{A(t,M, ei)} and Ā(t,M) = (Ā1(t,M), · · · , ĀK(t,M))⊤, and they are the so-

lution of the following ordinary differential equations (hereinafter, abbreviated by

ODEs),

dĀi(t,M)

dt
+

{
1

2
σ2
iB

2(t,M)− ϕi(t)B(t,M)

}
Āi(t,M) + ⟨Ā(t,M), Q⊤ei⟩ = 0,

(2.16)

with the terminal conditions Āi(M,M) = 1, i = 1, · · · ,K. A numerical solution of

(2.16) is obtained easily, for example, by using the Runge-Kutta method. The zero

rate (yield to maturity of the discount bond) with maturity M at time t is given by

R(t,M, r(t),X(t)) = − log v(t,M, r(t),X(t))

M − t
, 0 ≤ t < M.

Additionally, to manage the default intensity process similarly and to make the

calibration tractable, we introduce the following assumption:

fAn extension of (a, ah) to the deterministic functions of time t is obvious.
gIn Hatakeyama (2022), a slightly modified Matlab program was used to estimate parameters.
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Assumption 2.2. The stochastic process β(t) is written as

β(t) = ⟨Lh,X(t)⟩+ ψh(t) (2.17)

where Lh = (λh,1, · · · , λh,K)⊤ is a K-dimensional constant vector and ψh(t) is a

deterministic function of time t. Further, define

ℓ(t) = ⟨ℓ(t),X(t)⟩, ℓ(t) = (ℓ1(t), · · · , ℓK(t))⊤ (2.18)

where ℓj(t) = κh,j(t)h(t), j = 1, · · · ,K are differentiable deterministic functions of

time th.

From (2.5), (2.6), (2.8), (2.12), (2.17) and (2.18), we have i

dh(t) = (⟨ϕh(t),X(t)⟩ − ahh(t)) dt+ ⟨σh,X(t)⟩dz̃h(t) (2.19)

ϕh(t) = ahmh + σh ⊗Lh + σhψh(t), (2.20)

h̃(t) = h(t) + ⟨ℓ(t),X(t)⟩. (2.21)

Now, consider a survival discount bond with maturity M . From (2.10), the time

t price of the survival discount bond is written as

p(t,M, r, h̃,X)

= Ẽ

[
exp

{
−
∫ M

t

(r(u) + h̃(u))du

}∣∣∣∣∣ r(t) = r, h̃(t) = h̃,X(t) = X

]
.

From Appendix A, we obtain

p(t,M, r, h̃,X) = exp
{
⟨C(t,M),X⟩ −B(t,M)r −Bh(t,M)h̃

}
, (2.22)

where

Bh(t,M) =
1− e−ah(M−t)

ah

and C(t,M) = (C(t,M, e1), · · · , C(t,M, eK))⊤. Here, define C̄i(t,M) =

exp{C(t,M, ei)} and C̄(t,M) = (C̄1(t,M), · · · , C̄K(t,M))⊤, and they are the so-

lution of the ODE system:

dC̄i(t,M)

dt
+

{
σ2
i

2
B2(t,M) +

σ2
h,i

2
B2

h(t,M)− ϕi(t)B(t,M)− ahm
′
h,i(t)Bh(t,M)

+ρ(t)σiσh,iB(t,M)Bh(t,M)

}
C̄i(t,M) + ⟨C̄(t,M), Q⊤ei⟩ = 0 (2.23)

with the terminal conditions C̄i(M,M) = 1, i = 1, · · · ,K, where

m′
h,i(t) = mh,i + ℓi(t) +

1

ah

(
dℓi(t)

dt
+ σh,iλh,i + σh,iψh(t) + ⟨ℓ(t), Q⊤ei⟩

)
.

hThis differentiability seems implausible because h(t) is not differentiable; however, it makes the
calibration easier.
iIf we set ℓ(t) as a constant vector ℓ, Lh has the same effect as ℓ, so that Lh would be dropped.
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Our valuation is different from Li & Ma (2013)’s results because their results are

the conditional price given the sample path of X(·) up to M , while our results are

the unconditional price.

When h̃(t) = 0, 0 ≤ t ≤ T , this implies that the bond is default-free,

(2.23) reduces to (2.16). By contrast, consider a discount bond with the payoff

1{τ>M} exp
{∫M

t
r(u)du

}
at M , then, the price at time t is written as

v̄(t,M, h̃,X) = Ẽ

[
exp

{
−
∫ M

t

h̃(u)du

}∣∣∣∣∣ h̃(t) = h̃,X(t) = X

]
, (2.24)

and is given by

v̄(t,M, h̃,X) = exp
{
⟨D(t,M),X⟩ −Bh(t,M)h̃

}
where D(t,M) = (D(t,M, e1), · · · , D(t,M, eK))⊤. Similarly, define D̄(t,M) =

(D̄1(t,M), · · · , D̄K(t,M))⊤ where D̄i(t,M) = exp{D(t,M, ei)}, and they are the

solution of the ODE system:

dD̄i(t,M)

dt
+

{
σ2
h,i

2
B2

h(t,M)− ahm
′
h,i(t)Bh(t,M)

}
D̄i(t,M) + ⟨D̄(t,M), Q⊤ei⟩ = 0

with the terminal conditions D̄i(M,M) = 1, i = 1, · · · ,K. Note that from (2.24),

v̄(t,M, h̃,X) is the conditional survival probability at M under P̃ on {τ > t},
that is, v̄(t,M, h̃,X) = P̃{τ > M |τ > t, h̃(t) = h̃,X(t) = X}. From the above

discussion, generally, and even if ρ(t) = 0, it follows that

p(t,M, r, h̃,X) ̸= v(t,M, r,X)P̃{τ > M |τ > t, h̃(t) = h̃,X(t) = X}.

This is because r(t) and h̃(t) are dependent through X(t) even if ρ(t) = 0.

A definite disadvantage of this model is a negative default intensity in the fu-

ture with a positive probability. To avoid the disadvantage, for example, the Cox-

Ingersoll-Ross (CIR) process or the squared Gaussian process can be proposed.

3. Estimation of model parameters

We discuss on estimating the model parameters used in the simple model in Section

2.3. They are (1) Q, (a,m,σ) and (ah,mh,σh) on stochastic processes under P ,

and (2) Q̃ (or κ = (κij)i,j=1,··· ,K), (Lr, ψr(t)), (Lh, ψh(t)) and ℓ(t) on stochastic

processes under P̃ . If the time-series data of r(t) and h(t) can be observed, it is

natural that the parameters in (1) are estimated from the time-series data, while

those in (2) are estimated from the term structures of default-free and defaultable

interest rates at t = 0. However, given that we can only observe the time-series data

of the credit spreads instead of h(t), we have to devise another method.
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3.1. Estimation procedure

From (2.19) and (2.21), the default intensity h̃(t) under P is followed by

dh̃(t) = ah

{
⟨m̃h(t),X(t)⟩ − h̃(t)

}
dt+ ⟨σh,X(t)⟩dzh(t) + ⟨ℓ(t), dM(t)⟩ (3.1)

where the i-th component of m̃h(t) is given by

m̃h,i(t) = mh,i + ℓi(t) +
1

ah

(
dℓi(t)

dt
+ ⟨ℓ(t), Q⊤ei⟩

)
, i = 1, · · · ,K.

We have little information on M(t). So, as the approximated h̃(t) process, we use

dh̃(t) ≃ ah

{
⟨m̃h(t),X(t)⟩ − h̃(t)

}
dt+ ⟨σ̃h(t),X(t)⟩dzh(t), (3.2)

where

(σ̃h,i(t))
2 = (σh,i)

2 +

K∑
k=1

qki(ℓi(t)− ℓk(t))
2. (3.3)

The second term of the above equation is the influence of ⟨ℓ(t), dM(t)⟩ on the

instantaneous variance of h̃(t) under P .

Then, we propose the following parameter estimation procedure:

(1) Estimate (Q, a,m,σ, ah, m̃h, σ̃h(t)) from the time-series data of r(t) and h̃(t).

Here, we assume h̃(t) follows the process (3.2) under P .

(2) Estimate ℓ(t) from the observed survival function of τ under P .

(3) Estimate (Q̃,Lr, ψr(t)) in order to fit the present term structure of the default-

free interest rates.

(4) Estimate (Lh, ψh(t)) in order to fit the present term structure of the credit

spreads (or defaultable interest rates).

In Step (1), we can use some existing tools; for example, VAR(1) (1-st order

vector autoregression) model with regimes offered by Matlab j. Moreover, instead

of h̃(t) (which is related to the instantaneous credit spread and usually cannot be

observed in the market), we can use the credit spreads of a defaultable discount

bond, CS(t), with a certain maturity with some adjustments; for example, h̃(t) ≃
CS(t)/(1 − δ) where δ is the recovery rate of the bond k. The main purpose of

Step (2) is fitting the term structure of the default probabilities (the distribution

function of τ) in P , and as the same time, the effect of ⟨ℓ(t), dM(t)⟩ on σ̃h,i(t)

is evaluated through (3.3). The derived σh must be positive. Detailed procedures

and results are omitted here. l. In Step (3), (Q̃,Lr, ψr(t)) are calibrated in order to

reproduce the present term structure of the default-free interest rates. First, Q̃ and

Lr are calibrated so that the theoretical term structure of the default-free interest

jFor details, see Hatakeyama (2022). We are currently preparing to publish his results in English.
kThis approximation implies the credit spreads are flat. If several bonds are issued by the same

company, we might estimate more useful information about h̃(t).
lWe are preparing another paper on the estimation methods and their results.
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rates without ψr(t) fits the observed one as much as possible. Here, we use the ridge

regression; the objective function with the ridge parameter λ1 is

F1 ≡
10∑
j=1

(R(0, j, r(0),X(0))−Robs(0, j))
2 + λ1

∑
i̸=j

(q̃ij − qij)
2 +

K∑
i=1

L2
r,i

 (3.4)

where Robs(0, j) is the observed zero rate with maturity j years. The residuals

between the observed and theoretical zero rates are compensated by ψr(t), there-

fore, this simple model can reproduce the present term structures of interest rates

perfectly. Step (4) is similar to Step (3) without Q̃.

Although these obtained estimates are not optimal, the relations between the

data and the parameters are clear, and each step is simple.

3.2. Setting and estimated parameters

In Step (1) in our estimation procedure, we follow Hatakeyama(2021). He used

the monthly data of the US Treasury Bond Yields and ICE BofA US Corporate

Index OAS (Option Adjusted Spread) from January 2006 to May 2021. Since the

instantaneous default intensity h̃(t) is difficult to observe, we assume the recovery

rate δ = 0.4, which is typical for pricing corporate bonds and regard the credit

spread (OAS) divided by (1 − δ) as the default intensity h̃(t), then we transform

the parameters obtained by Hatakeyama (2021) into those of h̃(t)’s process.

In Step (2), as the observed survival probabilities, we use S&P’s corporate aver-

age cumulative default rates, 1981–2019 by Kraemer et al. (2020). Consider default-

free discount bonds and three kinds of defaultable discount bonds with different

levels of credit risk: AAA, BBB, and CCC/C-rated bonds, respectively.

We choose K = 3. In our estimations, statistical information criteria such as

AIC (Akaike’s Information Criterion) and BIC (Bayesian Information Criterion)

decrease as K increases. On the other hand, the estimation of model parameters

becomes more difficult with K because the number of parameters increases by the

order ofK2. In time-series data analysis, for simplicity, we assume that (m̃h(t), σ̃(t))

are constant, and assume a = aAAA
h = aBBB

h = aCCC
h = 1 because the simultaneous

estimation of the mean-reverting power and the volatility is difficult. We assume

the present default-free and defaultable zero rate curves as

R(0,M) = a+ bM + cM2 + dM3 + eM4, (%)

given in Table 1 where R(0,M) is the zero rate with maturity M (years) m.

Additionally, for simplicity, we assume ϕr(t) and ϕh(t) are piecewise constant in

t ∈ [j − 1, j], j = 1, 2, · · · , 10 years, and ℓ(t) is constant in each term. n, t ∈ [0, 1]

mWe use these values as examples during these several years.
nIt was difficult to reproduce the observed term structures of the default probability under P
on constant ℓ setting, and several trials taught us that the difficulty was caused mainly by the
differences in the very short term. We ignore the differentiability of ℓ(t) at t = 1 year.
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and t ∈ [1, 10] years. In the above setting, (m,σ) become constant in each term

[0, 1] and [1, 10] years, respectively.

Table 1. Parameters (%) of the present zero rate curves.

a b c d e

default-free 0.00 0.546 −0.0606 0.00233 0.00000

AAA 0.66 0.380 0.0036 −0.00650 0.00040

BBB 0.80 0.740 −0.0820 0.00200 0.00009

CCC/C 4.20 1.000 −0.1000 0.00300 0.00003

The estimated parameters on the processes are shown in Table 2, and the esti-

mated generators are given by

Q =

−1.120 0.967 0.153

1.659 −2.027 0.368

1.222 1.575 −2.797

 , Q̃ =

−1.292 1.291 0.001

1.393 −1.394 0.001

1.222 1.576 −2.798

 . (3.5)

The estimated market prices of risks are shown in Table 3.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

0 1 2 3 4 5 6 7 8 9 10

Model Matrix only Data

Fig. 1. Term structures of default-free zero rates. This figure compares the term structures of

default-free zero rates. The horizontal axis represents maturity (years), and the vertical represents
the zero rate. “Model” is the term structure where all calibrated parameters are used, “Matrix
Only” is that where the calibrated Q̃ is used, while “Data” are given data.
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Table 2. Parameters (%) of default-free interest rate and default intensity processes under P .

default-free

regime k mk σk

0 0.330 0.460

1 1.230 3.380

2 −2.630 4.310

AAA

regime k m̃h,k σ̃h,k mh,k mh,k σh,k σh,k ℓk ℓk
[0, 1] [1, 10] [0, 1] [1, 10] [0, 1] [1, 10]

0 0.933 0.300 −0.209 −0.407 0.150 0.299 0.981 1.325

1 1.833 0.550 0.935 0.517 0.531 0.550 1.121 1.338

2 3.183 3.817 2.284 1.868 3.816 3.817 1.149 1.341

BBB

regime k m̃h,k σ̃h,k mh,k mh,k σh,k σh,k ℓk ℓk
[0, 1] [1, 10] [0, 1] [1, 10] [0, 1] [1, 10]

0 2.267 0.667 −0.175 −0.886 0.637 0.667 2.318 3.148

1 4.383 1.317 2.130 1.237 1.312 1.317 2.426 3.152

2 10.533 6.317 8.273 7.392 6.316 6.317 2.445 3.155

CCC/C

regime k m̃h,k σ̃h,k mh,k mh,k σh,k σh,k ℓk ℓk
[0, 1] [1, 10] [0, 1] [1, 10] [0, 1] [1, 10]

0 11.300 4.050 29.150 −3.060 2.163 4.049 −19.994 14.390

1 21.583 6.500 42.686 7.211 6.221 6.499 −18.126 14.374

2 46.550 26.833 67.560 32.015 26.819 26.833 −17.791 14.295

Figure 1 shows the observed and the theoretical term structures of the default-

free zero rates, while Figure 2 shows those of the CCC/C. In these figures, the

horizontal axis represents the maturity, and the vertical represents the zero rates. If

all calibrated parameters are used, all term structures can be reproduced perfectly

due to the time-dependent parameters ψr(t) and ψh(t).

Figure 3 shows the observed and the theoretical survival probabilities of CCC/C

firms. Notice that in our model the survival probability cannot be reproduced per-

fectly. This figure shows that the risk premia adjustments (RPA), ℓ(t), play an
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Table 3. Estimated market prices of risk (%).

default-free AAA BBB CCC/C

Lr,1 −0.1259 Lh,1 −2.98786 −0.05383 −2.16136

Lr,2 −0.7595 Lh,2 0.42513 −1.65209 0.50460

Lr,3 −0.0004 Lh,3 0.00143 −0.00530 0.00010

term (years) ψr(t) ψAAA
h (t) ψBBB

h (t) ψCCC
h (t)

[0, 1] −0.0505 0.09766 −0.12207 0.21362

[1, 2] 0.1761 −0.58594 0.29297 −0.67749

[2, 3] −0.1546 0.48828 0.19531 0.07935

[3, 4] −0.0296 0.29297 0.19531 −0.12207

[4, 5] −0.1105 0.48828 −0.17090 0.34180

[5, 6] 0.0268 −0.39063 −0.34180 0.29297

[6, 7] 0.0339 −0.68359 −0.58594 0.64697

[7, 8] 0.1020 −0.78125 −0.58594 0.73242

[8, 9] −0.0457 0.48828 −0.24414 1.13525

[9, 10] −0.0575 3.71094 0.68359 1.51367

important role on the fitting of the survival probabilities, especially in the lower

credit ratings. Since the fitting between the observed curve and the theoretical

curve is difficult on the constant ℓ(t) setting, mainly due to the difference in the

very short term, we use a 2-term model, [0, 1] years and [1, 10] years, and assume

ℓ(t) is constant in each term. Here, we show the results for CCC/C rating only, but

we obtain better results in AAA and BBB zero curves.

To our regret, our proposed estimation procedure is not appropriate enough,

that is, some estimated values are unreasonable: for example, some mh,0 in Table

1 are negative. More future research will be necessary for robust and sophisticated

estimation methods.

4. Numerical examples

In this section, we show some numerical examples of zero curves at some future

times by using a Monte Carlo simulation. We set δ = 0.4, and ρ(t) = 0.

4.1. Procedure of the Monte Carlo simulation

The Monte Carlo simulation consists of the following steps:

1. Set the initial values (X(0), r(0), h(0)).
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Fig. 2. Term structures of CCC/C zero rates. This figure compares the term structures of CCC/C

zero rates. The horizontal axis represents maturity (years), and the vertical represents the zero
rate. “Model” is the term structure where all calibrated parameters are used, “Data” are given

data, and “without CMPR” is that where the calibrated Lh and ψh(t) are not used.

2. Generate a sample path (X(ti), r(ti), h(ti)), 0 = t0 < t1 < · · · < tF = 10 (years)

under P . First, generate a path of X(·). Then, given a path X(·), generate a

path of (r(·), h(·)).
3. Calculate the prices of the bonds D(ti, ti + M, r(ti), h̃(ti),X(ti)) for various

maturities M at time ti.

4. Calculate the zero rates from the bond prices.

In Step 2, each sample path is generated from t = 0 to t = TF under P , while in

Step 3 the no-arbitrage price is calculated based on the stochastic processes under

P̃ . The input values (r(ti), h(ti),X(ti)) in Step 3 are given as the values at t = ti
on each path generated in Step 2. Notice that r(ti) and X(ti) are the same values

under P and P̃ , while h̃(ti) = h(ti) + ⟨ℓcr(i)(ti),X(ti)⟩. We simulate 100,000 runs.

4.2. Distribution of discount bond price in future

First, we show the future price distributions of CCC/C discount bond with maturity

M = 10 years. Figure 4 is its histogram at 1-year-after (t = 1); the horizontal axis

represents price DCCC(t = 1,M, r(1), h̃(1),X(1)) (bond’s face amount is one), and

the vertical represents frequency. Here, (r(1), h̃(1),X(1)) are simulated values. The

peak around 0.34 is the distribution of the recovered price when the default occurs

before 1-year-after, while the distribution above 0.4 is one when the bond survives

at 1-year-after. Two peaks can be seen around 0.54 and 0.50, however, these do not

correspond with the regime just at 1-year-after directly.
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Fig. 3. Survival probabilities of CCC/C firms under P . This figure compares the survival proba-

bilities of CCC/C firms in the physical measure. The horizontal axis represents maturity (years),
and the vertical represents the survival probability. “Model” is the survival probability where all

calibrated parameters are used, “Data” are the given data, and “no RPAs” is where the calibrated

ℓ(t) are not used.
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Fig. 4. Distribution of CCC/C discount bond price with 10-year maturity. The horizontal axis
represents price, and the vertical axis represents frequency.

Figure 5 is the detailed version of Figure 4; each distribution corresponds to

each regime at 1-year-after, “Regime 0”, “Regime 1” and “Regime 2”, respectively,
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Fig. 5. Distribution of CCC/C discount bond price with 10-year maturity. The horizontal axis

represents price, and the vertical axis represents frequency. Each distribution corresponds to the

regime at 1-year-after.

and when summing up the three distributions, we obtain Figure 4. All distributions

for surviving bond in Figure 5 have two definite peaks, and the left narrow peak

is mainly from parameters in Regime 2, while the right wide peak is mainly from

parameters in Regime 0 and Regime 1. Since the parameters in Regime 1 are not

very different from those in Regime 0, they make a distribution with only one

peak. The distributions in AAA and BBB in surviving bond have only one peak

because the differences among parameters in different regimes are not as evident as

in CCC/C.

4.3. Term structures of zero rates

Figure 6 depicts the intial theoretical (calculated by our model) term structures

of zero rates with different credit ratings. The horizontal axis represents maturity

(years), and the vertical represents the zero rate (%). In Figure 6, there are four

curves: from below, default-free, AAA, BBB, and CCC/C zero curves, respectively.

Notice that the theoretical curve does not match the given curve at each credit

rating perfectly here because we construct the objective function for calibration

using discrete grid points (0, 1, 2, ...) and are limited to 10 years. There is a tendency

for the curve in the short term to sometimes bend unnaturally, but it does not look

so remarkable. Hereafter, we show some examples of various shapes of theoretical

future zero curves obtained by the Monte Carlo simulations. We assume the initial

regime is “Regime 0” o.

The default-free zero rates at 0-, 2-, 4-, 6-, 8-years-after on a certain sample

path are shown in Figure 7. The zero curve at 2-years-after begins from 2 years to

oThis assumption is consistent with the calibration described in Section 3.2
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Fig. 6. Initial term structures of zero rates (initial regime 0). The horizontal axis represents ma-

turity, and the vertical represents the zero rate.

10 years on the horizontal axis; on this curve, the rate on the horizontal 2 years

is the instantaneous spot rate (0-year zero rate) at 2-years-after, and the rate on

the horizontal 10 years is the 8-year zero rate at 2-years-after, and so on. The

regime has much influence on the shape of the zero curve, but the shape does not

correspond directly to the regime at the same time because the shape is the result

of the cumulative effect from t = 0.
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Fig. 7. Future term structures of default-free zero rates on a certain sample path. The horizontal

axis represents maturity, and the vertical represents the zero rate. The curve that begins at 2 years
means the term structures after 2 years, and so on.

Figure 8, 9 and 10 depict the future zero curves with AAA, BBB and CCC/C,
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Fig. 8. Future term structures of AAA zero rates on a certain sample path. The horizontal axis

represents maturity, and the vertical represents zero rate. The curve that begins at 2 years means
the term structures after 2 years, and so on.
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Fig. 9. Future term structures of BBB zero rates on a certain sample path. The horizontal axis
represents maturity, and the vertical represents the zero rate. The curve that begins at 2 years
means the term structures after 2 years, and so on.

respectively. These figures are described in the same way as Figure 7. These figures

have certain common features.

(1) The shapes of these curves are similar at the same future time, especially be-

tweeen the higher credit qualities, default-free and AAA. This is because, as

indicated by (2.9), (2.15) and (2.22), the zero curves at time t are monotoni-

cally increasing functions of r = r(t), which is common for all credit ratings.

The intensity h̃ = h̃(t) is different from each other, but its volatility is low in
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Fig. 10. Future term structures of CCC/C zero rates on a certain sample path. The horizontal axis

represents maturity, and the vertical represents the zero rate. The curve that begins at 2 years
means the term structures after 2 years, and so on.

higher credit ratings, so that the fluctuation by h̃(t) is small. In CCC/C, σh is

so high that the shape of the zero curve becomes different from those in higher

credit ratings.

(2) The zero rates in the short term fluctuate widely with time, while the zero rates

in the long term do not fluctuate so much. This is because the instantaneous

zero rate, which is the simulated r(t) + (1 − δ)h̃(t), moves stochastically with

time and it has much influence on shorter zero rates, while the long-term zero

rate would approach gradually the limiting distribution so that the fluctuation

would decrease.

(3) The zero curve moves more widely as the credit rating decreases, which corre-

sponds to the increase of σh.

(4) In each moment, the zero rates are usually arranged from lower to upper against

the credit ratings, which can be seen in Figure 11 (zero curves with different

credit ratings at 2-year-after p).

(5) Compared with other credit ratings, future CCC/C zero curves become higher

than the initial curve because h̃(t) = h(t)+ ⟨ℓ(t), X(t)⟩ in future becomes much

higher than h̃(0) due to high m
CCC/C
h,k (t) and ℓ

CCC/C
k (t).

In general terms, the curves with different credit ratings have similar shapes at the

same time, and the main difference is the level and the fluctuation with time. More-

over, we can see various shapes of zero curves: for example, normal-yield (default-

free at 2-, 4- and 8-years-after), inverted-yield (CCC/C at 2- and 6-years-after),

weakly humped shape (BBB at 2-years-after), and inverted-humped shape (AAA,

pWe do not impose any restrictions for the order of the level at all. This is the result of our

calibration.



22 Yukio Muromachi

BBB and CCC/C at 8-years-after).
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Fig. 11. Future term structures of zero rates with different credit ratings on a certain sample path.

The horizontal axis represents maturity, and the vertical represents the zero rate.

We can show various other shapes. Among them, notably, the normal-yields and

the default-free rate are negative but other rates are positive in the short term, and

so on.

4.4. Future distribution of zero rates

Figure 12 shows the distributions of the default-free zero rates with different maturi-

ties at 1-year-after. The “1-yr zeros” is the distribution of 1-year zero rates (M = 1)

at 1-year-after (t = 1), and “3-yr zeros” is that of 3-year zero rates (M = 3) at the

same time, and so on. The distribution moves upward with maturity, and its width

becomes narrow. This feature corresponds to the second feature (denoted by “(2)”)

of the zero curves described in Section 4.3, that is, the zero rates in the short term

fluctuate widely with time, while the zero rates in the long term do not fluctuate

to that degree. The above feature can be also seen in other credit ratings, Figure

13 and Figure 14.

In general terms, the definite upward movement of the distribution such as

Figure 12 and 13 implies that the normal-yield curve would be usually seen, but

the inverted yield curve would appear rarely. The inverted-yield curve corresponds

to the curve whose shorter zero rate is higher than the longer zero rate. In Figure

12 and 13, since the distribution of 1-yr zeros is wide but not significantly higher

than the distributions of longer zeros, the inverted-yield curve is less predominant.

However, in Figure 14, the distribution of 1-yr zeros is so wide that there exists

some non-negligible probability mass where 1-yr zeros are higher than the longer

zeros probability mass, therefore, the inverted-yield curve often appears in CCC/C

curves.
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Fig. 12. Distributions of the default-free zero rates with different maturities at 1-year after.
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Fig. 13. Distributions of the AAA zero rates with different maturities at 1-year after.

5. Concluding remarks

In this study, we propose a term structure model for risk evaluation, sensitive to

the interest rate and the credit risks with Markovian regime-switching property.

First, we discuss the dynamics of a regime, interest rate, and default intensity in the

physical probability measure and the change of measure to an equivalent martingale

measure (pricing measure), and derive the dynamics in the pricing measure and a

pricing formula. Second, we propose and demonstrate a simple model to calculate

the discount bond price, which is a minor extension of model proposed in Elliott &

Siu (2009). Third, we propose a calibration method for the simple model. Fourth,

based on the simple model, we present some calibration results and some numerical
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Fig. 14. Distributions of the CCC/C zero rates with different maturities at 1-year after.

examples of term structures of zero rates with different credit ratings at some future

times. As the default-free interest rate and the default intensity are dependent on

X(t), the term structure of the zero rates depends on the regime dynamics. As a

result, we can obtain various shapes of yield curves with different credit ratings in

future.

However, considering the existing limitations, additional research is required.

First, more efficient parameter estimation methods should be urgently developed.

In this study, although we propose a simple calibration method, it is apparently

suboptimal because the parameter estimation is performed sequentially. Second, as

we do not have enough knowledge about the regime-switching properties of financial

data, more studies on analyzing various kinds of data are necessary. For example,

because of the dependence among the financial variables might be dissimilar in

various regimes, the estimation of appropriate copula functions in each regime would

be another plausible research theme. Additionally, some minor changes to the model

are required; we use the Vasicek model as an intensity process, but it is desirable

to replace it with, for example, the CIR model and so on, in order to avoid the

negative intensity.

Finally, there is considerable interest in data analyses of liabilities combined

with information about regimes. Some kinds of regime-switching properties could

be seen not only in the interest rate risk and credit risk but also in the equity risk,

the currency risk, and so on. Additionally, the dependence of each asset and liability

class on financial variables might change in each regime and class. For example, we

consider the growth rates of the liquid deposits’ volumes to be dependent on the

interest rates, however, it is widely known that the dependence disappears under a

very low-interest rate environment. We think that, for financial institutions such as

banks, the regime-switching models would be promising and useful tools to grasp

the risk precisely in a wide range, especially in the field of ALM. By analyzing
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the properties of assets and liabilities with the information about regimes obtained

through a reasonable regime-switching model, and evaluating the risks of assets

and liabilities synthetically through the model, new features and prospects of the

risks might be clarified, and the results could be reflected in the practical risk

management. To the best of our knowledge, there are not any studies on assets and

liabilities from such a standpoint. We hope that such studies will be encouraged

and this study can be used as a part of the theoretical foundation.

Appendix A. Derivation of (2.23)

Consider the model in Section 2.3. Under Assumption 2.2, we have

dℓ(t) = d⟨ℓ(t),X(t)⟩ =
(〈

dℓ(t)

dt
,X(t)

〉
+ ⟨ℓ(t), Q⊤X(t)⟩

)
dt+ ⟨ℓ(t), dM̃(t)⟩

(A.1)

under P̃ . The term ⟨ℓ(t), QX(t)⟩ is the contribution of the regime-switching. It

follows from Assumption 2.2, (2.19)–(2.21) and (A.1) that

dh̃(t) = dh(t) + dℓ(t)

= ah

(
⟨m′

h(t),X(t)⟩ − h̃(t)
)
dt+ ⟨σh,X(t)⟩dz̃h(t) + ⟨ℓ, dM̃(t)⟩,

where A⊗B is the Hadamard product of K-dimensional vectors A and B, and

m′
h(t) = mh + ℓ(t) +

1

ah

(
dℓ(t)

dt
+ σh ⊗Lh + ψh(t)σh

+(⟨ℓ(t), Q⊤e1⟩, · · · , ⟨ℓ(t), Q⊤eK⟩)⊤
)
. (A.2)

Define rt,u(r) = r(u|r(t) = r), h̃t,u(h̃) = h̃(u|h̃(t) = h̃), 0 ≤ t ≤ u ≤ T , and

p(t, T, r, h̃,X) = Ẽt

[
exp

{
−
∫ T

t

rt,u(r)du

}
1{τ>T}

]

= Ẽt

[
exp

{
−
∫ T

t

(rt,u(r) + h̃t,u(h̃))du

}]
. (A.3)

It follows from (2.14) that

rt,s(r) = r +

∫ s

t

(⟨ϕ(u),X(u)⟩ − art,u(r)) du+

∫ s

t

⟨σ,X(u)⟩dz̃r(u),

so that Dt,s = ∂rt,s(r)/∂r satisfies

Dt,s = 1− a

∫ s

t

Dt,udu. (A.4)

Differentiating (A.6) with respect to s, we have

dDt,s

ds
= −aDt,s, Dt,t = 1.
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Therefore, we obtain

Dt,s = e−a(s−t). (A.5)

From (A.3) and (A.5), we have

∂

∂r
p(t, T, r, h̃,X) = −

(∫ T

t

Dt,udu

)
p(t, T, r, h̃,X) = −B(t, T )p(t, T, r, h̃,X),

and similarly, we have

∂

∂h̃
p(t, T, r, h̃,X) = −Bh(t, T )p(t, T, r, h̃,X).

Define

p̃(t, T, r, h̃,X) = exp

{
−
∫ t

0

(rt,u(r) + h̃t,u(h̃))du

}
p(t, T, r, h̃,X)

= Ẽt

[
exp

{
−
∫ T

0

(rt,u(r) + h̃t,u(h̃))du

}]
,

which is a Doob’s martingale under P̃ . Applying Ito’s lemma to p̃(t, T, r, h̃,X) and

putting p̃ = (p̃1, · · · , p̃K)⊤ with p̃i = p̃(t, T, r, h̃, ei), i = 1, · · · ,K, we have

p̃(t, T, r, h̃,X) = p̃(0, T, r(0), h̃(0),X(0))

+

∫ t

0

[
∂p̃

∂u
+
∂p̃

∂r
(⟨ϕ(u),X(u)⟩ − ar(u)) +

∂p̃

∂h̃

(
⟨ahm′

h(u),X(u)⟩ − ahh̃(u)
)

+
1

2
⟨σ,X(u)⟩2 ∂

2p̃

∂r2
+

1

2
⟨σh,X(u)⟩2 ∂

2p̃

∂h̃2
+ ρ(t)⟨σ ⊗ σh,X(u)⟩ ∂

2p̃

∂r∂h̃

]
du

+

∫ t

0

∂p̃

∂r
⟨σ,X(u)⟩dz̃r(u) +

∫ t

0

∂p̃

∂h̃
⟨σh,X(u)⟩dz̃h(u) +

∫ t

0

⟨p̃, Q̃⊤X(u)⟩du

+

∫ t

0

〈
p̃+

∂p̃

∂h̃
⊗ ℓ(u), dM̃(u)

〉
.

Because of the martingale property of p̃, the integrand of du term must be zero, so

that we have the following partial differential equation (abbreviated as PDE)

0 =
∂p̃

∂t
+
∂p̃

∂r
(⟨ϕ(t),X(t)⟩ − ar(t)) +

∂p̃

∂h̃

(
⟨ahm′

h(t),X(t)⟩ − ahh̃(t)
)

+
1

2
⟨σ,X(t)⟩2 ∂

2p̃

∂r2
+

1

2
⟨σh,X(t)⟩2 ∂

2p̃

∂h̃2
+ ρ(t)⟨σ ⊗ σh,X(t)⟩ ∂

2p̃

∂r∂h̃
+ ⟨p̃, Q̃⊤X(t)⟩,

which implies that

0 =
∂p

∂t
− rp− h̃p+

∂p

∂r
(⟨ϕ(t),X(t)⟩ − ar(t)) +

∂p

∂h̃

(
⟨ahm′

h(t),X(t)⟩ − ahh̃(t)
)

+
1

2
⟨σ,X(t)⟩2 ∂

2p

∂r2
+

1

2
⟨σh,X(t)⟩2 ∂

2p

∂h̃2
+ ρ(t)⟨σ ⊗ σh,X(t)⟩ ∂

2p

∂r∂h̃
+ ⟨p, Q̃⊤X(t)⟩,

(A.6)
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where p = (p1, · · · , pK)⊤ with pi = p(t, T, r, h̃, ei), i = 1, · · · ,K, with the terminal

condition p(T, T, ·, ·, ·) = 1. (A.6) means a system of K coupled PDEs

0 =
∂pi
∂t

− rpi − h̃pi +
∂pi
∂r

(ϕi(t)− ar(t)) +
∂pi

∂h̃

(
ahm

′
h,i(t)− ahh̃(t)

)
+

1

2
σ2
i

∂2pi
∂r2

+
1

2
σ2
h,i

∂2pi

∂h̃2
+ ρ(t)σiσh,i

∂2pi

∂r∂h̃
+ ⟨p, Q̃⊤ei(t)⟩, 0 ≤ t ≤ T,

with pi(T, T, ·, ·) = 1, i = 1, · · · ,K. Here, assume that

pi(t, T, r, h̃) = exp
{
Ai(t, T )−B(t, T )r −Bh(t, T )h̃

}
, i = 1, · · · ,K,

where Ai(t, T ) = A(t, T, ei), then, the following ODEs

0 = eAi

[
dAi

dt
− ϕi(t)B − ahm

′
h,i(t)Bh +

σ2
i

2
B2 +

σ2
h,i

2
B2

h + ρ(t)σiσh,iBBh

]
+ ⟨Ā, Q⊤ei⟩, (A.7)

dB

dt
= aB − 1, (A.8)

dBh

dt
= ahBh − 1 (A.9)

must be satisfied where Ā = (Ā1(t, T ), · · · , ĀK(t, T ))⊤ with Āi(t, T ) = eAi(t,T ), i =

1, · · · ,K. From (A.8) and (A.9), we have

B(t, T ) =
1− e−a(T−t)

a
and Bh(t, T ) =

1− e−ah(T−t)

ah
,

and (A.7) is rewritten as

0 =
dĀi(t, T )

dt
+

{
σ2
i

2
B2(t, T ) +

σ2
h,i

2
B2

h(t, T )− ϕi(t)B(t, T )− ahm
′
h,i(t)Bh(t, T )

+ ρ(t)σiσh,iB(t, T )Bh(t, T )

}
Āi(t, T ) + ⟨Ā, Q⊤ei⟩ (A.10)

where

m′
h,i(t) = mh,i + ℓi(t) +

1

ah

(
dℓi(t)

dt
+ σh,iλh,i + σh,iψh(t) + ⟨ℓ, Q⊤ei⟩

)
with the terminal conditions Āi(T, T ) = 1, i = 1, · · · ,K.
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