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Abstract

We investigate the effect of incorporating zero lower bound (ZLB) in monetary
policy rule and asymmetric adjustment costs (AAC) in firm’s price setting mecha-
nism in a standard New Keynesian DSGE model on explaining the unique experi-
ence of Japanese economy over the last three decades. To improve the accuracy of
evaluating the nonlinear feature of the model, the projection method is employed
in solving the model. We estimate the model using the Bayesian method com-
bined with a particle filter and show that the estimated model with both ZLB and
AAC outperforms the benchmark model in term of explaining the data. The ad-
justment cost in reducing prices is estimated to be 24 to 32 percent higher than
raising prices. The presence of this downward price rigidity is likely to play a role
in preventing further deflation by mitigating the deflationary pressure from the
reduction of productivity.
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Introduction

Over the past two decades, nominal interest rate has been set at near zero in Japan.

Such a prolonged spell of zero interest rates makes it difficult to ignore the presence

of this strong nonlinearity in monetary policy function when estimating a macroe-

conomic model using Japanese data. Another unique feature of Japanese experience

during the same time period is deflation and near-zero inflation. The zero lower bound

(ZLB) constraint on nominal interest rates implies that government cannot reduce in-

terest rate below zero even if the inflation rate is below target and the output gap is

negative. One possibility of explaining the unique movement of inflation rate below

and near zero is to consider the asymmetric price setting behavior by firms who raise

prices and who reduce prices.

In this paper, we use Japanese data and estimate a small-scale New Keynesian

model which emphasizes two types of nonlinear dynamic features in the economy. In

particular, we introduce the ZLB constraint on nominal interest rates and the asym-

metric cost of price adjustment in a canonical DSGE model of An and Schorfheide

(2007). We show that the estimated model with those features outperforms the bench-

mark model in term of explaining the data.

In the literature of the ZLB constraint, it is well-known that log-linearization and

higher-order perturbation method are not reliable techniques to solve the model. In-

stead, recent studies, including Aruoba, Cuba-Borda and Schorfheide (2013), Fernan-

dez Villaverde, Gordon, Guerron-Quintana and Rubio-Ramirez (2015), Gust, Lopez-

Salido, and Smith (2013), Gavin, Keen, Richter and Throckmorton (2015), to name

a few, typically utilize some form of global solution methods in solving the fully non-

linear model. In this paper, we also solve a fully nonlinear DSGE model by a global

projection method followed by the Bayesian estimation based on full-information like-

lihood evaluated by the particle filter. The use of particle filters was first introduced in

the DSGE model estimation by Fernandez-Villaverde and Rubio-Ramirez (2005, 2007)
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and was employed by Gust, Lopez-Salido, and Smith (2012) in their estimation of the

model with ZLB constraint.

Using the data from 1981:Q3 to 2015:Q1, our estimates suggest that the adjust-

ment costs in deflation are about 24-32% higher than those in inflation. This is in line

with results obtained by Kim and Ruge-Murcia (2009) and Aruoba et al. (2013) who

found the significant effect of downward rigidity in the wage adjustment in the U.S.

rather than the price adjustment.

Our estimated model also implies that expected duration of the zero interest rate

is 4.2-5.5 quarters which is longer than the U.S. evidence obtained by Gust, Lopez-

Salido, and Smith (2012) who found that the average duration for a lower bound spell

is just over three quarters and the median duration is two quarters.

Our paper is organized as follows. Japanese experience over the past three decades

is first described in Section 1. The model is provided in section 2. The estimation

procedure described and results are reported in section 3. A concluding remark is

made in section 4.

1 Overview of the data

Figure 1 shows the output growth (Y GRt), inflation (INFLt), and nominal interest

rate rates (INTt) from 1981:Q3 through 2015:Q1 in Japan. The output growth se-

ries computed as the log difference of real GDP from the Cabinet Office’s National

Accounts. We used official 2005 constant price series that cover the period 1994:Q1-

2015:Q1 and merged it with the 2000 constant price series which is available for ear-

lier years. The inflation series is year on year log growth rate of consumption price

index excluding foods (core CPI) from Statistics Bureau. The nominal interest rate

series is quarterly averages of monthly uncollateralized call rate obtained from the

Bank of Japan. Two unique features stand out from the figure. First, nominal inter-

est rate has been decreasing over the first half of the sample, and set at near zero in
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the second half of the sample. Second, frequencies of observing negative inflation rate

seems to be increased in the second half of the sample compared the first half of the

sample.

[ Insert Figure 1 ]

2 Model

We modify a canonical small-scale New Keynesian DSGE model of An and Schorfheide

(2007) and Herbst and Schorfheide (2016) by introducing ZLB constraint on monetary

policy function and AAC of firm’ price setting behavior1. Since ZLB and AAC are only

two features that differ from the benchmark model, we first explain each nonlinearity

one by one.

The other issue we want to emphasize is that we numerically solve a rational ex-

pectations equilibrium (REE) directly from a nonlinear equations instead of relying

on a log-linearized version of the model. To this end, we adapt the technique sug-

gested in Richtcher et al. (2014). This method will be briefly explained in this section

(additional details are described in Technical Appendix).

2.1 Monetary policy under zero lower bound (ZLB)

Monetary policy rule is constrained by ZLB and written as

Rt = max( 1, R∗1−ρRt RρR
t−1e

εR,t ), (1)

where Rt is the gross nominal interest rate, R∗t is nominal target rate and εR,t is mon-

etary policy shock. The nominal target rate, R∗t , is given as

R∗t = rπ∗
( πt
π∗

)ψ1
(
Yt
Y ∗t

)ψ2

, (2)

1Aruoba et al. (2014) and Aruoba and Schorfheide (2015) also used the model and extent it to regime
switching model under ZLB.
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where π∗ and Y ∗t is inflation target (or steady state of inflation) and output target,

respectively.

2.2 Firms with asymmetric adjustment cost (AAC)

In what follows, Rotemberg type adjustment costs of price change are extended to

respond asymmetrically depending on whether current price is below or above the

steady state of inflation π.

Monopolistically competitive intermediate goods producing firms maximize the

present value of future profits:

Π = Et

[
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt
Yt+s(j)−Wt+sNt+s(j)− ACt+s(j)

)]
,

where β is discount factor and ACt(j) is asymmetric adjustment costs (AAC) of price

change given by

ACt(j) =
ψ(πt)

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j), (3)

ψ(πt) =

{
φ, if Pt(j)

Pt−1(j)
(= πt) ≥ π

eδφ if Pt(j)
Pt−1(j)

(= πt) < π
,

where δ ∈ (−∞,∞) is a parameter which controls the degree of asymmetric adjust-

ment which reduces to the standard symmetric adjustment cost when δ = 0.

The function implies downward price rigidity if δ > 0, while it implies the upward

price rigidity if δ < 0. Note that, for a small value of δ, we have eδ ≈ (1 + δ), so that

eδ can be approximated by (1 + δ)φ. For a positive (small) value of δ, we can interpret

that reducing prices is 100×δ percent more costly than increasing prices. Similary, for

a negative (small) value of δ, we can interpret that reducing prices is 100 × δ percent

less costly than increasing the price.

Although a similar idea has already adapted using an alternative functional form

by Kim and Ruge-Murcia (2009) and Aruoba et al. (2014), our functional form seems
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to be simple and intuitive.2

This firm producing the intermediate good, j, faces demand given by

Yt(j) =

(
Pt(j)

Pt

)−1/ν

Yt,

where ν is inverse elasticity of demand for goods j. The linear production technology

of the firm is given by

Yt(j) = AtNt(j),

where At and Nt(j) are exogenous common productivity process and the labor input of

firm j, respectively.

Aggregate productivity At follows a nonstationary process

At = γ At−1 zt, zt = zρzt−1 e
εz,t (> 0), (4)

where εz,t is the productivity shock.

2.3 Closing the model

The remaining part of the model consists of household and government sectors.

The households maximize utilities

U = Et

[
∞∑
s=0

βs
(

(Ct+s/At+s)
1−τ − 1

1− τ
+ χM ln

(
Mt+s

Pt+s

)
− χHHt+s

)]
,

where τ is inverse elasticity of intertemporal substitution of consumption, subject to

budget constraint

PtCt +Bt +Mt + Tt = PtWtHt +Rt−1Bt−1 +Mt−1 + PtDt + PtSCt,

The government’s budget is given by
2Kim and Ruge-Marcia (2009), Arouba et al. (2013) employed a linex function of AAC given by

ACt(j) = φ

(
exp(−ψ(P (j)t/P (j)t−1 − 1)) + ψ(P (j)t/P (j)t−1 − 1)− 1

ψ2

)
, |

where φ > 0. A restriction ψ > 0 implies downward rigidity, while ψ < 0 implies the upward rigidity.
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PtGt +Rt−1Bt−1 +Mt−1 = Tt +Bt +Mt,

where the government’s expenditure

Gt =

(
1− 1

gt

)
Yt. (5)

is determined exogenously from

gt/g = ( gt−1/g )ρg eεg,t (> 0), (6)

where εg,t is the government shock which can be also interpreted as the aggregate

demand shock.

The steady state is given by

π = π∗, r =
γ

β
, R = r π∗,

C/A = (1− ν)1/τ , Y/A = g C/A = Y ∗/A.

The potential aggregate output (or target level of output in the monetary policy

rule) in case of the no price adjustment cost is given by

Y ∗t = (1− ν)1/τAtgt, (7)

The market clearing conditions are given by

Yt = Ct +Gt + ACt, Nt = Ht, (8)

The optimality conditions of households (or the consumption Euler equation) and

firms are respectively given by

1 = βEt

[(
Ct+1/At+1

Ct/At

)−τ
At
At+1

Rt

πt+1

]
(9)

and

1 = φ(πt) (πt − π)

[(
1− 1

2ν

)
πt +

π

2ν

]
(10)

− β Et

[
φ(πt+1)

(
Ct+1/At+1

Ct/At

)−τ
Yt+1/At+1

Yt/At
(πt+1 − π) πt+1

]

+
1

ν

[
1−

(
Ct
At

)τ]
.
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Notice that because of our specification of AAC, the sizes of φ(πt) and φ(πt+1 ) in the

first and the second terms of the RHS depend on the values of current inflation, πt,

and expected inflation, Et(πt+1), respectively.

2.4 Solving the model

To solve our nonlinear models, we use above ten equations (1) through (10) which

involve ten endogenous variables: Yt, Y ∗t , Ct, Gt, ACt, πt, Rt, R∗t , At, gt , and three

exogenous structural shocks: εR,t, εz,t, εg,t. There are 15 parameters including as β,

τ , ν, φ2, δ, ψ1, ψ2, γ, π∗, ρr, ρg, ρz, σr, σg, σz, all of which are to be estimated. The

definitions of the parameters are summarized in Table 1.

The model is solved using a time iteration method with linear interpolation (TL)

within the class of projection methods (or policy function iteration methods). Richter

et al. (2014) reported TL provides the best balance between speed and accuracy. In

addition, TL outperforms time iteration with Chebyshev polynominal, which is the

popular method in the class of policy function iteration, when the ZLB constraint is

embeded.

The policy functions of the model (or decision rules) can be written as

( Yt/At, πt, Rt ) = P( Rt−1, gt, zt, εR,t ), (11)

where Yt/At, πt, and Rt in the LHS are control variables in the decision rules and Rt−1,

gt, zt, and εR,t in the RHS are state variables of the function. We specify seven grid

points on each continurous state variables and five grid points on an exogenous shock,

which implies 1715 (= 7×7×7×5) nodes. See the Technical Appendix for more detail.

As in the case of Arouba et al. (2014) and Aruoba and Schorfheide (2015), we use

the perfect foresight as rational expectations when we calculate expectations in the

TL. This approach has an advantage in obtaining stable solution with faster speed

and fewer iterations, when we sample from wide range of many parameters in a MH
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algorithm.

Using this solution method, let us first investigate the effect of introducing AAC

on inflation dynamics under ZLB.

To be specific, we consider the effect of the parameter δ on the policy function of

inflation. Figure 2 shows predicted policy functions of three cases of price rigidities,

namely, symmetric price adjustment (δ = 0), upward price rigidity (δ = −0.5) and

downward price rigidity (δ = 0.5). All other values for remaining parameters are

taken from An and Schorfheide (2007).

[ Insert Figure 2 ]

Figure 2 implies two interesting features of our model. First, the presence of ZLB

causes kinked policy function of inflation with steeper slope within the negative TFP

range. Second, if there is upward rigidity in the price adjustment, deflationary pres-

sure from negative TFP seems to be strengthened, while the presence of downward

rigidity mitigate the such a deflationary pressure.

3 Estimation strategy

We estimate the following four variants of the model depending on the presence and

absence of ZLB and AAC.

• Model 1: no ZLB and no AAC

• Model 2: ZLB but no AAC

• Model 3: AAC but no ZLB

• Model 4: ZLB and AAC

In Model 1 and Model 3 where the ZLB is absent, we incorporate the standard

monetary policy rule, Rt = R∗1−ρRt RρR
t−1e

εR,t instead of using (1). In Model 1 and Model

2 where the AAC is absent, we impose δ = 0.
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Following Gust et al. (2012), we estimate the four nonlinear model using Bayesian

methods with particle filter. Particle filter Metropolis-Hastings algorithm (PFMH),

or Particle Markov Chain Monte Carlo (PMCMC), was established in Andrieu et al.

(2010). The algorithm of Herbst and Schorfheide (2016, ch 8 and ch 9) which we

employ is described in the Technical Appendix. After solving for the decision rule,

P( Rt−1, gt, zt, εR,t ), our economic environment can be represented as a nonlinear

state space model which consists of (12) and (13) below.

To keep acceptance rate between 25 to 35% during PFMH, we use a random-block

MH algorithm proposed by Chib and Ramamurthy (2010) which is also explained in

Herbst and Schorfheide (2016, p83).

State equations

The policy function (11) combined with (1), (5) and (6), can be rewritten as

st = Φ(st−1, εt, θ), (12)

where st is endogenous variables: st = (Yt/At, πt, Rt, gt, zt ), and εt = ( εR,t, εg,t, εz,t ).

θ is the parameter.

Measurement equations

A measurement equation represents connection between endogenous variables and

observed variables as

yt = ψ(st, θ) + σu ut, for ut ∼ i.i.d. N( 0, I )

where yt is observed variables, σu and ut are standard deviation and disturbance term

of the measurement error. In our case, we use
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 Y GRt(%)
INFLt(%)
INTt(%)

 =

 100× (ln (Yt/At)− ln (Y t−1/At−1) + ln zt + ln γ)
400× ln πt
400× lnRt

+

 σ∆y uy,t
σπ uπ,t
σr ur,t

 .
(13)

where three observed variables on the LHS are the ones described in Section 1.

4 Empirical results

4.1 Prior and posterior

The left half of Table 1 shows the prior distributions of the structural parameters

which are assumed to be mutually independent. In estimation, we calculate likeli-

hood approximation using particle filter with 10,000 particles, and choose the mode

of posterior density out of parameters sampled from prior distributions. By setting

the mode as initial values of MH, we obtain 30,000 draws of MCMC samplings after

discarding the first 10,000 burn-in draws.

[ Insert Table 1 ]

The right half of Table 1 contains log marginal likelihoods and posterior model

probabilities of the four models as well as posterior means of 15 parameters. The re-

sult clearly shows that Models 2 and 4 which incorporate ZLB performs much better

than Models 1 and 3 without the ZLB. In addition, since the posterior model proba-

bility of Model 4 is as large as 99.2 percent, it seems to be fair to say that the model

with both AAC and ZLB seems to be the most appropriate specification among the

four models.

For the degree of asymmetric adjustment parameter δ, the sign of posterior means

differ between Model 3 and 4. However, given that Model 4 with ZLB is a better spec-

ification, the adjustment costs in reducing prices are likely to be about 60.8 percent (

exp(0.45)=1.608 ) higher than those in increasing prices.
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This result combined with the calibration exercise in the previous section suggest

that the presence of the downward price rigidity is likely to play a role in prevent-

ing further deflation by mitigating the deflationary pressure from the reduction of

productivity.

4.2 Estimated policy functions

Using posterior means of the parameters in four models, calculated policy functions

of output, inflation, and interest rate are respectively shown in Figures 3 to 5. For

example, Figure 3 shows the reaction of output in response to the TFP and monetary

policy shocks: zt and εR,t. Panels (a), (b), (c) and (d) of Figure 3 correspond to policy

functions of output predicted by Models 1 to 4, respectively.

Let us first focus on the effect of TFP in some detail.

Figure 6 shows the estimated policy function of output, inflation, and interest rate

in response to change in zt when the three state variables are fixed at some values.

Note that since the policy functions of the model with only AAC (Model 3) did not differ

much from the benchmark model (Model 1), we only compare the policy functions

among three models excluding Model 3.

It should be noted that shapes of the policy functions differ not only because the

models are different but also estimated parameter values differ. Most importantly,

responses of output and inflation in Models 2 and 4 are larger when zt is below one

than when zt is above one. This kinked policy functions is caused by the interest rate

hitting at the ZLB in the two models.

On the other hand, the benchmark model without ZLB and AAC predict that infla-

tion respond more to positive TFP and that output respond less to negative TFP.

Figure 7 shows estimated policy function of output, inflation, and interest rate in

response to monetary policy shock εR,t. Panel (a) of the figure shows the case of low

level of TFP, when the interest rate is around the ZLB. Panel (b), shows the case of
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high level of TFP, when the interest rate is far from the ZLB. In the low TFP case,

response of inflation and output to expansionary monetary policy shock is modest

in the model with both ZLB (Models 2 and 4) compared to Benchmark model. In

contrast, output response are almost the same between the model with both ZLB and

AAC (Model 4) and Benchmark model.

[ Insert Figurs 3 to 7 ]

4.3 Estimated duration of zero interest rate policy

Finally, we calculate frequency distribution of the duration of lower bound spell, i.e.,

the number of consecutive periods hitting the ZLB, of the two models imposing the

ZLB constraint by generating artificial data for 1,000,000 periods from the estimated

policy function, along the line of Gust et al. (2012) who conducted similar analysis in

their Figure 6. Panel (a) of Figure 8 shows CDF of duration of spell, and panel (b) rep-

resents right tail of the spell after 15 quarters. Red and blue line shows the prediction

of Models 2 and 4, respectively. As can be seen from the figure, the model with only

ZLB is skewed toward longer duration in the distribution than the model which also

considers AAC. In fact, we obtain Prob(Duration > 12) = 0.089 and Prob(Duration < 4)

= 0.45 in Model 2. In contrast, corresponding values for Model 4 are 0.055 and 0.549,

respectively. This suggests that positive AAC reduces the predicted duration for same

shocks and that it helps in stabilizing the economy with higher probability. Averages

of the spells predicted by Models 2 and 4 are 5.5 and 4.2 quarters, respectively, and

longer than the prediction in the U.S. case obtained by Gust et al. (2012) which is over

three. Although Japanese long stagnation has brought over 28 consecutive periods

of the zero interest rate policy between 2009:Q1 and 2016:Q1, the probability of this

situation is no more than 0.03 percent based on the prediction of Model 4. Therefore,

it is still challenging to fully simulate the recent Japanese experience by a simple

nonlinear DSGE model considered here.
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[ Insert Figure 8 ]

5 Conclusion

We incorporated asymmetric adjustment costs (AAC) in Rotemberg price setting mech-

anism and zero lower bound (ZLB) in monetary policy rule and solve nonlinear New

Keynesian DSGE models using projection method. Using the Bayesian method com-

bined with a particle filter, we estimate the model and show that the estimated model

with both ZLB and AAC outperforms the benchmark model in term of explaining the

Japanese data from 1981:Q3 to 2015:Q1

The adjustment cost in reducing prices is estimated to be 24 to 32 percent higher

than raising prices. The presence of this downward price rigidity is likely to play a

role in preventing further deflation by mitigating the deflationary pressure from the

reduction of productivity.
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Table 1: Prior and Posterior Estimations
parameters Prior Setting Posterior

distribution param 1 param 2 Model 1 Model 2 Model 3 Model 4
ZLB No Yes No Yes
AAC No No Yes Yes
β beta 0.99 0.01 0.994 0.995 0.995 0.995
τ gamma 2.0 0.1 1.755 1.566 1.819 1.617
ν gamma 0.3 0.1 0.423 0.562 0.418 0.494
φ1 gamma 20.0 10.0 16.85 16.74 16.91 16.97
δ normal 0.00 0.25 - - -0.058 0.475
ψ1 normal 1.8 0.5 1.60 1.67 1.61 1.66
ψ2 normal 0.5 0.5 0.61 0.63 0.60 0.58
γ normal 1.01 0.01 1.0048 1.0005 1.0056 1.0003
π normal 1.0 0.01 1.0017 1.0034 1.0024 1.0017
ρr beta 0.75 0.1 0.657 0.635 0.667 0.689
ρg beta 0.75 0.1 0.639 0.837 0.644 0.838
ρz beta 0.75 0.1 0.851 0.768 0.857 0.791
σr inv. gamma 0.5 5 1.538 0.921 1.478 0.872
σg inv. gamma 0.5 5 0.731 1.765 0.681 1.744
σz inv. gamma 0.5 5 1.565 0.768 1.506 0.781
σ∆y inv. gamma 0.5 5 0.552 0.576 0.573 0.571
σπ inv. gamma 0.9 5 0.882 0.861 0.874 0.851
σR inv. gamma 1.25 5 1.241 1.242 1.259 1.241

Accept.Rate. - - - 0.142 0.328 0.167 0.400
Log Mgrl.Lik - - - -966.75 -789.14 -957.11 -781.38
Posterior Prob - - - 0.000 0.0004 0.000 0.9996

Notes: In the first column, ZLB and AAC stand for zero lower bound and asymmetric adjustment
cost, respectively. Accept. Rate, Log Mgrl Lik and Posterior Prob denotes acceptance rate of MH
algorithm, marginal likelihood and posterior model probabilities, respectively. In the third and fourth
column, parameter 1 and 2 represent mean and standard deviation in Beta and Normal distributions,
respectively. In the fifth through eighth column, the values of parameters represent their posterior
means.
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Figure 1: Output, Inflation and Interest Rate
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Notes: The response of inflation to TFP shock when adjustment cost parameters are
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Figure 3: Estimated Policy Function of Output

(a) Model 1 (Benchmark)
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(c) Model 3 (AAC only)
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(d) Model 4 (ZLB/AAC)
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adjustment cost, respectively. 18



Figure 4: Estimated Policy Function of Inflation
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(b) Model 2 (ZLB only)
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(c) Model 3 (AAC only)
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(d) Model 4 (ZLB/AAC)
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Notes: Calculated from posterior means of parameters, using time iteration method
with linear interpolation described in Section 2. And the reaction of a control variable
are represented in terms of TFP and monetary policy shock by setting other state
variables as constant. ZLB and AAC stand for zero lower bound and asymmetric
adjustment cost, respectively. 19



Figure 5: Estimated Policy Function of Interest Rate

(a) Model 1 (Benchmark)
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(b) Model 2 (ZLB only)
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Notes: Calculated from posterior means of parameters, using time iteration method
with linear interpolation described in Section 2. And the reaction of a control variable
are represented in terms of TFP and monetary policy shock by setting other state
variables as constant. ZLB and AAC stand for zero lower bound and asymmetric
adjustment cost, respectively. 20



Figure 6: Estimated Policy Functions
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Notes: Calculated from posterior means of parameters. ZLB and AAC stand for zero
lower bound and asymmetric adjustment cost, respectively. We set as gt = 1.2, Rt−1 =
1.006, and εRt = 0.
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Figure 7: Estimated Policy Functions
(a) Near ZLB (Case of low TFP)
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(b) Far away from ZLB (Case of high TFP)
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Notes: Calculated from posterior means of parameters. ZLB and AAC stand for zero
lower bound and asymmetric adjustment cost, respectively. For panel (a) we set zt =
1.01, gt = 1.2, and Rt−1 = 1.006, whereas we set zt = 1.05, gt = 1.2, and Rt−1 = 1.006 for
Panel (b).
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Figure 8: Estimated Duration of a ZLB Spell
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Notes: Generating artificial data for 1,000,000 periods from the estimated policy func-
tion, we calculate frequency distribution of the duration of zero interest rate policy.
Panel (a) shows CDF of spell derived from number of periods that belong to the corre-
sponding duration of ZLB, and panel (b) represents right tail of histogram of the spell
after 15 quarters.

23


	1 Overview of the data
	2 Model
	2.1 Monetary policy under zero lower bound (ZLB)
	2.2 Firms with asymmetric adjustment cost (AAC)
	2.3 Closing the model
	2.4 Solving the model

	3 Estimation strategy
	4 Empirical results
	4.1 Prior and posterior
	4.2 Estimated policy functions
	4.3 Estimated duration of zero interest rate policy

	5 Conclusion

