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Abstract

We study probabilistic voting rules in the case where agents have single-
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1 Introduction

This paper studies non-manipulable probabilistic voting rules. Randomization is a

widely accepted method to achieve a fair outcome. Agents have ordinal preferences

over a finite set of alternatives. A probabilistic rule decides a probability distribu-

tion over the set of alternatives for each preference profile. Strategy-proofness is a

key axiom related to incentive compatibility. It provides each individual agent a

strong incentive to reveal his own preferences truthfully. Group strategy-proofness

is an even stronger axiom than strategy-proofness. It prevents strategic misrepre-

sentations of preferences via groups of agents as well as individual agents.

In voting contexts, one of the most widely studied preference domains is the

domain of single-peaked preferences. In this paper, on the single-peaked domain,

we study the class of probabilistic rules that satisfy the following notion of group

strategy-proofness: whenever a group of agents jointly misrepresents their prefer-

ences, for at least one of them, the distribution chosen under truth-telling stochas-

tically dominates the distribution chosen under joint misrepresentation.1 This is a

stronger requirement than strategy-proofness based on stochastic dominance rela-

tions, which is an extensively studied concept in probabilistic environments.

As is well known, on the single-peaked domain, any strategy-proof deterministic

rule is also group strategy-proof.2 In contrast to the deterministic case, the equiv-

alence between strategy-proofness and group strategy-proofness does not extend

to the probabilistic case. Thus, in probabilistic environments, some strategy-proof

rules may be vulnerable to strategic misrepresentations via groups. In our prob-

abilistic setting, the class of group strategy-proof rules is much smaller than that

of strategy-proof rules.

In our main result, we characterize the class of group strategy-proof and peak-

only probabilistic rules (Theorem 1).3 We also characterize its three subclasses

that additionally satisfy anonymity or unanimity or both.4 Ehlers, Peters, and

1That is, the probability assigned to each upper contour set of the agent under truth-telling
is no less than that under joint misrepresentation.

2See, for example, Barberà, Berga, and Moreno (2010).
3Peak-onlyness is the requirement that the rule should depend only on agents’ peaks.
4More precisely, we characterize the class of group strategy-proof, peak-only, and anonymous

rules (Corollary 1), the class of group strategy-proof and unanimous rules (Corollary 2), and
the class of group strategy-proof, unanimous, and anonymous rules (Corollary 3). Anonymity
is the requirement that the rule should not depend on the names of agents. Unanimity is the
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Storcken (2002) characterize the class of strategy-proof and peak-only probabilis-

tic rules, which they call “fixed-probabilistic-ballots rules.” The class of rules we

characterize in this paper is a subset of fixed-probabilistic-ballots rules. Our proofs

also rely on their results.5 The fixed-probabilistic-ballots rules are a probabilistic

version of Moulin’s (1980) well-known generalized median voter rules. Under the

generalized median voter rules, a certain collection of alternatives associated with

agents groups, called ballots, is fixed in advance, and then, the median of these

prefixed ballots and agents’ peaks is chosen as a final outcome. In the proba-

bilistic version, a certain collection of probability distributions over alternatives is

considered fixed ballots instead. Under the fixed-probabilistic-ballots rules, these

prefixed probabilistic ballots behave in a similar manner to the generalized median

voter rules.

What kind of fixed-probabilistic-ballots rules are group strategy-proof? To

examine this, consider the case where there are two agents and three alternatives,

say, 1, 2, and 3. Assume that agents have single-peaked preferences over these

three alternatives. First, consider a unanimous fixed-probabilistic-ballots rule that

assigns positive probabilities to both alternatives 1 and 3 when the reported peak

of one agent is 1 and another agent’s peak is 3.6 Now, assume that the true peak

of one agent is equal to 1 and another’s true peak is equal to 3. Then, under this

rule, because both alternatives 1 and 3 are chosen with positive probability, for

each agent, the probability that the first- or second-ranked alternatives are chosen

is less than one under truth-telling. However, if both agents jointly misreport their

peaks as 2, because this rule is unanimous, alternative 2 is chosen with probability

one. Thus, both agents can increase the probability that the first- or second-ranked

alternatives are chosen by jointly misreporting their preferences. This is a violation

of group strategy-proofness.

requirement that if all agents’ peaks coincide, then the rule should choose it with probability
one.

5In a more precise sense, the model studied in their paper is slightly different from ours (in
their model, the set of alternatives is the real line). However, the results obtained in their paper
carry over to our setting.

6More precisely, we consider the fixed-probabilistic-ballots rule with the following probabilistic
ballots: the probabilistic ballots associated with single-agent groups assign positive probabilities
to both alternatives 1 and 3, the probabilistic ballot associated with the entire set of agents
assigns probability one to alternative 1, and the probabilistic ballot associated with the empty
set assigns probability one to alternative 3.
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Next, consider a unanimous fixed-probabilistic-ballots rule that puts positive

probabilities only on at most two adjacent alternatives when the reported peak of

one agent is 1 and another’s is 3. Then, under this rule, even if both agents jointly

misreport their peaks as 2, it is impossible for at least one of them to increase

the probability that the first- or second-ranked alternatives are chosen.7 This is

a key feature of the rules characterized in this paper. Our result says that group

strategy-proof and unanimous rules are of this type of fixed-probabilistic-ballots

rules, i.e., each associated probabilistic ballot must put positive probabilities only

on at most two adjacent alternatives. Other classes we characterize in this paper

also share a similar structure.

Many authors have analyzed strategy-proof probabilistic voting rules on the

single-peaked domain. As mentioned above, Ehlers, Peters, and Storcken (2002)

characterize the classes of strategy-proof probabilistic rules together with axioms

such as peak-onlyness, anonymity, and unanimity. Peters, Roy, Sen, and Storcken

(2014), Pycia and Ünver (2015), and Roy and Sadhukhan (2019) study extreme

point characterizations. Peters, Roy, and Sadhukhan (2019) investigate strategy-

proof and unanimous probabilistic rules on the domain of single-peaked prefer-

ences over graphs. Chatterji, Roy, Sadhukhan, Sen, and Zeng (2020) characterize

a restricted class of fixed-probabilistic-ballots rules by strategy-proofness and una-

nimity on domains, which are hybrids of the single-peaked and the unrestricted

domains. Characterizations of single-peaked domains and extensions to multi-

dimensional settings have also been studied by authors such as Dutta, Peters, and

Sen (2002), Chatterji, Sen, and Zeng (2016), and Chatterji and Zeng (2018, 2019).

By contrast, the literature on group strategy-proof probabilistic rules is still rel-

atively small. Barberà (1979) characterizes the class of group strategy-proof proba-

bilistic rules on the unrestricted domain.8 Bogomolnaia, Moulin, and Stong (2005)

examine group strategy-proof rules on the domain of dichotomous preferences and

obtain some impossibility results. However, the class of group strategy-proof prob-

7For example, consider the fixed-probabilistic-ballots rule with the following probabilistic bal-
lots: the probabilistic ballots associated with single-agent groups assign one-half to alternatives
1 and 2, the probabilistic ballot associated with the entire set of agents assigns probability one to
alternative 1, and the probabilistic ballot associated with the empty set assigns probability one to
alternative 3. Then, under this rule, for the agent whose true peak is equal to 1, the probability
that the first- or second-ranked alternatives are chosen is equal to one under truth-telling.

8As is well known, Gibbard (1977) characterizes the class of strategy-proof probabilistic rules
on this domain.
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abilistic rules is still less well understood on many important domains. The present

paper investigates group strategy-proof probabilistic rules on the single-peaked do-

main, which is one of the most important domains in the social choice literature.

Several authors have examined group strategy-proof rules in the random assign-

ment and matching models. In the random assignment problem of non-identical

indivisible goods, Bade (2016) shows that there is no group strategy-proof rule

that satisfies ex-post efficiency and equal treatment of equals.9 Bogomolnaia and

Moulin (2004) construct a desirable group strategy-proof rule in the random match-

ing model with dichotomous preferences.

In the multiple assignment problem of non-disposable identical indivisible goods,

Hatsumi and Serizawa (2009) investigate group strategy-proof probabilistic rules

defined over single-peaked and risk-averse utility functions.

This paper is organized as follows. In Section 2, we introduce the model and

axioms. Our main result is provided in Section 3. Section 4 provides the proof of

our main theorem. Omitted proofs are presented in the Appendix.

2 Model

Let N = {1, 2, . . . , n} be a finite set of agents. Let M = {1, 2, . . . ,m} be a finite

set of alternatives.

Each agent i has a single-peaked preference Ri over the set of alternatives. Let

Pi denote the strict relation associated with Ri. A preference Ri is single-peaked

if there is an alternative p(Ri) ∈ M (called the peak of Ri) such that for each

x, y ∈ M , if y < x ≤ p(Ri) or p(Ri) ≤ x < y, then, x Pi y. Let R be the set of

single-peaked preferences. Given a preference profile R = (R1, . . . , Rn) ∈ RN and

a group S of agents, let RS = (Ri)i∈S and R−S = (Ri)i∈N\S.

A probability distribution over the set of alternatives is a listW = (w1, . . . , wm)

of non-negative real numbers such that
∑

x∈M wx = 1. Let ∆(M) denote the

set of probability distributions over the set of alternatives. Given a probability

distributionW and a subset Y of alternatives, letW (Y ) denote the probability that

the chosen alternative under W is in Y , i.e., W (Y ) =
∑

x∈Y wx. A (probabilistic)

9See also Aziz and Kasajima (2017) and Zhang (2019, 2020) for further results on group
strategy-proof rules in the random assignment problem.

5



rule is a function f from RN to ∆(M).

Given a preference Ri and an alternative x, let U(Ri, x) denote the upper

contour set of Ri at x, i.e., U(Ri, x) = {y ∈ M : y Ri x}. Given two probability

distributions W and W ′, W stochastically dominates W ′ at Ri if for each

x ∈ M , W (U(Ri, x)) ≥ W ′(U(Ri, x)).

We next introduce the axioms. Our main axiom is group strategy-proofness.

It requires that whenever a group of agents jointly misrepresents their preferences,

for at least one of them, the distribution chosen under truth-telling stochastically

dominates the distribution chosen under joint misrepresentation.

Group strategy-proofness: For each R ∈ RN , each S ⊆ N , and each R′
S ∈ RS,

there is i ∈ S such that f(R) stochastically dominates f(R′
S, R−S) at Ri.

Strategy-proofness prevents strategic misrepresentations of preferences via in-

dividual agents. Group strategy-proofness implies strategy-proofness.

Strategy-proofness: For each R ∈ RN , each i ∈ N , and each R′
i ∈ R, f(R)

stochastically dominates f(R′
i, R−i) at Ri.

Peak-onlyness requires that the rule should depend only on agents’ peaks.

Peak-onlyness: For each R,R′ ∈ RN , if for each i ∈ N , p(Ri) = p(R′
i), then,

f(R) = f(R′).

Unanimity requires that if all agents’ peaks coincide, then the rule should choose

it with probability one.

Unanimity: For each R ∈ RN and each x ∈ M , if for each i ∈ N , p(Ri) = x,

then, f(R)({x}) = 1.

Finally, anonymity requires that the rule should not depend on the names of

agents. Given a permutation π on N and R ∈ RN , let Rπ = (Rπ(i))i∈N .

Anonymity: For each R ∈ RN and each permutation π on N , f(R) = f(Rπ).

3 Main result

In this section, we provide our main characterization result. We first review the

formal definition of fixed-probabilistic-ballots rules introduced in Ehlers, Peters,
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and Storcken (2002) and their characterization result of the class of strategy-proof

and peak-only rules. We also use some basic definitions and notations used in their

paper in describing our class.

Let D = (DS)S⊆N be a collection of probability distributions over the set of

alternatives satisfying the following property:

(P-1) for each S ⊆ N , each S ′ ⊆ S, and each x ∈ M , DS([1, x]) ≥ DS′([1, x]).10

That is, for each pair S, S ′ of groups and each alternative x, if S contains S ′, the

probability assigned to the interval [1, x] under DS is no less than the probability

assigned to [1, x] under DS′ .

Given a preference profile R, let n̄(R) denote the number of different peaks

at R, and for each ℓ ∈ [1, n̄(R)], let pℓ(R) denote the ℓ-th smallest peak at R.

Let Sℓ(R) denote the set of agents whose peak is less than, or equal to, the ℓ-th

smallest peak at profile R, i.e., Sℓ(R) = {i ∈ N : p(Ri) ≤ pℓ(R)}. Let p0(R) = 1,

pn̄(R)+1(R) = m, and S0(R) = ∅.
The fixed-probabilistic-ballots rule associated with D = (DS)S⊆N determines

the probability distribution over the set of alternatives as follows. For each prefer-

ence profile R, the distribution over the alternatives between the ℓ-th and ℓ+1-th

smallest peaks coincides withDSℓ(R), and the probability assigned to the ℓ-th small-

est peak is equal to DSℓ(R)([1, p
ℓ(R)]) − DSℓ−1(R)([1, p

ℓ(R) − 1]). The following is

the formal definition of fixed-probabilistic-ballots rules.

Fixed-probabilistic-ballots rule associated with D = (DS)S⊆N , fD: For

each R ∈ RN and each x ∈ M ,

(i) if for some ℓ ∈ [0, n̄(R)], pℓ(R) < x < pℓ+1(R), then,

fD(R)({x}) = DSℓ(R)({x}),

(ii) if for some ℓ ∈ [0, n̄(R) + 1], x = pℓ(R), then,

fD(R)({x}) = DSℓ(R)([1, x])−DSℓ−1(R)([1, x− 1]).

The following is the characterization result of the class of strategy-proof and

peak-only rules shown by Ehlers, Peters, and Storcken (2002).

10Given two integers x and y with x ≤ y, let [x, y] = {x, x+ 1, . . . , y}.
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Theorem (Ehlers, Peters, and Storcken, 2002, Theorem 4.1). A rule f

is strategy-proof and peak-only if and only if it is a fixed-probabilistic-ballots rule,

i.e., there is a collection D = (DS)S⊆N satisfying (P-1) such that f = fD.

We next describe the class of “group” strategy-proof and peak-only rules. First,

we introduce additional notations. Let (xS)S⊆N be a collection of alternatives

satisfying the following property: x∅ = m, xN = 1, and for each pair S, S ′ of

groups, if S contains S ′, xS is no greater than xS′ , i.e., for each S ⊆ N and each

S ′ ⊆ S, xS ≤ xS′ . Let X be the set of such collections.

Next, we introduce a condition on collections D = (DS)S⊆N of probability

distributions over the set of alternatives. Given a collection (xS)S⊆N in X , Con-

dition 1 below says that (1) for each group S of agents, (1-a and 1-b) distribution

DS coincides with D∅ on the interval [1, xS − 1] and DN on [xS + 2,m], (1-c)

the probability assigned to alternative xS under DS is between D∅({xS}) and

DN([1, xS])−D∅([1, xS − 1]), and (1-d) if S contains S ′ and xS coincides with xS′ ,

the probability assigned to xS under DS is no less than the probability assigned

to xS′ under DS′ , and (2) for each alternative x, the probability assigned to the

interval [1, x] under DN is no less than the probability assigned to [1, x] under D∅.

Condition 1. Given a collection (xS)S⊆N in X , a collection D = (DS)S⊆N of

probability distributions over the set of alternatives satisfies Condition 1 if

(1) for each S ⊆ N and each x ∈ M ,

(1-a) if x < xS, DS({x}) = D∅({x}),
(1-b) if x > xS + 1, DS({x}) = DN({x}),
(1-c) if x = xS, D∅({x}) ≤ DS({x}) ≤ DN([1, x])−D∅([1, x− 1]),

(1-d) for each S ′ ⊆ S, if xS′ = xS, DS′({xS′}) ≤ DS({xS}),
(2) for each x ∈ M , DN([1, x]) ≥ D∅([1, x]).

Note that if a collection D satisfies Condition 1, then it also satisfies (P-1).11

11To see this, let S ⊆ N and S′ ⊆ S. Then, xS ≤ xS′ . We show that for each x ∈ M ,
DS([1, x]) ≥ DS′([1, x]). Let x ∈ M . If x < xS , then, by (1-a), DS([1, x]) = D∅([1, x]) =
DS′([1, x]). If x = xS < xS′ , then, by (1-a) and (1-c), DS([1, x]) = D∅([1, x − 1]) +DS({x}) ≥
D∅([1, x]) = DS′([1, x]). If x = xS = xS′ , then, by (1-a) and (1-d), DS([1, x]) = D∅([1, x− 1]) +
DS({x}) ≥ D∅([1, x − 1]) +DS′({x}) = DS′([1, x]). If xS + 1 ≤ x < xS′ , then, by (1-a), (1-b),
and (2), DS([1, x]) = DN ([1, x]) ≥ D∅([1, x]) = DS′([1, x]). If xS + 1 ≤ x = xS′ , then, by (1-a),
(1-b), and (1-c), DS([1, x]) = DN ([1, x]) ≥ D∅([1, x−1])+DS′({x}) = DS′([1, x]). If xS′ +1 ≤ x,
then, by (1-b), DS([1, x]) = DN ([1, x]) = DS′([1, x]).
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Theorem 1 below is our main result. It says that a rule is group strategy-

proof and peak-only if and only if it is a fixed-probabilistic-ballots rule satisfying

Condition 1.

Theorem 1. A rule is group strategy-proof and peak-only if and only if there are

collections (xS)S⊆N in X and D = (DS)S⊆N satisfying Condition 1 such that it is

the fixed-probabilistic-ballots rule associated with D.

The proof of Theorem 1 is provided in the next section. The following are

examples of rules characterized in Theorem 1.

Example 1. Let N = {1, 2, 3} and M = {1, 2, 3, 4}. Let R ∈ RN be a preference

profile such that for each i ∈ N , p(Ri) = i.

(1) Let xN = 1, x∅ = 4, and for each S ̸= ∅, N , xS = 2. Then, (xS)S⊆N ∈ X .

For each S, S ′ ⊆ N and each x ∈ M with |S| ≤ 1 < |S ′|,12 let

DS({x}) =


0 if x ∈ {1, 4}

1/3 if x = 2

2/3 if x = 3,

and DS′({x}) =


0 if x ∈ {1, 4}

2/3 if x = 2

1/3 if x = 3.

Then, the collection D = (DS)S⊆N satisfies Condition 1. Let f be the fixed-

probabilistic-ballots rule associated with D. Then, for each x ∈ M ,

f(R)({x}) =


0 if x ∈ {1, 4}

2/3 if x = 2

1/3 if x = 3.

(2) Let x{1,3} = xN = 1, x{1} = x{1,2} = x{2,3} = 2, x{3} = 3, and x∅ = x{2} = 4.

Then, (xS)S⊆N ∈ X . For each x ∈ M , let D∅({x}) = (x − 1)/6 = D{2}({x}),

12Given a set S, let |S| denote the cardinality of S.
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DN({x}) = (5− x)/10 = D{1,3}({x}),

D{1}({x}) =



0 if x = 1

1/2 if x = 2

2/5 if x = 3

1/10 if x = 4,

and D{3}({x}) =



0 if x = 1

1/6 if x = 2

1/2 if x = 3

1/3 if x = 4.

and for each y ∈ {1, 4}, let D{1,2}({y}) = D{1}({y}) = D{2,3}({y}), D{1,2}({2}) =
3/5 = D{2,3}({3}), and D{1,2}({3}) = 3/10 = D{2,3}({2}).

Then, this collection D = (DS)S⊆N also satisfies Condition 1. Let f be the

fixed-probabilistic-ballots rule associated with this collection D. Then, for each

x ∈ M ,

f(R)({x}) =



0 if x = 1

3/5 if x = 2

3/10 if x = 3

1/10 if x = 4.

Note that peak-onlyness is indispensable in Theorem 1. The following example

shows that there is a group strategy-proof rule which does not belong to the class

of rules described in Theorem 1 when peak-onlyness is dropped.

Example 2. Let N = {1, 2} and M = {1, 2, 3}. Let f be a rule such that for each

R ∈ RN and each x ∈ M ,

f(R)({x}) =

1/2 if x ∈ {p(R1),min p̂(R1)}

0 otherwise,

where p̂(R1) is the set of the second-ranked alternatives for R1, i.e., p̂(R1) = {y ∈
M : y ̸= p(R1) and for each x ̸= p(R1), y R1 x}.13

Then, this rule satisfies group strategy-proofness.14 However, because the cho-

13Note that p̂(R1) is a singleton unless alternative 1 is indifferent to 3 under R1.
14To see this, let R,R′ ∈ RN . We show that f(R) stochastically dominates f(R′) at R1. We

first show that f(R) stochastically dominates f(R′
1, R2) at R1. First, since f(R)({p(R1)}) = 1/2

and f(R′
1, R2)({p(R1)}) = 0 or 1/2, we have f(R)(U(R1, p(R1))) ≥ f(R′

1, R2)(U(R1, p(R1))).
Next, let y ∈ p̂(R1). Then, since f(R)(U(R1, y)) = 1, we obtain f(R)(U(R1, y)) ≥

10



sen probability under this rule changes when the second-ranked alternative for

agent 1 is changed, f is not peak-only.

We next describe the class of group strategy-proof, peak-only, and anonymous

rules. Given (xS)S⊆N in X and k in [0, n], let xmin(k) and xmax(k) denote the

minimum and maximum of xS among groups S with k agents, respectively, i.e.,

xmin(k) = min{xS : |S| = k} and xmax(k) = max{xS : |S| = k}.
Condition 2 below says that for each k ∈ [0, n] and each group S with k agents,

(1) if xmin(k) coincides with xmax(k), then for each group S ′ with k agents, the

probability assigned to alternative xS under DS coincides with the probability

assigned to xS′ under DS′ , (2) if the difference between xmin(k) and xmax(k) is

equal to 1, then DS coincides with D∅ at x
min(k) and DN at xmax(k)+ 1, (3) if the

difference between xmin(k) and xmax(k) is more than 1, then DS coincides with D∅

on the interval [xmin(k), xmax(k)− 1] and DS coincides with DN at xmax(k).

Condition 2. Given a collection (xS)S⊆N in X , a collection D = (DS)S⊆N satisfies

Condition 2 if for each k ∈ [0, n] and each S ⊆ N with |S| = k,

(1) if xmin(k) = xmax(k), for each S ′ ⊆ N with |S ′| = k, DS({xS}) = DS′({xS′}),
(2) if xmin(k) + 1 = xmax(k),

DS({xmin(k)}) = D∅({xmin(k)}) and DS({xmax(k) + 1}) = DN({xmax(k) + 1}),

(3) if xmin(k) + 1 < xmax(k), for each x ∈ [xmin(k), xmax(k)],

DS({x}) =

D∅({x}) if xmin(k) ≤ x < xmax(k)

DN({x}) if x = xmax(k).

Corollary 1 below says that a rule is group strategy-proof, peak-only, and

anonymous if and only if it is a fixed-probabilistic-ballots rule satisfying Conditions

1 and 2.

Corollary 1. A rule is group strategy-proof, peak-only, and anonymous if and

f(R′
1, R2)(U(R1, y)). Thus, for each x ∈ M , f(R)(U(R1, x)) ≥ f(R′

1, R2)(U(R1, x)), and so,
f is strategy-proof for agent 1. Because f does not depend on agent 2’s preferences, f is also
strategy-proof for agent 2. Thus, it follows that f(R′) = f(R′

1, R2). This implies that, for each
x ∈ M , f(R)(U(R1, x)) ≥ f(R′

1, R2)(U(R1, x)) = f(R′)(U(R1, x)). Therefore, f(R) stochasti-
cally dominates f(R′) at R1.
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only if there are collections (xS)S⊆N in X and D = (DS)S⊆N satisfying Conditions

1 and 2 such that it is the fixed-probabilistic-ballots rule associated with D.

We next describe the class of group strategy-proof and unanimous rules. Be-

cause unanimity together with strategy-proofness implies peak-onlyness in this

model,15 any group strategy-proof and unanimous rule is in the class of rules de-

scribed in Theorem 1.

Let (αS)S⊆N be a collection of real numbers satisfying the following property:

α∅ = 1 = αN , and for each S ⊆ N , 0 ≤ αS ≤ 1, and if S contains S ′ and xS

coincides with xS′ , αS is no less than αS′ , i.e., for each S ′ ⊆ S, if xS′ = xS,

αS′ ≤ αS. Let A be the set of such collections.

Given X = (xS)S⊆N in X and A = (αS)S⊆N in A, let DX,A = (DX,A
S )S⊆N be

the collection of probability distributions defined as follows: for each S ⊆ N , DX,A
S

puts probability αS on alternative xS and 1 − αS on xS + 1. Then, consider the

fixed-probabilistic-ballots rule associated with DX,A. Corollary 2 below says that

the class of group strategy-proof and unanimous rules coincides with the class of

fixed-probabilistic-ballots rules defined in this way.

Corollary 2. A rule is group strategy-proof and unanimous if and only if there is

a pair (X,A) in X ×A such that it is the fixed-probabilistic-ballots rule associated

with DX,A.

Finally, we obtain the following characterization of the class of group strategy-

proof, unanimous, and anonymous rules. Corollary 3 below says that a rule is

group strategy-proof, unanimous, and anonymous if and only if it is the fixed-

probabilistic-ballots rule associated with DX,A satisfying the following additional

property: for each pair S, S ′ of groups with the same number of agents, xS and αS

coincide with xS′ and αS′ , respectively.

Corollary 3. A rule is group strategy-proof, unanimous, and anonymous if and

only if there is a pair (X,A) in X ×A satisfying for each S, S ′ ⊆ N with |S| = |S ′|,
xS = xS′ and αS = αS′ such that it is the fixed-probabilistic-ballots rule associated

with DX,A.

15See, for example, Ehlers, Peters, and Storcken (2002) and Chatterji and Zeng (2018).
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4 Proof of Theorem 1

In this section, we provide the proof of our main characterization result (Theorem

1). The proofs of Corollaries 1, 2, and 3 are provided in the Appendix.

We first prove the “only if” part of Theorem 1. The next fact easily follows

from the definition of fixed-probabilistic-ballots rules.

Fact 1. Let f be the fixed-probabilistic-ballots rule associated with D = (DS)S⊆N .

Let x ∈ M and let R be a preference profile such that each agent’s peak is equal to

alternative x. Then, for each y ∈ M ,

f(R)({y}) =


D∅({y}) if y ≤ x− 1

DN([1, x])−D∅([1, x− 1]) if y = x

DN({y}) if y ≥ x+ 1.

Proof of Fact 1. Let y ∈ M . If y < x, then, by y < p1(R), f(R)({y}) =

D∅({y}). If y > x, then, by y > pn̄(R)(R), f(R)({y}) = DN({y}). Finally,

since f(R)([1, x − 1]) = D∅([1, x − 1]) and f(R)([x + 1,m]) = DN([x + 1,m]),

f(R)({x}) = 1−D∅([1, x− 1])−DN([x+ 1,m]) = DN([1, x])−D∅([1, x− 1]).

�

We are now ready to provide the proof of the “only if” part of Theorem 1.

“Only if” part. Let f be a group strategy-proof and peak-only rule. Then,

by Theorem 4.1 in Ehlers, Peters, and Storcken (2002), f is a fixed-probabilistic-

ballots rule, i.e., there is a collection D = (DS)S⊆N satisfying (P-1) such that f

coincides with the fixed-probabilistic-ballots rule associated with D. Then, (2) of

Condition 1 follows from (P-1).

In the next six steps, we prove (1) of Condition 1, i.e., we show that there is a

collection (xS)S⊆N in X such that for each S ⊆ N and each x ∈ M ,

(1-a) if x < xS, DS({x}) = D∅({x}),
(1-b) if x > xS + 1, DS({x}) = DN({x}),
(1-c) if x = xS, D∅({x}) ≤ DS({x}) ≤ DN([1, x])−D∅([1, x− 1]), and

(1-d) for each S ′ ⊆ S, if xS′ = xS, DS′({xS′}) ≤ DS({xS}).

For each i ∈ N , let R1
i and Rm

i be the preference of agent i whose peak is equal
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to alternative 1 and m, respectively. Then, by the definition of fixed-probabilistic-

ballots rules, for each S ⊆ N , DS = f(R1
S, R

m
−S).

In Step 1, we construct a collection (xS)S⊆N . We define it as follows. Let

xN = 1, and for each S ( N , if there are alternatives at which distribution DS

differs from D∅, let xS be the minimum of them, and if DS coincides with D∅ at

each alternative, let xS = m. Then, (1-a) follows from the definition of (xS)S⊆N .

Step 1. Construction of (xS)S⊆N .

For each S ⊆ N , let ES = {x ∈ M : DS({x}) ̸= D∅({x})}. Let xN = 1, and

for each S ( N , let

xS =

minES if ES ̸= ∅

m if ES = ∅.

Then, x∅ = m. Note also that, for each S ⊆ N , since DS(M) = 1 = D∅(M), if

ES ̸= ∅, then, xS ≤ m− 1.

In Step 2, we prove that for each S ⊆ N , DS({xS}) is no less than D∅({xS}).
In the proof of Step 2, we show that if DS({xS}) is less than D∅({xS}), then f is

jointly manipulable via group S.

Step 2. For each S ⊆ N , D∅({xS}) ≤ DS({xS}).

Let S ⊆ N . Suppose by contradiction that DS({xS}) < D∅({xS}). Then,

ES ̸= ∅, and by (1-a), f(R1
S, R

m
−S)([1, xS − 1]) = DS([1, xS − 1]) = D∅([1, xS − 1]).

Thus, for each i ∈ S,

f(R1
S, R

m
−S)(U(Rm

i , xS + 1)) = f(R1
S, R

m
−S)([xS + 1,m]) (by U(Rm

i , xS) = [xS + 1,m])

= 1−D∅([1, xS − 1])−DS({xS})

> 1−D∅([1, xS − 1])−D∅({xS}) (by DS({xS}) < D∅({xS}))

= f(Rm
N )([xS + 1,m]) (by f(Rm

N ) = D∅)

= f(Rm
N )(U(Rm

i , xS + 1)).

Thus, group S can manipulate f(Rm
N ) via R1

S, which violates group strategy-

proofness.

In Step 3, we prove (1-b). In the proof of Step 3, we first show that DS

coincides with DN at m. As shown below, if DS({m}) is less than DN({m}), then

14



f is jointly manipulable via group N \S, and if DS({m}) is greater than DN({m}),
then f is jointly manipulable via the entire set of agents. By applying a similar

argument inductively, we can also show that DS coincides with DN on the interval

[xS + 2,m− 1].

Step 3. For each S ⊆ N and each x ∈ M , if x > xS + 1, DS({x}) = DN({x}).

Let S ⊆ N be such that xS + 1 < m. If S = N , then, by DS = DN , Step

3 holds. Thus, assume that S ̸= N . Since xS + 1 < m, ES ̸= ∅. Then, by the

definition of xS, D∅({xS}) ̸= DS({xS}). Thus, by Step 2, D∅({xS}) < DS({xS}).
First, we showDS({m}) = DN({m}). Suppose by contradiction thatDS({m}) <

DN({m}). Then, for each i ∈ N \ S,

f(R1
S, R

m
−S)(U(R1

i ,m− 1)) = f(R1
S, R

m
−S)([1,m− 1]) (by U(R1

i ,m− 1) = [1,m− 1])

= 1−DS({m}) (by f(R1
S, R

m
−S) = DS)

> 1−DN({m}) (by DS({m}) < DN({m}))

= f(R1
N)([1,m− 1]) (by f(R1

N) = DN)

= f(R1
N)(U(R1

i ,m− 1)).

Thus, group N \S can manipulate f(R1
N) via Rm

−S, which violates group strategy-

proofness.

Next, suppose that DS({m}) > DN({m}). For each i ∈ N , let Rm−1
i be a

preference of agent i whose peak is equal to alternative m − 1. Then, for each

i ∈ S,

f(R1
S, R

m
−S)(U(R1

i ,m− 1)) = f(R1
S, R

m
−S)([1,m− 1])

= 1−DS({m}) (by f(R1
S, R

m
−S) = DS)

< 1−DN({m}) (by DS({m}) > DN({m}))

= f(Rm−1
N )([1,m− 1]) (by Fact 1)

= f(Rm−1
N )(U(R1

i ,m− 1)).
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Also, for each i ∈ N \ S,

f(R1
S, R

m
−S)(U(Rm

i , xS + 1)) = f(R1
S, R

m
−S)([xS + 1,m])

= 1−D∅([1, xS − 1])−DS({xS})

< 1−D∅([1, xS − 1])−D∅({xS}) (by DS({xS}) > D∅({xS}))

= f(Rm−1
N )([xS + 1,m]) (by Fact 1)

= f(Rm−1
N )(U(Rm

i , xS + 1)).

Thus, groupN can manipulate f(R1
S, R

m
−S) viaR

m−1
N , which violates group strategy-

proofness.

Next, let x ∈ [xS+2,m−1]. As the induction hypothesis, assume that for each

y ≥ x + 1, DS({y}) = DN({y}). Then, f(R1
S, R

m
−S)([x + 1,m]) = DN([x + 1,m]).

We show DS({x}) = DN({x}).
Suppose by contradiction that DS({x}) < DN({x}). Then, for each i ∈ N \ S,

f(R1
S, R

m
−S)(U(R1

i , x− 1)) = f(R1
S, R

m
−S)([1, x− 1])

= 1−DS({x})−DN([x+ 1,m])

> 1−DN({x})−DN([x+ 1,m]) (by DS({x}) < DN({x}))

= f(R1
N)([1, x− 1]) (by f(R1

N) = DN)

= f(R1
N)(U(R1

i , x− 1)).

Thus, group N \S can manipulate f(R1
N) via Rm

−S, which violates group strategy-

proofness.

Next, suppose that DS({x}) > DN({x}). For each i ∈ N , let Rx−1
i be a

preference of agent i whose peak is equal to alternative x − 1. Then, for each

i ∈ S,

f(R1
S, R

m
−S)(U(R1

i , x− 1)) = f(R1
S, R

m
−S)([1, x− 1])

= 1−DS({x})−DN([x+ 1,m])

< 1−DN({x})−DN([x+ 1,m]) (by DS({x}) > DN({x}))

= f(Rx−1
N )([1, x− 1]) (by Fact 1)

= f(Rx−1
N )(U(R1

i , x− 1)).
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Also, for each i ∈ N \ S,

f(R1
S, R

m
−S)(U(Rm

i , xS + 1)) = f(R1
S, R

m
−S)([xS + 1,m])

= 1−D∅([1, xS − 1])−DS({xS})

< 1−D∅([1, xS − 1])−D∅({xS}) (by DS({xS}) > D∅({xS}))

= f(Rx−1
N )([xS + 1,m]) (by Fact 1)

= f(Rx−1
N )(U(Rm

i , xS + 1)).

Thus, groupN can manipulate f(R1
S, R

m
−S) viaR

x−1
N , which violates group strategy-

proofness. Thus, we conclude that DS({x}) = DN({x}).

In Step 4, we prove that for each S ⊆ N , DS({xS}) is no greater than

DN([1, xS])−D∅([1, xS − 1]). In the proof of Step 4, we show that if DS({xS}) is
greater than DN([1, xS]) − D∅([1, xS − 1]), then f is jointly manipulable via the

entire set of agents. Step 4 together with Step 2 implies (1-c).

Step 4. For each S ⊆ N , DS({xS}) ≤ DN([1, xS])−D∅([1, xS − 1]).

Let S ⊆ N and x = xS. If S = ∅ or S = N , then Step 4 holds. Thus,

assume that S ̸= ∅, N . For each i ∈ N , let Rx
i be a preference of agent i

whose peak is equal to alternative x. By contradiction, suppose that DS({x}) >
DN([1, x])−D∅([1, x−1]). Then, by Fact 1, f(Rx

N)({x}) = DN([1, x])−D∅([1, x−
1]) < DS({x}). Thus, for each i ∈ N , f(R1

S, R
m
−S)(U(Rx

i , x)) = DS({x}) >

f(Rx
N)({x}) = f(Rx

N)(U(Rx
i , x)). Hence, group N can manipulate f(Rx

N) via

(R1
S, R

m
−S), which violates group strategy-proofness.

In Step 5, we prove that (1-d) follows from (P-1) and (1-a).

Step 5. For each S ⊆ N and each S ′ ⊆ S, if xS′ = xS, DS′({xS′}) ≤ DS({xS}).

Let S ⊆ N and S ′ ⊆ S be such that xS′ = xS. We show that DS′({xS′}) ≤
DS({xS}). It follows from (P-1) that for each x ∈ M , DS([1, x]) ≥ DS′([1, x]). If

xS = 1, then, DS({xS}) = DS({1}) ≥ DS′({1}) = DS′({xS′}). If xS > 1, then,

DS({xS}) = DS([1, xS])−D∅([1, xS − 1]) (by (1-a))

≥ DS′([1, xS′ ])−D∅([1, xS′ − 1])

= DS′({xS′}) (by (1-a)).
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Finally, in Step 6, we show that the constructed collection (xS)S⊆N is in X ,

i.e., for each S ⊆ N and each S ′ ⊆ S, xS ≤ xS′ . As shown below, if xS > xS′ , then

f is jointly manipulable via group S \ S ′.

Step 6. For each S ⊆ N and each S ′ ⊆ S, xS ≤ xS′.

Let S ⊆ N and S ′ ( S. If ES′ = ∅, then, xS′ = m ≥ xS. Thus, assume

that ES′ ̸= ∅. Then, S ′ ̸= ∅. Since S ′ ( S, S ′ ̸= N . By the definition of xS′ ,

D∅({xS′}) ̸= DS′({xS′}). Thus, by Step 2, D∅({xS′}) < DS′({xS′}). Suppose by

contradiction that xS′ < xS. Then, for each i ∈ S \ S ′,

f(R1
S′ , Rm

−S′)(U(Rm
i , xS′ + 1)) = f(R1

S′ , Rm
−S′)([xS′ + 1,m])

= 1−D∅([1, xS′ − 1])−DS′({xS′})

< 1−D∅([1, xS′ − 1])−D∅({xS′}) (by DS′({xS′}) > D∅({xS′}))

= 1−D∅([1, xS′ ])

= f(R1
S, R

m
−S)([xS′ + 1,m]) (by (1-a) and xS > xS′)

= f(R1
S, R

m
−S)(U(Rm

i , xS′ + 1)).

Thus, group S \ S ′ can manipulate f(R1
S′ , Rm

−S′) via R1
S\S′ , which violates group

strategy-proofness.

�

We next prove the “if” part of Theorem 1. Before presenting the proof, we

introduce one addition fact that is useful in our proof.

Let (xS)S⊆N ∈ X . Then, for each R ∈ RN , there is a unique number ℓ∗(R) ∈
[1, n̄(R)] such that pℓ

∗(R)(R) ≤ xSℓ∗(R)−1(R) and xSℓ∗(R)(R) < pℓ
∗(R)+1(R).16

Let R ∈ RN and ℓ = ℓ∗(R). Let D = (DS)S⊆N satisfy Condition 1. Fact 2

below says that the probability distribution chosen under the fixed-probabilistic-

ballots rule f associated with D at the profile R is determined as follows: (a) if the

ℓ-th smallest peak is less than, or equal to, xSℓ(R), then the distribution coincides

16To see this, let R ∈ RN . Suppose that for each ℓ ∈ [1, n̄(R)], pℓ(R) > xSℓ−1(R) or p
ℓ+1(R) ≤

xSℓ(R). Since x∅ = m ≥ p1(R), p2(R) ≤ xS1(R). This implies that p3(R) ≤ xS2(R). Repeating

this, pn̄(R)+1(R) ≤ xSn̄(R)(R). However, since xSn̄(R)(R) = xN = 1 and pn̄(R)+1(R) = m, this is a

contradiction. Thus, there is ℓ ∈ [1, n̄(R)] such that pℓ(R) ≤ xSℓ−1(R) and xSℓ(R) < pℓ+1(R).

Next, let ℓ′ ∈ [1, n̄(R)]. If ℓ < ℓ′, then, xSℓ′−1(R) ≤ xSℓ(R) < pℓ+1(R) ≤ pℓ
′
(R). If ℓ > ℓ′, then,

pℓ
′+1(R) ≤ pℓ(R) ≤ xSℓ−1(R) ≤ xSℓ′ (R). Thus, for each ℓ′ ∈ [1, n̄(R)], if ℓ′ ̸= ℓ, xSℓ′−1(R) < pℓ

′
(R)

or pℓ
′+1(R) ≤ xSℓ′ (R).
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with D∅ on the interval [1, xSℓ(R) − 1] and DN on [xSℓ(R) + 2,m], the probability

assigned to alternative xSℓ(R) is equal to DSℓ(R)({xSℓ(R)}), and the remaining prob-

ability is assigned to alternative xSℓ(R) + 1, and (b) if the ℓ-th smallest peak is

greater than xSℓ(R), then the distribution coincides with D∅ on [1, pℓ(R) − 1] and

DN on [pℓ(R)+1,m], and the remaining probability is assigned to the ℓ-th smallest

peak.

Fact 2. Let (xS)S⊆N ∈ X and let D = (DS)S⊆N satisfy Condition 1. Let f be the

fixed-probabilistic-ballots rule associated with D. Then, for each R ∈ RN ,

(a) if pℓ(R) ≤ xSℓ(R), then,

f(R)({x}) =



D∅({x}) if x < xSℓ(R)

DSℓ(R)({x}) if x = xSℓ(R)

DN([1, x])−D∅([1, x− 2])−DSℓ(R)({x− 1}) if x = xSℓ(R) + 1

DN({x}) if x > xSℓ(R) + 1,

(b) if xSℓ(R) < pℓ(R), then,

f(R)({x}) =


D∅({x}) if x < pℓ(R)

DN([1, x])−D∅([1, x− 1]) if x = pℓ(R)

DN({x}) if x > pℓ(R),

where ℓ = ℓ∗(R).

The proof of Fact 2 is in the Appendix. We are now ready to provide the proof

of the “if” part of Theorem 1.

“If” part. Let (xS)S⊆N ∈ X and let D = (DS)S⊆N satisfy Condition 1. Let

f be the fixed-probabilistic-ballots rule associated with D. By the definition of

fixed-probabilistic-ballots rules, f is peak-only. We show that f is group strategy-

proof.

Let R,R′ ∈ RN and S ⊆ N be such that R−S = R′
−S. In the next six steps, we

show that for at least one agent in group S, f(R) stochastically dominates f(R′).

Let ℓ = ℓ∗(R) and ℓ′ = ℓ∗(R′). Then, pℓ(R) ≤ xSℓ−1(R) and xSℓ(R) < pℓ+1(R), and
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pℓ
′
(R′) ≤ xSℓ′−1(R

′) and xSℓ′ (R
′) < pℓ

′+1(R′). Let L(R) = max{pℓ(R), xSℓ(R)} and

L(R′) = max{pℓ′(R′), xSℓ′ (R
′)}.

Step 1 says that (a) if L(R) is no greater than xSℓ′ (R
′) and the peak of each

agent in group S is greater than the ℓ-th smallest peak at R, then the peak of each

agent in Sℓ(R) is no greater than the ℓ′-th smallest peak at R′, and (b) if L(R′)

is no greater than xSℓ(R) and the peak of each agent in group S is less than the

ℓ + 1-th smallest peak at R, then the peak of each agent in Sℓ′(R
′) is no greater

than the ℓ-th smallest peak at R.

Step 1. (a) If L(R) ≤ xSℓ′ (R
′) and S ∩ Sℓ(R) = ∅, then, Sℓ(R) ⊆ Sℓ′(R

′).

(b) If L(R′) ≤ xSℓ(R) and S ∩ (N \ Sℓ(R)) = ∅, then, Sℓ(R) ⊇ Sℓ′(R
′).

(a) Assume that L(R) ≤ xSℓ′ (R
′) and S ∩ Sℓ(R) = ∅. Then, for each i ∈ Sℓ(R),

Ri = R′
i. Thus, if pℓ

′
(R′) < pℓ(R), then, pℓ

′+1(R′) ≤ pℓ(R) ≤ L(R) ≤ xSℓ′ (R
′) <

pℓ
′+1(R′), which is a contradiction. Hence, pℓ(R) ≤ pℓ

′
(R′). This implies that

Sℓ(R) ⊆ Sℓ′(R
′).

(b) Assume that L(R′) ≤ xSℓ(R) and S ∩ (N \ Sℓ(R)) = ∅. Then, for each

i ∈ N \ Sℓ(R), Ri = R′
i. Thus, if pℓ+1(R) < pℓ

′+1(R′), then, pℓ
′
(R′) ≥ pℓ+1(R) >

xSℓ(R) ≥ L(R′) ≥ pℓ
′
(R′), which is a contradiction. Hence, pℓ

′+1(R′) ≤ pℓ+1(R).

This implies that N \ Sℓ(R) ⊆ N \ Sℓ′(R
′), and so, Sℓ(R) ⊇ Sℓ′(R

′).

Let

Ŝℓ(R) =

N \ Sℓ−1(R) if xSℓ(R) < pℓ(R)

N \ Sℓ(R) if xSℓ(R) ≥ pℓ(R).

Step 2 says that (a) if L(R) is less than L(R′), then at least one agent in group

S belongs to Sℓ(R), and (b) if L(R′) is less than L(R), then at least one agent in

group S belongs to Ŝℓ(R).

Step 2. (a) If L(R) < L(R′), then, S ∩ Sℓ(R) ̸= ∅.
(b) If L(R′) < L(R), then, S ∩ Ŝℓ(R) ̸= ∅.

(a) Assume that L(R) < L(R′). By contradiction, suppose that S ∩Sℓ(R) = ∅.
Case 1. xSℓ′ (R

′) < pℓ
′
(R′).

Since L(R) < L(R′), pℓ(R) ≤ L(R) < L(R′) = pℓ
′
(R′). Thus, pℓ(R) ≤

pℓ
′−1(R′). Then, Sℓ(R) ⊆ Sℓ′−1(R

′). Thus, xSℓ′−1(R
′) ≤ xSℓ(R) ≤ L(R) < L(R′) =

pℓ
′
(R′) ≤ xSℓ′−1(R

′). This is a contradiction.
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Case 2. pℓ
′
(R) ≤ xSℓ′ (R

′).

Then, L(R) < L(R′) = xSℓ′ (R
′). Then, by Step 1-(a), Sℓ(R) ⊆ Sℓ′(R

′). Thus,

xSℓ′ (R
′) ≤ xSℓ(R) ≤ L(R) < L(R′) = xSℓ′ (R

′). This is a contradiction.

(b) Assume that L(R′) < L(R). By contradiction, suppose that S ∩ Ŝℓ(R) = ∅.
Case 1. xSℓ(R) < pℓ(R).

Then, S ∩ (N \ Sℓ−1(R)) = ∅. Since L(R′) < L(R), pℓ
′
(R′) ≤ L(R′) < L(R) =

pℓ(R). Thus, pℓ
′+1(R) ≤ pℓ(R). Then, N \Sℓ′(R

′) ⊇ N \Sℓ−1(R), and so, Sℓ′(R
′) ⊆

Sℓ−1(R). Thus, xSℓ−1(R) ≤ xSℓ′ (R
′) ≤ L(R′) < L(R) = pℓ(R) ≤ xSℓ−1(R). This is a

contradiction.

Case 2. pℓ(R) ≤ xSℓ(R).

Then, S ∩ (N \ Sℓ(R)) = ∅. Since L(R′) < L(R) = xSℓ(R), by Step 1-(b),

Sℓ(R) ⊇ Sℓ′(R
′). Thus, xSℓ(R) ≤ xSℓ′ (R

′) ≤ L(R′) < L(R) = xSℓ(R). This is a

contradiction.

Step 3 says that when L(R) coincides with L(R′), (a) if xSℓ(R) is less than the

ℓ-th smallest peak at R and xSℓ′ (R
′) is no less than the ℓ′-th smallest peak at R′,

then at least one agent in group S belongs to Sℓ(R), and (b) if xSℓ(R) is no less

than the ℓ-th smallest peak at R and xSℓ′ (R
′) is less than the ℓ′-th smallest peak at

R′, then at least one agent in group S belongs to Ŝℓ(R).

Step 3. Assume that L(R) = L(R′).

(a) If xSℓ(R) < pℓ(R) and pℓ
′
(R′) ≤ xSℓ′ (R

′), then, S ∩ Sℓ(R) ̸= ∅.
(b) If xSℓ(R) ≥ pℓ(R) and pℓ

′
(R′) > xSℓ′ (R

′), then, S ∩ Ŝℓ(R) ̸= ∅.

(a) Assume that xSℓ(R) < pℓ(R) and pℓ
′
(R′) ≤ xSℓ′ (R

′). Then, L(R) = L(R′) =

xSℓ′ (R
′). Suppose that S ∩Sℓ(R) = ∅. Then, by Step 1-(a), Sℓ(R) ⊆ Sℓ′(R

′). Thus,

xSℓ′ (R
′) ≤ xSℓ(R) < pℓ(R) = L(R) = L(R′) = xSℓ′ (R

′). This is a contradiction.

(b) Assume that xSℓ(R) ≥ pℓ(R) and pℓ
′
(R′) > xSℓ′ (R

′). Then, L(R
′) = L(R) =

xSℓ(R). Suppose that S ∩ (N \ Sℓ(R)) = ∅. Then, by Step 1-(b), Sℓ(R) ⊇ Sℓ′(R
′).

Thus, xSℓ(R) ≤ xSℓ′ (R
′) < pℓ

′
(R′) = L(R′) = L(R) = xSℓ(R). This is a contradiction.

Step 4 says that if one of the following (4-a), (4-b), and (4-c) holds, for each

agent in Sℓ(R), f(R) stochastically dominates f(R′).

Step 4. Assume that (4-a) L(R) < L(R′), (4-b) L(R) = L(R′), xSℓ(R) < pℓ(R),

and pℓ
′
(R′) ≤ xSℓ′ (R

′), or (4-c) L(R) = L(R′), pℓ(R) ≤ xSℓ(R), p
ℓ′(R′) ≤ xSℓ′ (R

′),
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and DSℓ(R)({L(R)}) ≥ DSℓ′ (R
′)({L(R′)}). Then, for each i ∈ Sℓ(R), f(R) stochas-

tically dominates f(R′) at Ri.

Let i ∈ Sℓ(R), xi ∈ M , and [yi, zi] = U(Ri, xi). We show that f(R)([yi, zi]) ≥
f(R′)([yi, zi]). Recall Fact 2.

Case 1. zi < L(R).

Then, for each x ≤ zi, f(R)({x}) = D∅({x}). Thus, f(R)([yi, zi]) = D∅([yi, zi]).

Since L(R) ≤ L(R′), it also follows that f(R′)([yi, zi]) = D∅([yi, zi]). Thus,

f(R)([yi, zi]) = f(R′)([yi, zi]).

Case 2. zi = L(R) and pℓ(R) ≤ xSℓ(R).

Then, for each x ≤ zi−1, f(R)({x}) = D∅({x}) and f(R)({zi}) = DSℓ(R)({zi}).
Thus, f(R)([yi, zi]) = D∅([yi, zi − 1]) +DSℓ(R)({zi}).

Subcase 2-1. L(R) < L(R′).

Then, f(R′)([yi, zi]) = D∅([yi, zi]). By (1-c) of Condition 1, DSℓ(R)({zi}) ≥
D∅({zi}). Thus, f(R)([yi, zi]) ≥ f(R′)([yi, zi]).

Subcase 2-2. L(R) = L(R′) and pℓ
′
(R′) ≤ xSℓ′ (R

′).

Then, f(R′)([yi, zi]) = D∅([yi, zi − 1]) + DSℓ′ (R
′)({zi}) . Since DSℓ(R)({zi}) ≥

DSℓ′ (R
′)({zi}) by (4-c), it follows that f(R)([yi, zi]) ≥ f(R′)([yi, zi]).

Case 3. zi > L(R) or [zi = L(R) and xSℓ(R) < pℓ(R)].

Then, for each x ≤ yi − 1, f(R)({x}) = D∅({x}), and for each x ≥ zi + 1,

f(R)({x}) = DN({x}). Thus, f(R)([yi, zi]) = 1−DN([zi+1,m])−D∅([1, yi−1]) =

DN([1, zi])−D∅([1, yi − 1]).

Subcase 3-1. zi < L(R′).

Then, f(R′)([yi, zi]) = D∅([yi, zi]). By (2) of Condition 1,DN([1, zi]) ≥ D∅([1, zi]).

This implies that f(R)([yi, zi]) = DN([1, zi]) − D∅([1, yi − 1]) ≥ D∅([1, zi]) −
D∅([1, yi − 1]) = f(R′)([yi, zi]).

Subcase 3-2. zi = L(R′) and pℓ
′
(R′) ≤ xSℓ′ (R

′).

Then, f(R′)([yi, zi]) = D∅([yi, zi − 1]) + DSℓ′ (R
′)({zi}). By (1-c) of Condition

1, DSℓ′ (R
′)({zi}) ≤ DN([1, zi]) − D∅([1, zi − 1]). This implies that f(R)([yi, zi]) =

DN([1, zi]) − D∅([1, yi − 1]) ≥ DSℓ′ (R
′)({zi}) + D∅([1, zi − 1]) − D∅([1, yi − 1]) =

D∅([yi, zi − 1]) +DSℓ′ (R
′)({zi}) = f(R′)([yi, zi]).

Subcase 3-3. zi > L(R′) or [zi = L(R′) and xSℓ′ (R
′) < pℓ

′
(R′)].

Then, f(R′)([yi, zi]) = DN([1, zi])−D∅([1, yi − 1]) = f(R)([yi, zi]).

Step 5 says that if one of the following (5-a), (5-b), and (5-c) holds, for each
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agent in Ŝℓ(R), f(R) stochastically dominates f(R′).

Step 5. Assume that (5-a) L(R′) < L(R), (5-b) L(R) = L(R′), xSℓ(R) ≥ pℓ(R),

and pℓ
′
(R′) > xSℓ′ (R

′), or (5-c) L(R) = L(R′), pℓ(R) ≤ xSℓ(R), p
ℓ′(R′) ≤ xSℓ′ (R

′),

and DSℓ(R)({L(R)}) ≤ DSℓ′ (R
′)({L(R′)}). Then, for each i ∈ Ŝℓ(R), f(R) stochas-

tically dominates f(R′) at Ri.

Let i ∈ Ŝℓ(R), xi ∈ M , and [yi, zi] = U(Ri, xi). We show that f(R)([yi, zi]) ≥
f(R′)([yi, zi]). Recall Fact 2.

Case 1. yi > L(R) + 1 or [yi = L(R) + 1 and xSℓ(R) < pℓ(R)].

Then, for each x ≥ yi, f(R)({x}) = DN({x}). Thus, f(R)([yi, zi]) = DN([yi, zi]).

Since L(R′) ≤ L(R), it also follows that f(R′)([yi, zi]) = DN([yi, zi]). Thus,

f(R)([yi, zi]) = f(R′)([yi, zi]).

Case 2. yi = L(R) + 1 and pℓ(R) ≤ xSℓ(R).

Then, for each x ≥ yi+1, f(R)({x}) = DN({x}) and f(R)({yi}) = DSℓ(R)({yi}).
Thus, f(R)([yi, zi]) = DSℓ(R)({yi}) +DN([yi + 1, zi]).

Subcase 2-1. L(R′) < L(R).

Then, f(R′)([yi, zi]) = DN([yi, zi]). By (1-c) of Condition 1, DSℓ(R)({yi− 1}) ≤
DN([1, yi−1])−D∅([1, yi−2]). This implies that DSℓ(R)({yi}) = 1−D∅([1, yi−2])−
DN([yi+1,m])−DSℓ(R)({yi−1}) ≥ DN({yi}). Thus, f(R)([yi, zi]) ≥ f(R′)([yi, zi]).

Subcase 2-2. L(R) = L(R′) and pℓ
′
(R′) ≤ xSℓ′ (R

′).

Then, f(R′)([yi, zi]) = DSℓ′ (R
′)({yi}) +DN([yi + 1, zi]). Note that DSℓ(R)({yi −

1, yi}) = DSℓ′ (R
′)({yi − 1, yi}). Since DSℓ(R)({yi − 1}) ≤ DSℓ′ (R

′)({yi − 1}) by (5-c),

it follows that DSℓ(R)({yi}) ≥ DSℓ′ (R
′)({yi}). Thus, f(R)([yi, zi]) ≥ f(R′)([yi, zi]).

Case 3. yi ≤ L(R).

Then, for each x ≤ yi − 1, f(R)({x}) = D∅({x}), and for each x ≥ zi + 1,

f(R)({x}) = DN({x}). Thus, f(R)([yi, zi]) = 1−DN([zi+1,m])−D∅([1, yi−1]) =

DN([1, zi])−D∅([1, yi − 1]).

Subcase 3-1. yi > L(R′) + 1 or [yi = L(R′) + 1 and xSℓ′ (R
′) < pℓ

′
(R′)].

Then, f(R′)([yi, zi]) = DN([yi, zi]). By (2) of Condition 1, DN([1, yi − 1]) ≥
D∅([1, yi − 1]). This implies that f(R)([yi, zi]) = DN([1, zi]) − D∅([1, yi − 1]) ≥
DN([1, zi])−DN([1, yi − 1]) = DN([yi, zi]) = f(R′)([yi, zi]).

Subcase 3-2. yi = L(R′) + 1 and pℓ
′
(R′) ≤ xSℓ′ (R

′).

Then, f(R′)([yi, zi]) = DSℓ′ (R
′)({yi})+DN([yi+1, zi]). By (1-c) of Condition 1,

D∅({yi−1}) ≤ DSℓ′ (R
′)({yi−1}). This implies that DSℓ′ (R

′)({yi}) = 1−D∅([1, yi−
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2])−DN([yi + 1,m])−DSℓ′ (R
′)({yi − 1}) ≤ 1−D∅([1, yi − 1])−DN([yi + 1,m]) =

DN([1, yi]) − D∅([1, yi − 1]). Thus, f(R)([yi, zi]) = DN([1, zi]) − D∅([1, yi − 1]) =

DN([1, yi])−D∅([1, yi − 1]) +DN([yi + 1, zi]) ≥ DSℓ′ (R
′)({yi}) +DN([yi + 1, zi]) =

f(R′)([yi, zi]).

Subcase 3-3. yi ≤ L(R′).

Then, f(R′)([yi, zi]) = DN([1, zi])−D∅([1, yi − 1]) = f(R)([yi, zi]).

In Step 6, we conclude that for at least one agent in group S, f(R) stochastically

dominates f(R′).

Step 6. There is i ∈ S such that f(R) stochastically dominates f(R′) at Ri.

Case 1. L(R) < L(R′) or [L(R) = L(R′), xSℓ(R) < pℓ(R), and pℓ
′
(R′) ≤ xSℓ′ (R

′)].

By Step 2-(a) or 3-(a), S ∩ Sℓ(R) ̸= ∅. Let i ∈ S ∩ Sℓ(R). Then, by Step 4,

f(R) stochastically dominates f(R′) at Ri.

Case 2. L(R′) < L(R) or [L(R) = L(R′), xSℓ(R) ≥ pℓ(R), and pℓ
′
(R′) > xSℓ′ (R

′)].

By Step 2-(b) or 3-(b), S ∩ Ŝℓ(R) ̸= ∅. Let i ∈ S ∩ Ŝℓ(R). Then, by Step 5,

f(R) stochastically dominates f(R′) at Ri.

Case 3. L(R) = L(R′), pℓ(R) ≤ xSℓ(R), and pℓ
′
(R′) ≤ xSℓ′ (R

′).

Note that S ∩ Sℓ(R) ̸= ∅ or S ∩ (N \ Sℓ(R)) ̸= ∅.
Subcase 3-1. S ∩ Sℓ(R) ̸= ∅ and S ∩ (N \ Sℓ(R)) ̸= ∅.
Let i ∈ S∩Sℓ(R) and j ∈ S∩(N\Sℓ(R)). IfDSℓ(R)({L(R)}) ≥ DSℓ′ (R

′)({L(R′)}),
then, by Step 4, f(R) stochastically dominates f(R′) at Ri. If DSℓ(R)({L(R)}) <
DSℓ′ (R

′)({L(R′)}), then, by Step 5, f(R) stochastically dominates f(R′) at Rj.

Subcase 3-2. S ∩ Sℓ(R) = ∅ and S ∩ (N \ Sℓ(R)) ̸= ∅.
Let i ∈ S ∩ (N \ Sℓ(R)). By Step 1-(a), Sℓ(R) ⊆ Sℓ′(R

′). Then, by (1-

d) of Condition 1, DSℓ(R)({L(R)}) ≤ DSℓ′ (R
′)({L(R′)}). Thus, by Step 5, f(R)

stochastically dominates f(R′) at Ri.

Subcase 3-3. S ∩ Sℓ(R) ̸= ∅ and S ∩ (N \ Sℓ(R)) = ∅.
Let i ∈ S ∩ Sℓ(R). By Step 1-(b), Sℓ(R) ⊇ Sℓ′(R

′). Then, by (1-d) of Condi-

tion 1, DSℓ(R)({L(R)}) ≥ DSℓ′ (R
′)({L(R′)}). Thus, by Step 4, f(R) stochastically

dominates f(R′) at Ri.

Case 4. L(R) = L(R′), pℓ(R) > xSℓ(R), and pℓ
′
(R′) > xSℓ′ (R

′).

Let i ∈ S. Because f(R) coincides with f(R′) (recall Fact 2-(b)), f(R) stochas-

tically dominates f(R′) at Ri.

�
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Appendix

Proof of Corollary 1. “Only if” part. Let f be a group strategy-proof, peak-

only, and anonymous rule. By Theorem 1, there are collections (xS)S⊆N in X
and D = (DS)S⊆N satisfying Condition 1 such that f is the fixed-probabilistic-

ballots rule associated with D. We show that D satisfies Condition 2. First, by

Corollary 4.1 in Ehlers, Peters, and Storcken (2002), anonymity implies that for

each S, S ′ ⊆ N with |S| = |S ′|, DS = DS′ .

Let k ∈ [0, n], Smin(k) ∈ argmin{xS : |S| = k}, and Smax(k) ∈ argmax{xS :

|S| = k}. Let S ⊆ N be such that |S| = k.

(1) Assume that xmin(k) = xmax(k). Let S ′ ⊆ N be such that |S ′| = k. Then,

by xmin(k) = xmax(k), xS = xS′ . Thus, by DS = DS′ , DS({xS}) = DS′({xS′}).
Thus, (1) of Condition 2 holds.

(2) Assume that xmin(k)+1 = xmax(k). Then, it follows from (1-a) of Condition

1, xmin(k) < xmax(k), andDS = DSmax(k) thatDS({xmin(k)}) = DSmax(k)({xmin(k)}) =
D∅({xmin(k)}). Similarly, it follows from (1-b) of Condition 1, xmin(k) + 1 <

xmax(k)+1, and DS = DSmin(k) that DS({xmax(k)+1}) = DSmin(k)({xmax(k)+1}) =
DN({xmax(k) + 1}).

(3) Assume that xmin(k) + 1 < xmax(k). Let x ∈ [xmin(k), xmax(k) − 1]. Then,

it follows from (1-a) of Condition 1, x ≤ xmax(k) − 1, and DS = DSmax(k) that

DS({x}) = DSmax(k)({x}) = D∅({x}). Let x = xmax(k). Then, it follows from (1-b)

of Condition 1, x ≥ xmin(k)+2, andDS = DSmin(k) thatDS({x}) = DSmin(k)({x}) =
DN({x}).

“If” part. Let (xS)S⊆N ∈ X and let D = (DS)S⊆N satisfy Conditions 1 and 2.

Let f be the fixed-probabilistic-ballots rule associated with D. Then, by Theorem

1, f is group strategy-proof and peak-only. Thus, we only show that f satisfies

anonymity. By Corollary 4.1 in Ehlers, Peters, and Storcken (2002), it suffices to

show that for each S, S ′ ⊆ N with |S| = |S ′|, DS = DS′ .

Let S, S ′ ⊆ N be such that |S| = |S ′|. Let k = |S|. By (1-a) of Condition

1, for each x < xmin(k), DS({x}) = D∅({x}) = DS′({x}). Similarly, by (1-b) of

Condition 1, for each x > xmax(k) + 1, DS({x}) = DN({x}) = DS′({x}). Thus, in
what follows, we show that for each x ∈ [xmin(k), xmax(k)+1], DS({x}) = DS′({x}).

Case 1. xmin(k) = xmax(k).

By (1) of Condition 2, DS({xS}) = DS′({xS′}). Since xS = xmin(k) = xS′ ,
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DS({xmin(k)}) = DS′({xmin(k)}). Thus, for each x ∈ M\{xmax(k)+1}, DS({x}) =
DS′({x}). This implies that DS({xmin(k) + 1}) = DS′({xmin(k) + 1}).

Case 2. xmin(k) + 1 = xmax(k).

Then, by (2) of Condition 2, DS({xmin(k)}) = D∅({xmin(k)}) = DS′({xmin(k)})
and DS({xmax(k)+1}) = DN({xmax(k)+1}) = DS′({xmax(k)+1}). Thus, for each
x ∈ M \ {xmax(k)}, DS({x}) = DS′({x}). This implies that DS({xmax(k)}) =

DS′({xmax(k)}).
Case 3. xmin(k) + 1 < xmax(k).

By (3-a) of Condition 2, for each x ∈ [xmin(k), xmax(k) − 1], DS({x}) =

D∅({x}) = DS′({x}) and DS({xmax(k)}) = DN({xmax(k)}) = DS′({xmax(k)})
Thus, for each x ∈ M \ {xmax(k) + 1}, DS({x}) = DS′({x}). This implies that

DS({xmax(k) + 1}) = DS′({xmax(k) + 1}).
�

Proof of Corollary 2. “Only if” part. Let f be a group strategy-proof and

unanimous rule. Then, by Proposition 5.2 in Ehlers, Peters, and Storcken (2002),

f is peak-only. Thus, by Theorem 1, there are collections X = (xS)S⊆N in X and

D = (DS)S⊆N satisfying Condition 1 such that f is the fixed-probabilistic-ballots

rule associated with D. For each S ⊆ N , let αS = DS({xS}). Let A = (αS)S⊆N .

Let S ⊆ N . Then, by (1-d) of Condition 1, for each S ′ ⊆ S, if xS′ = xS, αS′ =

DS′({xS′}) ≤ DS({xS}) = αS. By unanimity, α∅ = D∅({m}) = f(Rm
N )({m}) = 1

and αN = DN({1}) = f(R1
N)({1}) = 1. Finally, by (1-a) and (1-b) of Condition 1,

DS({xS, xS + 1}) = 1. Thus, DS({xS + 1}) = 1− αS. Hence, D = DX,A.

“If” part. Let (X,A) ∈ X × A. Let f be the fixed-probabilistic-ballots rule

associated with DX,A. We first show DX,A satisfies Condition 1. Let S ⊆ N and

x ∈ M . If x < xS, D
X,A
S ({x}) = 0 = DX,A

∅ ({x}). If x > xS + 1, DX,A
S ({x}) = 0 =

DX,A
N ({x}). For each S ′ ⊆ S, if xS′ = xS, D

X,A
S′ ({xS′}) = αS′ ≤ αS = DX,A

S ({xS}).
Thus, if xS = x∅, D

X,A
∅ ({xS}) ≤ DX,A

S ({xS}), and if xS < x∅, D
X,A
∅ ({xS}) = 0 ≤

DX,A
S ({xS}). Finally, since DX,A

N ([1, x]) = 1, DX,A
N ([1, x]) = 1 ≥ DX,A

∅ ([1, x]), and

by DX,A
∅ ([1, xS − 1]) = 0, DX,A

S ({xS}) ≤ 1 = DX,A
N ([1, xS]) − DX,A

∅ ([1, xS − 1]).

Thus, DX,A satisfies Condition 1. Then, by Theorem 1, f is group strategy-proof.

Let R ∈ RN and x ∈ M . Assume that for each i ∈ N , p(Ri) = x. Then, by

Fact 1, f(R)({x}) = DX,A
N ([1, x])−DX,A

∅ ([1, x− 1]) = 1. Thus, f is unanimous.

�
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Proof of Corollary 3. “Only if” part. Let f be a group strategy-proof, unani-

mous, and anonymous rule. Then, by Corollaries 1 and 2, there are X̂ = (x̂S)S⊆N

in X and Â = (α̂S)S⊆N in A such that f is the fixed-probabilistic-ballots rule

associated with DX̂,Â, and DX̂,Â = (DX̂,Â
S )S⊆N satisfies Condition 2.

First, suppose that there is k ∈ [0, n] such that x̂min(k) + 1 < x̂max(k). Let

S̄ ∈ argmin{x̂S : |S| = k}. Then, x̂S̄ = x̂min(k). By x̂min(k) + 1 < x̂max(k) ≤ m,

DX̂,Â
∅ ({x̂S̄, x̂S̄ + 1}) = 0. Thus, by (3) of Condition 2, DX̂,Â

S̄
({x̂S̄, x̂S̄ + 1}) =

DX̂,Â
∅ ({x̂S̄, x̂S̄+1}) = 0. However, by the definition of DX̂,Â

S̄
, DX̂,Â

S̄
({x̂S̄, x̂S̄+1}) =

1. This is a contradiction.

Thus, for each k ∈ [0, n], x̂min(k) = x̂max(k) or x̂min(k) + 1 = x̂max(k). For

each S ⊆ N , let xS = x̂max(|S|) and αS = DX̂,Â
S ({xS}). Let X = (xS)S⊆N and

A = (αS)S⊆N . Note that x∅ = x̂∅ = m, xN = x̂N = 1, α∅ = α̂∅ = 1, and

αN = α̂N = 1. Note also that for each k ∈ [1, n], x̂max(k) ≤ x̂max(k − 1). Thus,

X ∈ X .

Let S, S ′ ⊆ N be such that |S| = |S ′|. Then, xS = x̂max(|S|) = x̂max(|S ′|) = xS′ .

Let k = |S|. If x̂min(k) = x̂max(k), then, by (1) of Condition 2, αS = α̂S =

α̂S′ = αS′ . If x̂min(k) + 1 = x̂max(k), then it follows from DX̂,Â
∅ ({x̂min(k)}) = 0,

DX̂,Â
N ({x̂max(k) + 1}) = 0 , and (2) of Condition 2 that αS = 1 = αS′ . Thus, for

each S, S ′ ⊆ N with |S| = |S ′|, xS = xS′ and αS = αS′ .

Next, let S ⊆ N and S ′ ⊆ S be such that xS = xS′ . Let Ŝ ⊆ N be such

that |Ŝ| = |S| and x̂Ŝ = x̂max(|S|), and let Ŝ ′ ⊆ N be such that |Ŝ ′| = |S ′|
and x̂Ŝ′ = x̂max(|S ′|). Then, by |Ŝ| = |S| and |Ŝ ′| = |S ′|, αS = αŜ = α̂Ŝ and

αS′ = αŜ′ = α̂Ŝ′ . Also, by xS = xS′ , x̂Ŝ = x̂max(|S|) = xS = xS′ = x̂max(|S ′|) = x̂Ŝ′ .

Then, by Â ∈ A, α̂Ŝ ≥ α̂Ŝ′ . Hence, αS = α̂Ŝ ≥ α̂Ŝ′ = αS′ . Thus, A ∈ A.

Finally, because for each S ⊆ N , DX,A
S = DX̂,Â

S , f is the fixed-probabilistic-

ballots rule associated with DX,A.

“If” part. Let (X,A) ∈ X ×A be such that for each S, S ′ ⊆ N with |S| = |S ′|,
xS = xS′ and αS = αS′ . Let f be the fixed-probabilistic-ballots rule associated

with DX,A. Then, by Corollary 2, f is group strategy-proof and unanimous. Be-

cause DX,A satisfies Conditions 1 and 2, it also follows from Corollary 1 that f is

anonymous.

�

Proof of Fact 2. Let (xS)S⊆N ∈ X and let D = (DS)S⊆N satisfy Condition 1.
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Let f be the fixed-probabilistic-ballots rule associated with D. Let R ∈ RN and

x ∈ M . Let ℓ = ℓ∗(R). Then, pℓ(R) ≤ xSℓ−1(R) and xSℓ(R) < pℓ+1(R).

If ℓ′ < ℓ, then, pℓ(R) ≤ xSℓ−1(R) ≤ xSℓ′ (R), and so, for each y < pℓ(R),

DSℓ′ (R)({y}) = D∅({y}) and DSℓ′ (R)([1, y]) = D∅([1, y]). Thus, if for some ℓ′ < ℓ,

pℓ
′
(R) < x < pℓ

′+1(R), then, f(R)({x}) = DSℓ′ (R)({x}) = D∅({x}), and if for

some ℓ′ < ℓ, x = pℓ
′
(R), then, f(R)({x}) = DSℓ′ (R)([1, x])−DSℓ′−1(R)([1, x− 1]) =

D∅([1, x])−D∅([1, x− 1]) = D∅({x}). Hence, if x < pℓ(R), f(R)({x}) = D∅({x}).
If ℓ′ > ℓ, then, pℓ+1(R) > xSℓ(R) ≥ xSℓ′ (R), and so, for each y > pℓ+1(R),

DSℓ′ (R)({y}) = DN({y}) and DSℓ′ (R)([y,m]) = DN([y,m]). Thus, if for some ℓ′ > ℓ,

pℓ
′
(R) < x < pℓ

′+1(R), then, f(R)({x}) = DSℓ′ (R)({x}) = DN({x}), and if for some

ℓ′ > ℓ + 1, x = pℓ
′
(R), then, f(R)({x}) = DSℓ′ (R)([1, x]) − DSℓ′−1(R)([1, x − 1]) =

1−DSℓ′ (R)([x+1,m])− (1−DSℓ′−1(R)([x,m])) = DN({x}). Hence, if x > pℓ+1(R),

f(R)({x}) = DN({x}).
Now, assume that x = pℓ(R). If pℓ(R) ≤ xSℓ(R), f(R)({x}) = DSℓ(R)([1, x]) −

DSℓ−1(R)([1, x − 1]) = D∅([1, x − 1]) +DSℓ(R)({x}) −D∅([1, x − 1]) = DSℓ(R)({x}).
If pℓ(R) > xSℓ(R), f(R)({x}) = DSℓ(R)([1, x]) −DSℓ−1(R)([1, x − 1]) = DN([1, x]) −
D∅([1, x− 1]). Hence, by the definition of DSℓ(R),

f(R)({x}) =


D∅({x}) if x < xSℓ(R)

DSℓ(R)({x}) if x = xSℓ(R)

DN([1, x])−D∅([1, x− 1]) if x > xSℓ(R).

Next, assume that pℓ(R) < x < pℓ+1(R). Then, f(R)({x}) = DSℓ(R)({x}).
Hence, by the definition of DSℓ(R),

f(R)({x}) =



D∅({x}) if x < xSℓ(R)

DSℓ(R)({x}) if x = xSℓ(R)

DN([1, x])−D∅([1, x− 2])−DSℓ(R)({x− 1}) if x = xSℓ(R) + 1

DN({x}) if x > xSℓ(R) + 1.

Finally, assume that x = pℓ+1(R). Then, f(R)({x}) = DSℓ+1(R)([1, x]) −
DSℓ(R)([1, x − 1]) = DN([1, x]) − DSℓ(R)([1, x − 1]). Note that, by the definition

of DSℓ(R), if x = xSℓ(R) + 1, DSℓ(R)([1, x − 1]) = D∅([1, x − 2]) + DSℓ(R)({x − 1}),
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and if x > xSℓ(R) + 1, DSℓ(R)([1, x− 1]) = DN([1, x− 1]). Hence,

f(R)({x}) =

DN([1, x])−D∅([1, x− 2])−DSℓ(R)({x− 1}) if x = xSℓ(R) + 1

DN({x}) if x > xSℓ(R) + 1.

�
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