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Abstract

In this paper, we study the density forecasts of the affine term structure model (ATSM)
and the quadratic term structure model (QTSM) under the zero and negative interest rate
policy of Japan, besides considering macro-finance features. As both the two models can be
potentially misspecified, we adopt the optimal pooling prediction scheme following Geweke
and Amisano (2011). We find that the QTSM provides a more realistic statistical descrip-
tion when bond yields are close to the zero lower bound. The ATSM gives a good fit to
the macroeconomic variables and bond yields simultaneously, however, it predicts a large
probability of negative interest rates and hence is not appropriate for the forecasting of
bond yields. One should use a forecast combination of the two models for the prediction
of future bond yields during different time periods. Furthermore, we expand it in order to
examine the combination of dataset and models. According to the results, the ATSM with
the macro-finance feature defeats for forecasting of short term rate, whereas the QTSM
with the financial factors is superior for the long terms rate.
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1 Introduction

The Gaussian affine term structure model (ATSM) has been a popular choice in the model-
ing of yield curve given its analytical tractable bond pricing formula as well as the linear
dependence of the model-implied bond yields to the underlying factors or state variables (Pi-
azzesi, 2010). The model allows one to summarize the complex movements of bond yields
into a small number of factors while imposing the no-arbitrage restrictions among bond yields
with different maturities. Traditionally, these factors are regarded as latent and are usually
related to the first three principal components of bond yields, including the level, slope and
curvature factors. From an economic perspective, bond yields should interact closely with
the macroeconomy and it is very tempting to relate these factors driving bond yields to vari-
ous macroeconomic variables such as measures of inflation, real activity and monetary stance.
This exercise of linking bond yields to macroeconomic variables, called the macro-finance term
structure modeling, allows researchers to explain the movements in bond yields with a richer
economic interpretation and potentially improve the prediction of future bond yields by incor-
porating information beyond the bond market.

There have been large amount of literature that explore the role of macroeconomic vari-
ables in the arbitrage-free term structure modeling. Ang and Piazzesi (2003) employ two
measures of inflation and real activity and find that these macroeconomic factors explain up
to 85% of the time-series variation of bond yields. Diebold et al. (2006) study the dynamic
interaction between the macroeconomy and the yield curve. They find that macro variables
strongly affect future movements in the yield curve with a feedback from the yield curve to
the macroeconomy. Ang et al. (2006) explore the Taylor rule interpretation of a macro-finance
model by taking the inflation rate and output gap as the state variables. Li et al. (2012) ex-
tend the idea to model a time-varying Taylor rule by incorporating regime-dependent policy
response coefficients. Diebold and Rudebusch (2013) provide a succinct summary on the recent
development in term structure modeling with macro-finance features.

Despite its popularity in the macro-finance literature, there is one major shortcoming of
the Gaussian ATSM: its normal assumption predicts a large probability of negative interest
rates. It is noted that another class of ATSM built on the square root process (Cox et al.,
1985) is not suitable for macro-finance modeling because the state variables are positive by
construction. This is in contrast to the fact that most of the macroeconomic variables can take
negative values (e.g., inflation and output gap). This may be problematic for the prediction
of future bond yields when interest rates are very close to the zero lower bound or negative
interest rates, such as the cases of the Japanese government bond (JGB) yields since 1995 and
the US treasury yields after the financial crisis of 2008, plus the recent emergence of negative
interest rates in Japan and the euro zone. Against this background, an alternative is the
quadratic term structure model (QTSM) as advocated by Ahn et al. (2002) and Leippold and
Wu (2002), which allows one to has the extra flexibility to control the range of future interest
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rates by setting the short rate equation.
In this paper, we evaluate forecasting performance of factors including macroeconomic

variables for term structure of the zero coupon bond yields by building forecast combination
of the ATSM and QTSM. To do so, we adopt the pooling prediction of the future bond yields
(term structure) of the Gaussian ATSM and QTSM with macro-finance feature in which real
GDP gap or inflation incorporates into it as a factor. The contribution is three-fold. Firstly,
we compare the empirical performance of the two macro-finance term structure models under
the zero interest rate policy in the JGB market. To our knowledge, this is the first study
to compare the ATSM and the QTSM under the macro-finance setting across an extended
historical period including close-to-ZLB period and negative interest rate period. Secondly, we
attempt to derive a better forecast of the term structure by combining the advantages of the
two models on hand. Thirdly, we expand the forecast combination of the ATSM and the QTSM
to that of six models including three dataset characterized by sorts of factors. And we consider
what combination of factors and terms structure model realize best forecast.

We adopt two different novel approaches, with increasing complexity, in modeling the
weighting coefficient that pools the bond yield prediction densities of the two models. In par-
ticular, the later approaches, say dynamic prediction pool, with time-varying weighting coef-
ficient allows us to investigate the relative goodness in forecasting of the ATSM and QTSM
during different sample periods (Del Negro et al., 2016).

Our estimation results show that the QTSM dominates in its forecasting performance
when interest rates are close to zero, while the ATSM provides a better fitting of the bond
yields and macro factors simultaneously. It is worth to note that the ATSM predicts negative
interest rate with almost 40% to 50% of the probability when the JGB yields are close to zero
since late 1995. In addition, when moving to consider combination of sorts of factors and sort
of terms structure models, our results also show that the ATSM with macro-finance feature is
strong for forecasting of short term, while the QTSMs with both spread and real GDP gap are
superior for the long terms rate. In other word, macroeconomic variables, i.e., GDP gap and
inflation, include useful information on prediction of short term rate in spite of the presence
or absence of zero lower bound of interest rate. In contrast, the second moment of the factor,
especially curvature, included in the QTSM plays an important role on prediction of long term
interest rate.

The paper is structured as follows. Section 2 presents the ATSM and QTSM with factors
deciding variations of yields including macro-finance features and discusses the data and es-
timation procedure. In Section 3, we mention about empirical results of both term structure
model. Section 4 reviews forecast combination in terms of the methods of prediction pools.
Section 5 reports the estimation results and findings of forecast combination. Section 6 ex-
pand to forecast combination of six models in order to consider what factor should be used for
forecasting. Section 7 concludes.
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2 Macro-Finance Models

2.1 Setup

In this paper, we adopt a discrete time setting for the macro-finance term structure modeling.
All the data used in this paper are quarterly and hence we can interpret one period to be
one quarter. The key ingredient in the macro-finance term stucture modeling is the linkage
between the short-rate rt and the Gaussian state vector Xt taking values in RM as

rt = φ (Xt) ,

Xt+1 = µQ + ΦQXt + Σεt+1,

with εt ∼ N (0, IM×M ), µQ is a M × 1 vector and ΦQ is a M × M matrix. The notation Q

denotes the risk-neutral probability measure. Without much loss of generality, we can specify
the market price of risk as

λt = λ0 + λ1Xt,

where λ0 is a M × 1 vector and λ1 is a M ×M matrix. Hence, the real-world dynamics of the
state vector is given by

Xt+1 = µP + ΦPXt + Σεt+1,

with
µQ = µP − Σλ0, ΦQ = ΦP − Σλ1,

where P denotes the real-world measure (Wright, 2011; Ang et al., 2011). The corresponding
pricing kernel has the form

ξt+1 = exp

(
−rt +

1

2
λTt λt − λTt εt+1

)
ξt,

and the time−t price of a n-period zero-coupon bond can be formulated as

Pnt = EPt
[
ξt+1P

n−1
t

]
= EQt

[
exp

(
−
n−1∑
i=0

rt+i

)]
.

We can also compute the n-period bond yield as

ynt = − 1

n
logPnt .

Under the ATSM or the QTSM specification of the short rate function rt = φ (Xt), it is possible
to derive the bond pricing formula in terms of a recursive relationship. In continuous-time
modeling, this corresponds to a system of ordinary differential equation that determines the
bond prices. We refer the readers to Piazzesi (2010) for continuous-time affine model and Ahn
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et al. (2002) for continuous-time quadratic Gaussian model.

2.2 Affine term structure model

The Gaussian ATSM is specified as

rt = δ0 + δT1 Xt, (1)

i.e., the one-period short rate is a linear function to the selected macroeconomic state variables.
As the state variable Xt is Gaussian, there is no guarantee that the short rate is non-negative.

The bond pricing formula follows from Duffie and Kan (1996) as

Pnt = exp
(
An +BT

nXt

)
, (2)

where An is a scalar and Bn is a M × 1 vector satisfying the recursive relationship

An = −δ0 +An−1 +BT
n−1µ

Q +
1

2
Bn−1ΣΣTBT

n−1,

BT
n = −δT1 + ΦQBT

n−1, (3)

for n = 1, 2, ..., N with A1 = −δ0 and B1 = −δ1. As a result, the model-implied bond yield is a
linear function to the state variable Xt as

ynt = − 1

n
logPnt = an + bTnXt, (4)

by taking an = −An/n and bn = −Bn/n as the factor loadings.
Finally, we discuss about what factors are used as state variables Xt. A standard ATSM

consists of three fundamental factors of yields such as level, slope and curvature, i.e., Xt =

(ft, st, ct), whose definitions are explained in Section 2.5. However, according to many empir-
ical studies using a principal component approach (e.g., Litterman and Scheinkman, 1991),
both factors of the level and the slope must account for more than 90-95% of variations of
yields, whereas the explaining power of the curvature is less than 4%. Accordingly, these fac-
tors including the third factor are evaluated in Section 6. Instead, we replace the curvature
with GDP gap, gt, as the third factor, i.e., Xt = (ft, st, gt), and consider the forecast combina-
tion of the ATSM and the QTSM based on these factors from the next section to Section 5. In
section 6, since we turn to consider what factors should be used, we also introduce the other
three factors based on an macro-finance approach. A typical example in the macro-finance
ATSM is to choose the base interest rate ft, output gap gt and inflation rate πt as the state
variables such that Xt = (ft, gt, πt) and

rt = δ0 + δ1,1ft + δ1,2gt + δ1,3πt, (5)
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in which δ1,2 and δ1,3 can consist of the coefficients of the policy reaction function under the
Taylor rule when we take

rt = α+ β(πt − π∗) + γgt + (ft − πt),

where π∗ denotes inflation target, β is requested to over one to keep an economy stable accord-
ing to the Taylor principle, and (ft − πt) represents real rate obtained from physical capital.
Accordingly, we have δ0 = α − βπ∗, δ1,1 = 1, δ1,2 = γ, and δ1,3 = β − 1 > 0 based on the
contemporary theory of monetary policy.

2.3 Quadratic term structure model

For the general QTSM, the short-rate function is specified as

rt = α0 + βT0 Xt +XT
t Ψ0Xt, (6)

i.e., the one-period short rate is a quadratic function to the selected macroeconomic state vari-
ables.

The n-period zero coupon bond price can be formulated as

Pnt = exp
(
An +BT

nXt +XT
t CnXt

)
, (7)

where An is a scalar, Bn is a M × 1 vector and Cn is a M ×M matrix satisfying the recursive
relationship

An = −α0 +An−1 +BT
n−1µ

Q + µTCn−1µ
Q − 1

2
det
(
I− 2ΣTCn−1Σ

)
+

1

2

(
ΣTBn−1 + 2ΣTCn−1µ

Q
)T (

I− 2ΣTCn−1Σ
)−1 (

ΣTBn−1 + 2ΣTCn−1µ
)
,

BT
n = −βT0 +BT

n−1Φ
Q + 2µCn−1Φ

Q

+2
(
ΣTBn−1 + 2ΣTCn−1µ

)T (
I− 2ΣTCn−1Σ

)−1
ΣTCn−1Φ

Q,

Cn = −Ψ0 +
(
ΦQ
)T
Cn−1Φ

Q + 2
(
ΣTCn−1Φ

Q
)T (

I− 2ΣTCn−1Σ
)−1 (

ΣTCn−1Φ
Q
)
, (8)

for n = 1, 2, ..., N with A1 = −α0, B1 = −β0 and C1 = −Ψ0. As a result, the model-implied bond
yield can be expressed as

ynt = − 1

n
logPnt = an + bTnXt +XT

t cnXt (9)

by taking an = −An/n, bn = −Bn/n and cn = −Cn/n as the factor loadings.
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2.4 Estimation method

Given the bond pricing formula that relates the model-implied bond yields to the selected
macro variables, we can formulate our estimation procedure in terms of a non-linear state-
space model as follows:

• Measurement Equation

The measurement equation describes the evolution of the observed bond yields ŷnt as

ŷnt = an + bTnXt +XT
t cnXt + ωn,t, (10)

with n = 1, 2, ..., N and ωn,t are the measurement errors which are i.i.d. normals. More-
over, we assume the selected macro variables are observed with measurement errors
ωX,t:

X̂t = Xt + ωX,t, (11)

where X̂t is the observed macro variables and ωX,t are i.i.d. normals.

• State Equation

The state equation is given by the evolution of the latent state vector Xt under the real-
world measure P as

Xt+1 = µP + ΦPXt + Σεt+1, (12)

which is a standard VAR(1) system.

Therefore, (10), (11) and (12) together form a non-linearity state space model with 9 observ-
ables (6 observed bond yields and 3 macro variables) and 3 latent factors. The Appendix
present the Bayesian MCMC method to estimate the model parameters. To this end, it is im-
portant to calibrate the size of the measurement errors for macro variables and bond yields.
After a number of trial runs, we set the measurement errors to be 2.5 bps for our quarterly
data which can be translated to 10 bps for annualized data. For a fair comparison of the two
models, we do not constraint the QTSM to produce non-negative yields.

2.5 Data

In this paper, we calculate zero coupon yields from the data for the JGB market during the
sample period from 1985:Q1 to 2016:Q1 using the method proposed by Kikuchi and Shintani
(2012). To keep the consistency with previous empirical studies, we use the JGB yields of the
2, 4, 12, 20, 32 and 40 quarters, (or 0.5, 1, 3, 5, 8 and 10 years). These time series are depicted
in Figure 1 (a).

And data of factors is obtained as follows. As monetary policy stance, the overnight call
rate is obtained from the Bank of Japan (BOJ). The real GDP gaps are derived from difference
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between real GDP reported in the Cabinet Office, Government of Japan and potential GDP
reported in the BOJ. Log first difference of Consumer Price Index (CPI) is adopted as inflation.
The spread (or slope) is difference between yields of 2 and 40 quarter. The curvature is derived
from discrepancy of two slopes in three points of yields curve, i.e.,

ct = (y
(20)
t − y(2)t )− (y

(40)
t − y(20)).

These series are drawn in Figure 1 (b). From Section 3 to Section 5, we adopt the dataset of
factors consisting of three series, say the policy rate, the spread and the real GDP gap. On
the other hand, in Section 6, we expand it to three kinds of the datasets in order to verify
which factors perform better prediction of yields. Additional two datasets are (1) fundamental
factors of yields curve such as level, slope and curvature the first two of which are the policy
rate,and the spread, and (2) macro-finance factors, say the policy rate, the GDP gap and CPI
inflation.

To better understand the data and the estimation results, let us take a brief review on the
BOJ’s monetary policy. The BOJ started to ease the base interest rate (the uncollateralized
overnight call rate) in the early 1990s, which is subsequently lowered down to 0.5 percent and
0.25 percent in 1995:Q4 and 1998:Q4 respectively. To further simulate the economy, the BOJ
adopted the zero interest rate policy (ZIRP) during the period from 1999:Q1 to 2000:Q3 by
keeping the base interest rate effectively to zero. After a short-term recovery in early 2000s,
the Japan economy went back to a recession against the background of the internet bubble,
which led to the introduction of the quantitative monetary easing policy (QMEP) in order to
combat deflationary pressure. Since then, the Japanese base interest rate has been kept very
close to the zero lower bound.1

In July 2006, the BOJ released the ZIRP because of recovery of economic activity shown
as an increase in real GDP gap following a rise of CPI inflation drawn in Panel (b). The BOJ,
however, attributed return of the ZIRP to Lehman Brother’s collapse occurred in September
2008. In April 2013, the replacement of the governor of the BOJ drastically changed mon-
etary policy to one referred to as quantitative-qualitative easing policy (QQE) in which the
operation target was replaced the call rate with monetary base, and the monetary base was
quantitatively increased to nearly double amount. In spite of unconventional policy such as
the QQE, breakaway from deflation has never been achieved, so that it brought its policy to
the negative interest rate policy whose target is set to around -0.1% in Jan 2016.

[ Insert Figures 1 around here ]

1Baba (2006) provides a comprehensive review of the Bank of Japan monetary policy and the JGB market
development over the sample period.
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3 Density Forcasts of Two Models

3.1 Model estimation

First-of-all, we look at three factors such as policy rate, spread and real GDP gap, and bond
yields to investigate the goodness-of-fit of the Gaussian ATSM and QTSM. Table 1 reports the
summary statistics of the posterior estimations of the ATSM parameters, while Table 2 reports
the corresponding results for the QTSM which imposes a quadratic mapping in between bond
yields and macro factors. These estimations are obtained by 30,000 draws of MCMC samplings
after discarding the first 10,000 burn-in draws based on the Bayesian methods described in
the Appendix. Figures 2 and 3 show the filtered factors and the fitted bond yields of the both
models, respectively. Panel (a) shows the ATSM, while Panel (b) shows the QTSM. The dashed
black line and the solid red lines represent actual values and fitted values, respectively. In
Figure 3, the dashed blue line represents degree of pricing errors (or discrepancy between
them), and the shaded grey band represents 90% confidence interval of the distribution. It
can be seen that the three factors track quite closely to the actual data and the fitting of the
bond yields are reasonably good across maturities.

As can be seen from Figure 2 (a), ATSM is adequate to jointly model the dynamics in bond
yields and macro factors. Nevertheless, it is noted that the model-implied bond yields often
bleach the zero lower bound and become negative during the sample periods after late 1995
in Figure 3 (a). This generates notable degree of pricing errors when the actual short-term
bond yields are effectively zero. Meanwhile, the filtered policy rate and spread factors of the
QTSM as shown in Figure 2 (b) also track closely to the actual data, however, there is a small
deviation of the GDP gap factor. The latter case indicates that the enforced quadratic mapping
in the macro-finance QTSM can be potentially misspecified.

Figure 4 depicts actual and estimated yields curve of the ATSM and the QTSM at specified
six points including both of non-zero (1991:Q1, 1996:Q1), zero interest rate policy periods
(2001:Q1, 2006:Q1, 2011:Q1) and the negative interest rate policy periods (2016:Q1). These
graphs indicate goodness of fit in terms of cross section aspect of time series of term structure
of Figure 3. In contrast to the ATSM which produces a large amount of probability of negative
interest rates, the model-implied bond yields of QTSM tend to be positive. Hence, the QTSM
is able to produce a much better fit to the actual short-term bond yields near the zero lower
bound. Figure 4 (b) draws a counterpart of the QTSM for the yields curve of the ATSM in
Figure 4 (a). It is noteworthy that both of the ATSM and the QTSM successfully estimate
even yields curve of the negative interest rate period as shown in the bottom right graphs of
Panels (a) and (b).

[ Table 3 around here ]
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[ Insert Figures 2, 3 and 4 around here ]

[ Insert Table 1 and 2 around here ]

To understand how the term structure model predicts the responses of bond yields to shocks
in the underlying macro variables (i.e., impulse response), it is important to take a closer
look at the estimated factor loadings. Figure 5 reports the factor loadings of the estimated
Gaussian ATSM and QTSM. The dashed red line of Panel (a) shows the factor loadings of the
estimated Gaussian ATSM using the recursive relationship (3) and the posterior means under
Q-measure in Table 1. Meanwhile, the solid blue line shows the factor loadings of linear terms
of the estimated QTSM using the recursive relationship (8) and the posterior means under
Q-measure in Table2. In Panel (b), the solid blue lines show 6 loadings through the quadratic
terms of the QTSM: c11, c22, c33,c12,c13, c23. 2

Now, we focus on results of the ATSM. Because the short-term interest rate is taken as one
of the state variables, we can impose the initial loading of the spread and output factors: δ1,2
and δ1,3 at Eq.(5), to be zero as in Ang et al. (2011). For the ATSM, we see that the output and
inflation loadings: b2 and b3, are positive for all maturities, which is consistent with the Taylor
rule specification. For example, a positive shock to output gap induces an upward shift up to
10 Quarters, and a steepening of the yield curve, which is consistent with the view that the
slope of yield curve is highly related to economic outlook (Diebold and Rudebusch, 2013). As
expected, the loading to the policy rate: b1, is less than one and hence the transmission effect
of the short-term interest rate to the long-end of the yield curve is imperfect as can be seen
from Figures 3 and 4.

We turn to those of the QTSM. To keep consistency with the setting of ATSM, we set the
initial loadings to the output and spread factors: Φ22 andΦ33, and other off-diagonal elements
in Eq.(6), to zero as shown in Figure 5 (b). Firstly, it is worth to take a look at the diagonal
elements of the factor loading cn, which captures most of the variation in the yield curve.
As expected, the loading to the quadratic terms of the inflation and output factors: c22 and
c33, are positive, indicating that investor demands a higher bond yields when spread and
output uncertainty are high as shown in Figure 5(b). Moreover, the QTSM allows a flexible
interaction in between different factors through the cross terms (i.e., the off-diagonal elements
in the factor loading cn). Diebold and Rudebusch (2013) note that the negative interaction in
between factors are important to model interest rates near the zero lower bound. In our case,
the factor loadings for the cross terms of (ft, gt) and (gt, st) : c13 and c23, are estimated to be
negative, which reflect the high flexibility of the QTSM in relating bond yields to the selected
macro factors. We argue that it is the negative loadings of the cross terms that generate the
off-setting effects such that the QTSM is able to capture the persistent and sticky short-term

2Note that the factor loading cn is symmetric by construction. Accordingly, c12 = c21, c13 = c31, and c23 = c32.
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bond yields under the ZIRP, e.g., see the fitting of the 2Q yield in Figure 3 (b).

[ Insert Figure 5 around here ]

3.2 Density Forecasts of macro factors and bond yields

Before analyzing the optimal prediction pool, we calculate the posterior prediction distribu-
tions of the three factors and the JGB yields of the two models as described in Section 2, using
10,000 draws of posterior estimates over the full sample as shown in Table 1 and 2, as well as
generating 10,000 draws of shocks εt. Here, we briefly describe calculation of predictive den-
sities of the factors and yields. First, we conduct sampling of h-step-ahead factors, Xt+h, from
the state equation Eq.(12) with draws of posterior estimates and from 1-step-ahead shocks to
h-step-ahead shocks. Next, we sample h-step-ahead yields, ynt+h, from the measurement equa-
tion, Eq. (10), using new draws of h-step-ahead factors, Xt+h. The sampling is regarded as
their predictive densities.

Figure 6 (a) shows the ATSM prediction of the JGB yield curve across 6 maturities for the
following forecasting periods: 1988:Q1 – 1998:Q1, while Figure 6 (b) shows the QTSM predic-
tion. The solid black line represents actual values, the solid red line represents the median
of posterior prediction distributions and the shaded blue band represents 90% confidence in-
terval of the distribution. In the period of 1992Q4 - 1998Q1, in which monetary policy has
not stand under ZIRP yet, the bond yields are quite far away from the zero lower bound as
in Figure 6(a). Although the median forecast fits well to the actual data, the ATSM predicts
negative bond yields when the forecasting horizon is beyond 4 to 8 quarters. For the in-sample
prediction in 1988:Q1 - 1998Q1 in Panel (b), the QTSM produces a less accurate forecast as
with the ATSM model as in Panel (a).

Similar to Figure 6, Figure 7 shows the both model prediction for the forecasting periods:
2008:Q1 – 2016:Q1. When the Bank of Japan adopted the ZIRP and the QMEP in 2008:Q4,
the prediction of bond yields by the ATSM is even more unrealistic: as the short-term bond
yields are close to the zero lower bound, the model predicts with almost half of the probability
that the bond yields are negative as in Panel (a). Even for the 20Q (5-year) bond yield, there
is a substantial probability of bleaching the zero lower bound when the forecasting horizon is
beyond 4 quarters. This reflects that the Gaussian ATSM is very unreliable for the prediction
of bond yields when interest rates are close to zero. In contrast, as can be seen from Panel (b),
the prediction density of the QTSM is positively skewed because the bond yields are bounded
below by zero due to the imposition of non-negative short rate in QTSM. The strength of
the QTSM is found to be prominent during the period of 2008:Q1 – 2016:Q1 when the zero
lower bound is binding: the prediction produces only positive bond yields even though the
short-term interest rate is extremely close to zero as in Panel (b). From the fan chart of the
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QTSM predictive density, we can observe that the probability mass near zero is significant
even for mediam-term to long-term forecasting horizons. This reflects the stickiness nature
of the QTSM which allows one to capture the persistence of the zero interest rate policy (Kim
and Singleton, 2012).

[ Insert Figures 6 and 7 around here ]

4 Methods of Prediction Pool

4.1 Predictive Scores

From a Bayesian perspective, the marginal likelihood is commonly used as a criterion of model
choice, since it is interpreted as the predictive density of a model obtained by integrating with
respect to the prior density of the model parameters Θ. A model with the highest predictive
density is thought to be the best model explaining behaviors of observations based on infor-
mation on the whole data. Let us denote a vector of future observations as yt+h, where h is
h-step-ahead forecast, and its history as Y o

t = {yg, ..., yt}, where g ≤ 1 is the starting date and
the superscript “o” denotes the observed data. The predictive density of a model with respect
to the prior of parameters Θ is defined as

pPrior
(
yft+h − y

o
t+h|Y o

t ,M
)
≡
∫

p
(
yft+h − y

o
t+h|Y o

t , Θ,Σ,M
)
p(Θ|M)p(Σ)dΘdΣ,

where yft+h, and yot+h are forecasted and observed values in period t + h, respectively, and
the difference between them is their forecasting errors εt+h. Σ is a covariance matrix of the
forecasting errors, εt+h, andM is a prediction model. p (εt+h|Yt, Θ,Σ,M), and p(Θ|M) denote
the likelihood function and the prior density of Θ of a prediction modelM, respectively. When
we set h = 1, then the density is regarded as the marginal likelihood. When by replacing the
prior density with the posterior density above predictive density as noted by Geweke (2010),
it can be redefined as a posterior predictive density, say

pPost
(
yft+h − y

o
t+h |Y o

t ,M
)
≡
∫

p
(
yft+h − y

o
t+h |Y o

t , Θ,Σ,M
)
p(Θ |Y o

t ,M)dΘdΣ,

where p(Θ|Yt,M) is the posterior density of Θ conditional on history of observations until pe-
riod t, Y O

t , and a model, M. Following Geweke and Amisano (2011), we use the posterior
predictive density in order to construct a predictive score for evaluating the forecasting perfor-
mances of a single prediction model and of a convex combination of multiple prediction models
with the optimal model weights. We define the predictive score of a modelM, p(yft+h ; Y o

t ,M),
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for h-step-ahead forecast as

p(yft+h ; Y o
t ,M) ≡ pPost.3

(
yft+h − y

o
t+h |Y o

t ,M
)
, (13)

and regard it as the key element of the following prediction pooling methods.

4.2 Static prediction pool

Geweke and Amisano (2011) propose forecasting combination using the predictive score. Since
they assume model weights are constant over sample period, it is referred to as the static pre-
diction pool. Let us redefine M as the collection of competing multiple models, e.g., M =

(M1,M2). Given two prediction models,M1 andM2, and constant model weights, the predic-
tive score for h-step-ahead forecast can be constructed as the convex combination of predictive
scores of competing models,

pSP
(
yft+h; Y o

t ,M
)
≡ λ p

(
yft+h; Y o

t ,M1

)
+ (1− λ) p

(
yft+h; Y o

t ,M2

)
, (14)

where λ ∈ (0, 1) and 1 − λ are constant values indicating model weights in favor of M1 and
M2, respectively. The optimal prediction pool is then obtained by maximizing the cumulative
log predictive score, LPSSP , for the whole prediction periods as

LPSSP (λ, h) ≡
T∑
t=1

log
[
λp
(
yft+h; Y o

t ,M1

)
+ (1− λ) p

(
yft+h; Y o

t ,M2

)]
, (15)

by choosing λ∗ = arg max LPSSP (λ, h). In our study, we generate a predictive density of
macroeconomic observations based on each of the two DSGE models described in Section 2
from posterior estimations of their model parameters.

4.3 Dynamic prediction pool

We also adopt another pool method with time-varying model weight, say dynamic prediction
pool method proposed by Del Negro et al. (2016). In the dynamic prediction pool method,
time-varying weights follow continuous values between zero and one by incorporating probit
model. The dynamic model consists of the following two equations,

λt = Φ (xt) , (16)

xt = (1− ρ)µ− ρxt−1 +
√

1− ρ2 σ εt, x0 ∼ N(µ, σ2),

where λt ∈ [0, 1] is a model weight at period t, and xt is a latent variable indicating an input
of a probit transformation and following an AR(1) process. ρ is the autocorrelation coefficient.
Φ(·) is the cumulative density function of the standard normal distribution, the disturbance
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term follows εt ∼ N (0, 1) and x0 is the initial value of xt. The autocorrelation coefficient ρ
captures how smoothly the weighting coefficient can change over time. The closer ρ is to one,
the more slowly the model weights, λt , change over time. When ρ = 1, the model reduces to
the case of static prediction pooling in Geweke and Amisano (2011) by taking λt = λ. When
ρ = 0, it indicates that λt is serially-independent and follows a random walk. µ is the mean
of the unconditional distribution of the model weights, and σ is the variance of xt, the large
value of which makes the model weights fluctuate drastically. From these equations, we obtain
conditional expectations and variances of the latent variables for h-step-ahead forecast, xt+h,

E(xt+h|xt) = ρhxt + (1− ρ)µ

h−1∑
i=0

ρi, (17)

V ar(xt+h|xt) = (1− ρ2)σ2
h−1∑
i=0

ρ2i,

where both conditional values converge to unconditional values, E(xt+h) = µ, and V ar(xt+h) =

σ2, when h → ∞. And coefficient µ and variance σ2 of the initial value of latent variable are
also equivalent to the unconditional values.

This study examines two versions of the above model following Del Negro et al (2014). The
one is set as µ = 0 and σ2 = 1. µ = 0 indicates that unconditional expectation of model weight
is 0.5, Φ(0) = 0.5, since unconditional expectation of weight is assumed to equivalent between
both models. And setting σ2 = 1 comes from assumption of the latent variable in probit model.
Accordingly, we only estimate a coefficient ρ in this version. The second set three parameters
freely and estimate them.

We obtain the dynamic prediction pooling of the log predictive score as

LPSDP (λt+h, h) ≡
T∑
t=1

log
[
λt+h p

(
yft+h; Y o

t ,M1

)
+ (1− λt+h) p

(
yft+h; Y o

t ,M2

)]
. (18)

We adopt a particle filter for coping with a nonlinear model such as a probit model, and in-
corporate the nonlinear filtering method into a Bayesian estimation with MCMC procedure,
following Del Negro at el. (2016). We set number of particles of the filter as 5,000 and calcu-
late approximate values of log predictive scores defines as Eq. (18). And we conduct 10,000
iterations as the MCMC procedure and discard the first 5,000 draws as burn-in3.

3We code the algorithm of a particle filter following Johanness and Polson (2009). And A joint of the MCMC
procedure and the partile filter in our study is also following Andrieu et al. (2010).
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4.4 Estimation methodology of pooling methods

In order to estimate and compare the predictive scores of individual prediction models, say
two term structure models, and the pooling methods, we adopt a Bayesian approach with the
Markov Chain Monte Carlo (MCMC) method for the static and the dynamic prediction pool
methods.

Although Waggoner and Zha (2012) simultaneously estimated two macroeconomic models
and the pool method, the simultaneous estimation of the model parameters, Θ, under a regime
sustaining only for a short period is thought to have only a low level of accuracy. This is
because a regime generated in every MCMC iteration of a pooling method is different from
that of the previous iteration, and a different regime period expands variations of drawing Θ

in the step of MCMC iteration in the term structure model. By adopting a two-step procedure
following Geweke and Amisano (2011) and Del Negro et al. (2016), we can avoid generating
instability in the model parameters, Θ, estimated based on different regime periods.

The two-step procedure for the dynamic pool is described as below.

Step 1. Make density forecasts of the term structure models.

• The posterior estimates of parameters, p(Θ|Y o
t−1,Mi), under the term structure

models, Mi, for i = 1, · · · , n, are obtained for the full sample period, using the MCMC
method.

• We compute the predictive densities and predictive scores of obserbations, p(yft+h|Y
o
t ,Θ,M),

from sampling of p(Θ|Y o
t−1,Mi) of each DSGE model,Mi, by Monte Carlo simulation

technique.

Step 2. Make the optimal combination of density forecasts.

• We calculate the optimal combination of the log scores of the term structure models
obtained in the previous step, using parameters of pooling methods drawn from the
Gibbs sampling method with particle filter.

5 Empirical Results

5.1 Prediction Score

In this section, we explore the combination of the ATSM and QTSM in the prediction of bond
yields using the optimal prediction pooling as described in the last Section. To begin, it is
useful to look at the comparison of the predictive densities of the two individual models based
on the log-score criteria. While we have performed the comparison using both one-quarter-
ahead (h = 1) and four-quarter-ahead forecasts (h = 4), we only report the charts of four-
quarter-ahead forecasts for exposition purpose. Panel (a) of Figure 8 shows two lines indicating
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log scores of forecasting all six yields by each of the two term structure models, calculated from
Eq.(13). The scores of the ATSM (dashed red line) dominates those of the QTSM (solid blue
line) for the sampling period from 1985:Q1 - 1995:Q4 (before entering zero interest rate policy),
while the QTSM dominates the ATSM when the JGB bond yields are close to zero percent rate
since 1996Q1. Panel (b) of Figure 8 also shows log scores of forecasting but focusing on single
yields from 0.5 years maturity to 10 years maturity. Left hand side of Table 3 represents
sum of log scores of both models overall period. In terms of the whole period, forecasting
performance of the ATSM is overwhelmingly superior to that of the QTSM, since the former
is around 3,660 against 3,584 for the latter.

These results, however, suggest that one can potentially improve the predictive density by
combining appropriately the two models which appear to perform better in different sample
periods. In other words, they capture different properties of the movements of bond yields
and their interaction with the macroeconomy. To fix idea, recall that in Section 4 that we
are looking at the log-score function: LPS(yt;Yt−1,Pool), that is a convex combination of the
prediction density at the time-t observation of the ATSM and QTSM as

LPS(yt;Yt−1,Pool) ≡ log
[
λtp
(
yOt ;Y O

t−1,ΘQTSM

)
+ (1− λt) p

(
yOt ;Y O

t−1,ΘATSM

)]
,

in which we take λt as the weighting assigned to the QTSM while 1 − λt as the weighting
assigned to the ATSM, and ΘQTSM and ΘATSM are the posterior estimates of the QTSM and
ATSM parameters over the full sample period, respectively. As noted in Waggoner and Zha
(2012), we can take the estimated paramters for both models as given before we pool the
models. Then, we compute the prediction scores as

p(yOt ;Y O
t−1,M1) ≡ p

(
yOt ;Y O

t−1,ΘQTSM

)
,

p(yOt ;Y O
t−1,M2) ≡ p

(
yOt ;Y O

t−1,ΘATSM

)
,

in order to evaluate the log-score criteria. This two-step procedure significantly reduces the
computational burden.

[ Table 3 around here ]

[ Insert Figures 8 around here ]

5.2 Static pool

Table 4 reports the posterior estimates of weighting coefficient λ for the static pooling scheme
as Eq.(15). This coefficient is estimated with MCMC simulation and obtained from 50,000
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MCMC draws after discarding the first 20,000 draws as burn-in. For the four-quarter-ahead
forecast, the posterior distribution of λ is skewed to the right, indicating that the parameter
restriction of λ ≥ 0 is binding and one should over-weight the ATSM model and under-weight
the QTSM. Table 4 (a) shows the posterior mean of the constant weighting coefficient in favor
of the QTSM as around 11% for the four-quarter-ahead forecast. However, focusing on the
period of the zero interest rate policy after 2000:Q1, the constant model weight on the QTSM
goes up to 48% and balances with the counterpart as Panel (b).

We also compute the simulation inefficiency statistics as in Kim et al. (1998) represented
in the seventh column of Table 4. According to the statistics, samples of 30,000 draws might
be sufficient iterations of simulations to obtain the posterior estimates of model weight λ.

[ Table 4 around here ]

5.3 Dynamic pool

Table 5 represents posterior estimates of two versions, say flexible one parameter and three
parameters, for the dynamic pooling scheme which imposes a smooth transition between the
two selected models as described in Eq.(18). And Figure 9 shows the posterior distributions
of time varying weight in favor of the QTSM, say, the forecast combination of all six yields of
one flexible parameter version in Panel (a) and that of three parameters version. Meanwhile
Panel (c) draws those of each of six yields of one flexible parameter version. The solid black
line denotes the posterior means, while the blue shaded area represents their 90% credible
interval. The red line denotes 50% model weight. The estimation is obtained from 5,000
draws of particle filter with constant autocorrelation coefficient ρ following Del Negro et al
(2016).

The sum of log score of the QTSM is defeated by the ATSM as Tabel 3. However, as can
be seen from Panel (a), the weighting to QTSM increases after 1995:Q1 and reachs to 50% in
1999:Q1 entering into the ZIRP. And then it keeps to balance by following dominance of the
ATSM afterwards in particular after 2011, although the weights of the QTSM model decline
as much as 10% before 1995. The case of three parameters version is also similar but swing
become wider and reach to 50% in 1996:Q1 earlier than the one parameter version as Panel
(b).

From Panel (C), weight of different yields does not seem to depend on different maturities.
In other word, for each yield the QTSM is generally defeated by the ATSM before1995. Be-
tween 1995 and 2010, performances of the both models countervail each other. After 2010, the
QTSM prevail the other.

However, the dispersion of the posterior distribution of λt appears to be large with the 90%
band fluctuating around 0.1 to 0.9 for the four-quarter-ahead forecasts. This indicates that the
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dynamic pooling scheme does not allow us to obtain a clear cut in between QTSM and ATSM.

[ Table 5 around here ]

[ Insert Figure 9 around here ]

5.4 Comparison

Lastly, let us compare the performance of different models and pooling schemes in terms of
the log score of prediction density. Table 3 summarizes the corresponding cumulative log score
performance for the four-quarter-ahead forecasts obtained from Eq.(13), Eq.(15) and Eq.(18).
Figure 10 shows the time series of the log score of the three pooling schemes as well as those
of the two individual models. As can be seen in Table 3, the dynamic pooling scheme with
three parameter version produces the best cumulative log score: this is because it allows one
to combine the ATSM and QTSM efficiently by switching from the ATSM before 1996:Q1 to the
QTSM after 1996:Q1 as depicted in Figure 9 (b). Interestingly, the static pooling scheme only
marginally improve the cumulative log-score performance for the four-quarter-ahead forecast,
although it may improve the prediction density in certain sub-sample periods. This suggests
that an appropriate pooling scheme is important for one to achieve an overall improvement
(in terms of the log-score criteria) in the prediction of future bond yields when models are
combined.

[ Insert Figure 10 around here ]

6 Extension to Dynamic Pool with Six Models

Up to the last section, we cling on to use only one dataset for three observable factors, say
the level, the slope and the real GDP gap, and consider the forecast combination of the ATSM
and the QTSM. Instead, we expand it to three datasets of the three observable factors, and
apply dynamic prediction pool to forecast combination of six models by combining one out of
three datasets with one out of the two term structure models. The expansion indicates that
we cannot only measure which model performs better forecasting for a certain period than
the other, but also measure which combination of dataset and model does for that period. In
addition, we evalute model weights of forecasts for single yields as well as those for total of six
yields. These empirical results show us what characteristic of different dataset affect different
maturities of term structure.
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To decide time-varying model weights corresponding to more than three models, instead
of using probit formation, Eq.(16), the dynamic pool is built as a new formation based on
Dirichlet distribution, Dir(•), as follows.

(λ1t, λ2t, · · · , λmt) = Dir( exp(st)λ1t−1, exp(st)λ2t−1, · · · , exp(st)λmt−1), (19)

st = (1− ρ)µ0 + ρst−1 +
√

1− ρ2 σ εt, εt ∼ N(0, 1),

where st is time-varying scale parameter which follows AR(1) process and controls variance of
time-varying model weights λit for i = 1, · · · , m. µ0 is unconditional expected value of scale
parameter st. As st become smaller, then the band of fluctuation of model weight become
wider. And the Dirichlet distribution constrains Σm

i=1λi,t = 1, and we additionally restrict
model weights to λit > 0.01 , since model weights in current period,λi,t−1, must become zero if
those of previous period,λi,t−1 are zero. In our case, six models are combined so that m = 6,
and the log predictive score of six models is derived as

LPSDP (λt+h, h) ≡
T∑
t=1

log
[
λ1,t+h p

(
yft+h; Y o

t ,M1

)
+ · · ·+ λm, t+hp

(
yft+h; Y o

t ,Mm

)]
. (20)

We conduct the particle filter for estimating optimal prediction in term of the log predictive
score, Eq. (20) with time varying model weight, Eq.(19). To do so, we set number of particle as
10,000 particles, and also fix paramters of Eq. (19) as µ0 = 1, ρ = 0.75 and σ = 1 .

The three datasets of the factors adopted in this section are (1) level, slope and curvature,
(2) level, slope and real GDP gap, and (3) level, real GDP gap and inflation. We refer to the
first dataset, the second one and the third one as ’Standard’, ’GDP gap’, and ’Macro Finance’,
respectively.

The dynamic model weights, λit, of the six models are drawn in Figure 11. Panel (a) of the
figure depicts the model weight of forecasting for all six yields. Panel (b) depicts the weight of
forecasting for single yield from 0.5 years to ten years in terms of maturities. As you see from
Panel (a), the QTSMs with dataset “GDP gap” (the deep blue shade area) and dataset “Stan-
dard” (the deep green shade area) tend to prevail forecasting for all six yields after Lehman
Brother collapse happened in September 2008. However, before Lehman’s failure, the ATSM
with dataset “Standard” (the pink shade area) dominates the six models until 1995, say be-
fore starting extreme low interest rate policy. And then the ATSM with dataset “GDP gap”
(the light red area) took over this position, and the ATSM with dataset “Macro Finance” (the
white area) prevail for the next period between 2002 and 2006, i.e., a boom period triggred by
subprime loan of the US.

Turning to single yield forecasting cases as Panel (b), we realize that the ATSM with
dataset “Macro Finance” (the white area) is relatively strong for forecasting of short term
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rate such as 0.5 years and 1 years, while the QTSMs with dataset “GDP gap” (the deep blue
shade area) and dataset “Standard” (the deep green shade area) are stronger for the long terms
rate such as 8years and 10 years. These graphs indicate that macroeconomic series such as
GDP gap and inflation include useful information on forecasting of short term interest rate in
spite of the presence or absence of zero lower bound of interest rate. In contrast, the second
moment of the factor, especially curvature, included in the QTSM plays an important role on
forecasting of long term interest rate.

Finally, we compare the cumulative log score of the dynamic prediction pool for all yields
with those of six individual models as Table 6. According to the LHS of Table 6, the highest
log scores (3665,6) out of the six individual models is the ATSM with the data set ‘standard’
version following the ATSM with ‘GDP gap’, while the lowest (3450.9) is the QTSM with the
data set ‘Macro-Finance’ following the ATSM with the same data set. For all of the sample
period including the zero interest rate period, the ATSMs would be a good model for prediction
of yields, if we only have to pay attention to selecting data set. The RHS of Table 6 shows the
score of dynamic prediction with 6 models is around 3709 which completely dominates those of
all six models and the dynamic prediction with 2 models represented in Table 3. These results
suggest that combination of data sets as well as of models are another important factor of
improving predictive densities.

[ Insert Table 6 around here ]

[ Insert Figure 11 around here ]

7 Conclusion

In this paper, we study the optimal prediction pool of the Gaussian ATSM and QTSM with
macro-finance features using the JGB data from 1985:Q1 to 2016:Q1 that cover the zero inter-
est rate policy in Japan. Our estimation results show that the QTSM provides a more realistic
description of bond yields when the zero lower bound is binding, although the ATSM appears
to provide a better fit to bond yields and macroeconomic variables simultaneouly. This sug-
gests that one should combine the two models for the prediction of future bond yields under
different market scenarios.

In addition, we expand the forecast combination of the ATSM and the QTSM to that of six
models including three dataset characterized by sorts of factors. And we consider what com-
bination of factors and terms structure model realize best forecast. We show that the ATSM
with macro-finance feature is strong for forecasting of short term, while the QTSMs with
spread and real GDP gap are superior for the long terms rate. In other word, macroeconomic
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variables, i.e., GDP gap and inflation, include useful information on prediction of short term
rate in spite of the presence or absence of zero lower bound of interest rate. In contrast, the
second moment of the factor, especially curvature, included in the QTSM plays an important
role on prediction of long term interest rate.

For future research, it is instructive to explore a wider combination of macroeconomic vari-
ables, such as unemployment rate, M2 growth and credit-to-GDP ratio. Moreover, it is inter-
esting to repeat the exercise using the US treasury yield data since the financial crisis of 2008,
although the history may be limited for a robust statistical identification. A potential remedy
is to use macroeconomic variables with higher frequency such as monthly data. An alterna-
tive is to use the estimation technique with mixing frequency data such as the one proposed
in Camacho and Perez-Quiros (2010).
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A Appendix

A.1 Bond pricing

For notational convenience, we will take µQ = µ and ΦQ = Φ as the risk-neutral parameters
and all expectations are under the risk neutral measure Q.

A.1.1 ATSM

The n-period zero coupon bond price can be formulated as

Pnt = Et
[
e−rtPn−1t+1

]
= Et

[
exp

(
−rt +An−1 +BT

n−1Xt+1

)]
,

where
rt = δ0 + δT1 Xt.

and Xt follows the VAR dynamics Xt+1 = µ+ ΦXt+ Σεt+1 with εt ∼ N (0, I). We can substitute
the expession of Xt+1 such that

Pnt = Et
[
exp

(
−rt +An−1 +BT

n−1Xt+1

)]
= exp

(
−rt +An−1 + µ+BT

n−1ΦXt

)
×Et

[
exp

(
BT
n−1Σεt+1

)]
.

Then, we can make use of the moment generating function of ε ∼ N (0, I) to compute the
expectation as

Et
[
exp

(
BT
n−1Σε

)]
= exp

[
1

2
Bn−1ΣΣTBT

n−1

]
.

by collecting separately the constant terms and linear terms in Xt, we obtain the recursive
relationship for ATSM.

A.1.2 QTSM

The n-period zero coupon bond price can be formulated as

Pnt = Et
[
e−rtPn−1t+1

]
= Et

[
exp

(
−rt +An−1 +BT

n−1Xt+1 +XT
t+1Cn−1Xt+1

)]
,

where
rt = α0 + βT0 Xt +XT

t Ψ0Xt,
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and Xt follows the VAR dynamics Xt+1 = µ + ΦXt + Σεt+1 with εt ∼ N (0, I). Similarly, we
substitute the expession of Xt+1 such that

(µ+ ΦXt + Σεt+1)
T Cn−1 (µ+ ΦXt + Σεt+1) = 2 (µ+ ΦXt)

T Cn−1Σεt+1,

and hence

Pnt = exp
(
−rt +An−1 +BT

n−1µ+ ΦXt + (µ+ ΦXt)
T Cn−1 (µ+ ΦXt)

)
×Et

[
exp

(
ΓT0 εt+1 + εTt+1Γ1εt+1

)]
,

where
ΓT0 = BT

n−1Σ + 2 (µ+ ΦXt)
T Cn−1Σ, Γ1 = ΣTCn−1Σ.

In this case, we can make use of the (exponential) quadratic-form expectation for ε ∼ N (0, I)

as
Et
[
exp

(
ΓT0 ε+ εTΓ1ε

)]
= exp

[
−1

2
det (I− 2Γ1) +

1

2
Γ0 (I− 2Γ1)

−1 Γ0

]
.

See, for example, Chapter 12 in Andersen and Piterberg (2010). Therefore,

Et
[
exp

(
ΓT0 εt+1 + εTt+1Γ1εt+1

)]
= exp

(
−1

2
det
(
I− 2ΣTCn−1Σ

))
× exp

((
BT
n−1Σ + 2 (µ+ ΦXt)

T Cn−1Σ
) (

I− 2ΣTCn−1Σ
)−1

(
BT
n−1Σ + 2 (µ+ ΦXt)

T Cn−1Σ
)T)

,

collecting separately the constant terms, linear terms in Xt and quadratic terms in Xt, we
obtain the recursive relationship for QTSM.

A.2 Bayesian Estimation of Macro-Finance Models

A.2.1 State space formulation

In this subsection, we discuss the Bayesian estimation procedure in more details. First-of-all,
it is useful to express more explicitly the state space model in Section 3.4 as follows:

• Measurement equation. Factor loadings an, bn, and cn are derived from the recursive
relationship as described in Section 3.3. The measurement equations for the observable
bond yields ŷnt and macro variables X̂t are related to the latent factors Xt as

X̂t = Xt + ωX,t,
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and
ŷnt = an + bTnXt +XT

t cnXt + ωn,t.

Formally, this can be stacked into one equation and expressed as

f̂t

ĝt

π̂t

−−−
y1t
...
ynt
...
yNt


︸ ︷︷ ︸

(M+N)×1

=



0

0

0

−−−
a1
...
an
...
aN


︸ ︷︷ ︸

(M+N)×1

+



1 0 0

0 1 0

0 0 1

−− −− −−
b1,1 b2,1 b3,1

...
...

...
b1,n b2,n b3,n

...
...

...
b1,N b2,N b3,N


︸ ︷︷ ︸

(M+N)×M

 ft

gt

πt


︸ ︷︷ ︸
M×1

+
[
ft gt πt

]
�



0M×M

0M×M

0M×M

−−−
c1
...
cn
...

cN


︸ ︷︷ ︸
M(M+N)×M

�

 ft

gt

πt

+



ωr,t

ωy,t

ωπ,t

−−
ωy1,t

...
ωyn,t

...
ωyN,t


︸ ︷︷ ︸
(M+N)×1

,

where X̂t =
(
f̂t, ĝt, π̂t

)
is the observable state vector of macro variables with measure-

ment errors ωit and Xt = (f, gt, πt) is the unobservable state vector. Here, M and N

denote the numbers of macro variables and yields respectively. The third term of RHS
represents the quadratic multiplication where 0M×M and cn are M ×M matrices. When
we set the matrix cn= 0M×M, the QTSM reduces to the ATSM and we have a linear
state-space model.

• State equation. The state equation with the parameters µP and ΦP is given by

Xt+1 = µP + ΦPXt + Σεt+1,

which can be expressed as ft+1

gt+1

πt+1

 =

 µ1

µ2

µ3

+

 φ11 φ12 φ12

φ12 φ12 φ12

φ12 φ12 φ12


 ft

gt

πt

+

 εf,t+1

εg,t+1

επ,t+1

 .
The equation is a standard VAR(1) system.

A.2.2 MCMC algorithm

As can be seen from the measurement equation, the state space model is non-linear so that we
have adopted MH within Gibbs with single-move sampler for unobservable macro variables
Xt = (ft, gt, πt), following the Bayesian procedure in Ang et al. (2011).

The algorithm of MCMC based on Ang et al. (2011) is consist of the following five steps.

• Step 1: Drawing the latent factorXt = (ft, gt, πt). We adopt the single-move sampler
and generate the latent factors using random walk MH with the conditional posterior
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density:
P (Xt|Xt−1, Ỹ,Θ) ∝ P (Xt|Xt−1)P (Ỹt|Xt, Θ)P (Xt+1|Xt)

where

P (Xt|Xt−1, Θ) ∝ exp(−1

2
(Xt − µP − ΦPXt−1)

T (ΣΣT )−1(Xt − µP − ΦPXt−1) )

and

P (Ỹt|Xt, Θ) ∝

(
−1

2

∑
n

[(
ỹnt −

(
an + bTnXt +XT

t cnXt

))2
σ2n

])

where Ỹt is observable variables including yields and macro variables and Θ is pamame-
ters. The standard deviation of the random walk MH step is taken to be 0.0001 (i.e., 1
bps).

• Step 2: Drawing µP and Φp under the real-world measure P . We use the Gibbs
sampler to sample µP and Φp with the conditional posterior density

P (µP ,ΦP |Θ−, X, Ỹ ) ∝ P (X|µP ,ΦP ,Σ)P (µP ,ΦP )

where P (X|µP ,ΦP ,Σ) is the likelihood function and P (µP ,ΦP ) is the prior (see Del Negro
and Schorfheide, 2010).

• Step 3: Drawing ΣΣ′, the variance of state equation. We take the inverse Wishart
distribution as the prior and sample from the proposal density

q(ΣΣ′) = P (X|µ,Φ, Σ)P (ΣΣ′),

where P (X|µ,Φ, Σ) and P (ΣΣ′) are the likelihood function and prior, respectively. A
proposal draw is then accepted with the probability

α = min

{
P (Ỹ |(ΣΣ′)m+1, Θ−,X)

P (Ỹ |(ΣΣ′)m, Θ−,X)
, 1

}
,

where P (Ỹ |(ΣΣ′)m+1, Θ−,X) is the likelihood function.

• Step 4: Drawing µQand ΦQ under the risk-neutral measure Q. We use the random
walk MH algorith and sample µQand ΦQ from a proposal draw using the random walk
process xm = xm−1 + εm, where m is iteration and εm ∼ N(0, σ2). A proposal draw is then
accepted with the probability

α = min

{
P (Ỹ |(µQ,ΦQ)m+1, Θ−,X)

P (Ỹ |(µQ,ΦQ)m, Θ−,X)
, 1

}
,
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where P (Ỹ |(µQ,ΦQ)m+1, Θ−,X) is the likelihood function or the posterior density as we
assume a flat prior as in Ang et al. (2011). The standard deviation of the random walk
MH step is taken to be 0.1% of the magnitude of the initial parameters.

• Step 5: Drawing the variance of measurement error (σu). We take the inverted
Gamma distribution as prior with IG(0, 0.00252) in order to sample σu.

Although we adopt the single-move sampler for the non-linear state space model as in step
1, it is noted that an alternative is to estimate the model using the particle filter: Andreasen
et al. (2013) estimate a two-factor QTSM using particle filter with the maximum likelihood
estimation. However, we find that one needs to spend an extensive computational time to
estimate our 3-factor QTSM when the filter is used along with the Bayesian estimation.

A.2.3 Short rate specification

It is important to note that we do not estimate explicitly the loading coefficients for the ATSM
and QTSM. This allows us to avoid identification problem (as our macro factors are observed
with errors) and also a more efficient estimation on the model parameters. We follow Ang et
al. (2011) to pre-set the initial loading coefficients such that the moments of the bond yields
and macro factors are consistent. We take δ0 = 0 and δ1 = (1, 0, 0) for the ATSM and the
QTSM, and set Ψ0 to a diagonal matrix for the QTSM.

A.2.4 Optimal pooling

We describe below the MCMC procedures relate to the three optimal pooling schemes. In the
method of static prediction pooling, the random walk Metropolis-Hasting (MH) algorithm is
adopted to sample posterior of constant weighting λ. In the Markov-switching prediction pool-
ing, we use a MH within Gibbs algorithm in which the regime st at period t is sampled by a
single-move sampling as proposed by Albert and Chib (1993), with simultaneously sampled
posterior estimates of the weighting λ(st) under regime st. In the dynamic prediction pool-
ing, the particle filter is used following Del Negro et al. (2013), in which the autocorrelation
coefficient ρ is set to be a constant as ρ = 0.9.
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Table 1: Posterior estimates of the model parameters for ATSM. The reported values for the
parameters µ and (ΣΣT )ij are multiplied by 10,000.

Mean 10 Percentile 90-Percentile Std. Dev.
VAR(1)-system under P-measure

Φ11 0.9335 0.9278 0.9392 0.0044

Φ12 -0.0542 -0.0684 -0.04 0.0111

Φ13 0.0102 0.0087 0.0117 0.0011

Φ21 0.0391 0.0344 0.0438 0.0037

Φ22 0.9447 0.9332 0.9563 0.0091

Φ23 -0.0083 -0.0095 -0.0071 0.0009

Φ31 0.0652 0.014 0.1177 0.0406

Φ32 -0.0888 -0.2172 0.0405 0.1017

Φ33 0.939 0.9256 0.9524 0.0105

µ1 3.0324 2.4853 3.5871 0.4318

µ2 -0.3067 -0.7539 0.1457 0.352

µ3 -2.9073 -7.9218 2.0844 3.9352

VAR(1)-system under Q-measure
Φ11 0.9668 0.9632 0.9701 0.0027

Φ12 0.0594 0.0555 0.0647 0.0035

Φ13 0.0053 0.0045 0.0062 0.0006

Φ21 0.0515 0.0487 0.0548 0.0024

Φ22 1.0023 0.9931 1.0117 0.0072

Φ23 -0.0107 -0.0114 -0.01 0.0005

Φ31 0.1173 0.1096 0.1257 0.0075

Φ32 0.0495 0.0362 0.0602 0.009

Φ33 0.6082 0.5152 0.6865 0.0604

µ1 -0.2169 -0.3628 -0.0719 0.1133

µ2 -0.1703 -0.2062 -0.1386 0.0272

µ3 -1.9503 -2.3147 -1.5617 0.3034

Variance Matrix
(ΣΣT )11 0.0006 0.0005 0.0007 0.0001

(ΣΣT )12 -0.0002 -0.0003 -0.0002 0

(ΣΣT )13 0.0019 0.0015 0.0024 0.0003

(ΣΣT )21 -0.0002 -0.0003 -0.0002 0

(ΣΣT )22 0.0004 0.0003 0.0005 0.0001

(ΣΣT )23 -0.0007 -0.001 -0.0005 0.0002

(ΣΣT )31 0.0019 0.0015 0.0024 0.0003

(ΣΣT )32 -0.0007 -0.001 -0.0005 0.0002

(ΣΣT )33 0.0469 0.0366 0.0587 0.0082

Notes:

1. The first 10,000 draws of MCMC sampling are discarded to guarantee convergence and then the next 20,000
draws are used for calculating the posterior means, the standard deviations (Std. Dev.), as well as the 10
and 90 percentiles.

2. The posterior mean is computed by averaging the MCMC draws.

3. Std. Dev. is computed as the sample standard deviation of the MCMC draws.29



Table 2: Posterior estimates of the model parameters for QTSM. The reported values for the
parameters µ and (ΣΣT )ij are multiplied by 10,000.

Mean 10 Percentile 90-Percentile Std. Dev.
VAR(1)-system under P-measure

Φ11 0.9333 0.9296 0.9369 0.0029

Φ12 -0.0553 -0.0641 -0.0464 0.007

Φ13 0.0103 0.0093 0.0112 0.0007

Φ21 0.0386 0.0356 0.0415 0.0023

Φ22 0.9462 0.939 0.9534 0.0057

Φ23 -0.0081 -0.0089 -0.0073 0.0006

Φ31 0.0543 0.023 0.0858 0.0246

Φ32 -0.0621 -0.1411 0.0161 0.0614

Φ33 0.9457 0.9374 0.9539 0.0065

µ1 3.0869 2.7378 3.4331 0.2722

µ2 -0.3333 -0.6168 -0.0466 0.2227

µ3 -2.9874 -6.0233 0.0744 2.3951

VAR(1)-system under Q-measure
Φ11 0.9755 0.9725 0.9789 0.0024

Φ12 0.0593 0.0553 0.0632 0.003

Φ13 0.0113 0.0101 0.0123 0.0008

Φ21 0.0306 0.026 0.0343 0.0031

Φ22 1.0066 1.0003 1.0127 0.0049

Φ23 -0.012 -0.0125 -0.0116 0.0003

Φ31 0.1333 0.1032 0.1545 0.0179

Φ32 0.0611 0.0471 0.0773 0.0123

Φ33 0.5369 0.4699 0.6016 0.052

µ1 -0.2153 -0.3379 -0.0937 0.0886

µ2 -0.2613 -0.3242 -0.1864 0.0492

µ3 -2.068 -2.2524 -1.8879 0.1435

Variance Matrix
(ΣΣT )11 0.0002 0.0002 0.0003 0

(ΣΣT )12 -0.0001 -0.0001 -0.0001 0

(ΣΣT )13 0.0007 0.0006 0.0009 0.0001

(ΣΣT )21 -0.0001 -0.0001 -0.0001 0

(ΣΣT )22 0.0002 0.0001 0.0002 0

(ΣΣT )23 -0.0003 -0.0004 -0.0003 0.0001

(ΣΣT )31 0.0007 0.0006 0.0009 0.0001

(ΣΣT )32 -0.0003 -0.0004 -0.0003 0.0001

(ΣΣT )33 0.017 0.0134 0.0214 0.0029

Notes:

1. The first 10,000 draws of MCMC sampling are discarded to guarantee convergence and then the next 20,000
draws are used for calculating the posterior means, the standard deviations (Std. Dev.), as well as the 10
and 90 percentiles.

2. The posterior mean is computed by averaging the MCMC draws.

3. Std. Dev. is computed as the sample standard deviation of the MCMC draws.
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Table 3: Cumulative log scores

Four-quarter-ahead forecast
Component Models Model Pooling
Model Log Score Methods Log Score
ATSM 3659.72 Static 3659.73
QTSM 3584.00 Dynamic (one parameter) 3661.02

Dynamic (three parameters) 3665.63

Notes:

1. The predictive densities for the ATSM and QTSM are obtained by simulation using the MCMC draws of the
posterior model parameters.

2. The cumulative log score is computed as

T∑
t=1

log [λtp (yt;Yt−1,M1) + (1− λt) p (yt;Yt−1,M2)]

whereM1 = QTSM,M2 = ATSM.
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Table 4: Posterior estimates of the static prediction pool

(a) Full Sample Period (Four-quarter-ahead forecast)
Parameter Prior Mean Std. Dev. 90 % Band Inefficiency

λ G(0.05, 0.1) 0.102 0.077 [ 0.008 0.250 ] 18.18

(b) After 2000:Q1 (Four-quarter-ahead forecast)
Parameter Prior Mean Std. Dev. 90 % Band Inefficiency

λ G(0.05, 0.1) 0.480 0.225 [ 0.101 0.846 ] 85.73

Notes:

1. λ denotes the constant weighting coefficient determined in the following optimal prediction pool:

p (yt;Yt−1,M) = λp (yt;Yt−1,M1) + (1− λ) p (yt;Yt−1,M2) , 0 ≤ λ ≤ 1,

where M1 = QTSM M2 = ATSM, and p (yt;Yt−1,M1) denotes log prediction score.

2. The coefficient λ is estimated with MCMC simulation and obtained from 50,000 draws after discarding the
first 20,000 draws. And the posterior means, the standard deviations (Std. Dev.), and the percentiles are
derived from the sampled draws.

3. The simulation ineffciency statisctic is a useful diagnostic for measuring how well the chain mixes accroding
to Kim, Shephard, Chib (1998). The statistic is derived from:

R̂BM = 1 +
2BM
BM − 1

BM∑
i=1

K(
i

BM
)ρ̂(i),

where p̂(i) is an estimate of the autocorrelation at lag i of MCMC sampler, BM represents the bandwidth
and K the Parzen Kernel.
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Table 5: Dynamic Prediction Pool

(a) One flexible parameter version
Parameter Prior Mean Std. Dev. 90 % band Inefficiency

ρ Beta(5, 5) 0.842 0.118 [ 0.607 0.965 ] 32.359

(b) Three flexible parameters version
Parameter Prior Mean Std. Dev. 90 % band Inefficiency

ρ Beta(5, 5) 0.643 0.141 [ 0.486 0.787] 7.93
µ N(0.5,1) 0.414 0.041 [ 0.375 0.452] 151.40
σ IG(1,10) 1.558 0.402 [ 1.094 1.969] 50.27

Notes:

1. For estimation of Dynamic prediction pool method, we conduct 10,000 MCMC iterations
with 5,000 particles, the first 5,000 iterations are discarded.

2. In prior, U , Beta, N and IG stand for uniform, beta, normal and inverse gamma distri-
butions, respectively.

Table 6: Cumulative log scores

Four-quarter-ahead forecast
Component Models Model Pooling
Model Log Score Methods Log Score

ATSM (GDP gap) 3659.72
ATSM (Standard) 3665.64

ATSM (Macro-Finance) 3473.10 Dynamic Pool with 6 models 3709.25
QTSM (GDP gap) 3584.00
QTSM (Standard) 3553.84

QTSM (Macro-Finance) 3450.86
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Figure 1: Data
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Figure 2: Estimation of Macro Factors

(a) ATSM
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(b) QTSM
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Notes:

1. The solid blue line and the dashed red represent actual values and fitted values respectively, the dashed blue
line represents discrepancy between them, and the shaded grey band represents 90% confidence interval of the
distribution.

2. These estimations are obtained by 10,000 draws of MCMC samplings after discarding 5000 burn-in draws based
on the Bayesian estimation described in the Appendix.
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Figure 3: Estimation of Bond Yields

(a) ATSM
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(b) QTSM
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Notes:

1. The solid blue line and the dashed red represent actual values and fitted values respectively, the dashed blue
line represents discrepancy between them, and the shaded grey band represents 90% confidence interval of the
distribution.

2. These estimations are obtained by 10,000 draws of MCMC samplings after discarding 5000 burn-in draws based
on the Bayesian estimation described in the Appendix.
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Figure 4: Estimation of Yield Curves
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(b) QTSM
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Notes:

1. The solid blue line and the dashed red represent actual values and fitted values respectively, the dashed blue
line represents discrepancy between them, and the shaded grey band represents 90% confidence interval of the
distribution.

2. These estimations are obtained by 10,000 draws of MCMC samplings after discarding 5000 burn-in draws based
on the Bayesian estimation described in the Appendix.
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Figure 5: Factor loadings

(a) ATSM and QTSM
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Notes:

• The factor loadings of the estimated Gaussian ATSM are calculated using the recursive relationship (7) and the

posterior means under Q-measure in Table 1.

• The factor loadings of the estimated QTSM are calculated using the recursive relationship (12) and the posterior
means under Q-measure in Table 2.
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Figure 6: Density Forecasts under Non-ZIRP (as at 1988:Q1)

(a) ATSM
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(b) QTSM
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Note: The posterior prediction distributions of the macro factor and the JGB yields of the ATSM models are
calculated based on the procedure as described in Section 2.1, using 10,000 draws of posterior estimates over the full
sample as shown in Table 1.
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Figure 7: Density Forecasts under ZIRP (as at 2008:Q1)

(a) ATSM

1995 2000 2005 2010 2015
-0.02

-0.01

0

0.01

0.02
Policy Rate

1995 2000 2005 2010 2015
0

2

4

6 ×10-3 Spread

1995 2000 2005 2010 2015

-0.05

0

0.05

Output Gap

1995 2000 2005 2010 2015
-0.01

0

0.01

0.02

2Q Yield

1995 2000 2005 2010 2015
-0.01

0

0.01

0.02

4Q Yield

1995 2000 2005 2010 2015
-0.01

0

0.01

0.02

12Q Yield

1995 2000 2005 2010 2015
-0.01

0

0.01

0.02

20Q Yield

1995 2000 2005 2010 2015
-0.01

0

0.01

0.02

32Q Yield

1995 2000 2005 2010 2015
-0.01

0

0.01

0.02

40Q Yield

(b) QTSM
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Note: The posterior prediction distributions of the macro factor and the JGB yields of the QTSM models are
calculated based on the procedure as described in Section 2.1, using 10,000 draws of posterior estimates over the full
sample as shown in Table 2.
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Figure 8: Log score comparison of the ATSM and QTSM (based on 4Q-ahead forecast)

(a) All Six Yields
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Note: The log score at each period is calculated from log p(yOt ;Y O
t−1,Mi) for i = 1,2, of the individual model such as

the QTSM and the ATSM as explained in Sec 4.3.
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Figure 9: Dynamic prediction pool (4Q-ahead forecast)

(a) All Six Yields (One Parameter Version)
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(b) All Six Yields (Three Parameter Version)
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(c) Single Yields (One Parameter Version)
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Notes:

1. Dynamic pooling model is calculated from Eq.(3). The time-varying coefficient is obtained from 5,000 draws of
particle filter with estimating one parameter: ρ (panel (a)) and three parameters: ρ, µ, σ (panel (b) ), following
Del Negro et al (2013).

2. The solid black line denotes their posterior means and the blue shaded area represents their 90% confidence
interval.
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Figure 10: Log scores comparison of all models and pooling schemes (4Q-ahead forecast)
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Note: The log scores at each period is calculated from log p(yOt ;Y O
t−1,Mi) for i = 1,2, of the individual model such as

the QTSM and the ATSM as explained in Sec 4.3. The log scores of the three optimal pooling methods are derived
from Eq.(1), Eq.(2) and Eq.(3).
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Figure 11: Model Weight of Six Models (4Q-ahead forecast)

(a) All Six Yields
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