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Abstract

We show some interesting properties of unilaterally competitive games [Kats and

Thisse, Int. J. Game. Theory, 1992], when there are more than two players. We show,

in particular, that the games possess: (i) a Nash equilibrium, (ii) maximin solvability,

(iii) strong solvability in the sense of [Nash, Ann. Math., 1951], and (iv) weak acyclicity,

all in pure strategies of finite or infinite games. The property (ii) is a consequence of (i)

and the result of [De Wolf, CORE Discussion Paper, 1999], for which we will provide a

different proof. The property (iv) is shown in two ways for finite games, one directly and

the other by showing a generalization of a weak acyclicity sufficiency theorem for finite

games in [Fabrikant et al. Theor. Comput. Syst., 2013].

JEL Classification: C72 (Noncooperative game)

1 Introduction

Unilaterally competitive (UC) games due to Kats and Thisse (1992) are n-person generally

nonzero-sum games whose set of Nash equilibria, if nonempty, is known to possess nice prop-

erties such as payoff equivalence and interchangeability (Kats and Thisse (1992, Theorems

1 and 2)). Here the nonemptyness of the set of Nash equilibria makes sense since there

are UC games having no Nash equilibrium, such as two-person Matching Pennies played in

pure strategies. Payoff equivalence and interchangeability are properties of a set of mixed

Nash equilibria of two-person zero-sum games, which are maximin solvable, i.e., whose set

of equilibria coincides with the set of maximin strategy profiles. Likewise, as De Wolf (1999)

had shown, UC games are maximin solvable if there exists a Nash equilibrium (De Wolf,

1999, Theorem 3.4).

∗This work is supported by JSPS Grant-in-Aid for Scientific Research (C) (KAKENHI) 25380233.
†School of Business Administration, Tokyo Metropolitan University, Tokyo 192-0397, Japan, E-mail:

t.iimura@tmu.ac.jp.
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In this paper, we show some interesting properties of UC games, when there are more

than two players. We show, in particular, that UC games with more than two players possess:

(i) a Nash equilibrium, (ii) maximin solvability, (iii) strong solvability in the sense of Nash

(1951), and (iv) weak acyclicity, all in pure strategies of finite or infinite games. The property

(ii) is a consequence of (i) and the result of De Wolf (1999) (see Theorem 3 of current paper),

for which we will provide a different proof. The property (iv) is shown in two ways for finite

games, one directly and the other by showing a generalization of a weak acyclicity sufficiency

theorem in Fabrikant et al. (2013) (see Theorem 4 of current paper).

The game in Figure 1, which is presented in De Wolf (1999, Figure 7) as a non-degenerate

three-person UC game, may serve to illustrate these results. This game is non-degenerate in

that there is no dominated strategy. There is an improvement cycle (u, r,A) → (u, r,B) →

(u, l, B) → (d, l, B) → (d, l, A) → (d, r, A) → (u, r,A), so this is not an acyclic game. How-

ever, the game is weakly acyclic, i.e., from any strategy profile there exists an improvement

path to a pure Nash equilibrium, in this case (u, l, A), which is a unique pure Nash equi-

librium of the game and also a unique maximin strategy profile of the game. This game

also illustrates Theorem 1 of Fabrikant et al. (2013) (Theorem 4 of current paper) that if

every subgame of a game (including the game itself) has a unique pure Nash equilibrium

then the game is weakly acyclic. As we will see later, that every subgame has a unique

pure Nash equilibrium is a special case of that every subgame is strongly solvable in the

sense of Nash, in pure strategies, which is the case for more-than-two-person UC games in

pure strategies. Perhaps not so apparent at first sight for this game is that a subgame with

player three’s strategy fixed to A (call subgame A) is an ordinal potential game (Monderer

and Shapley (1996)), with player three’s payoff function being a diminishing type of ordinal

potential function. So is a subgame B, and indeed every player restricted subgame is an

ordinal potential game. The equilibrium (d, l, B) of subgame B is not an equilibrium of

entire game, however, because player three improves by deviating. As we will see later, if a

deviation from an equilibrium of a subgame like (d, l, B) of subgame B is profitable for the

restricted player then it secures a higher payoff for him at an equilibrium of a new subgame,

in this case (u, l, A) of subgame A. Since player three’s payoff is minimized at each subgame

equilibrium, an equilibrium of a subgame having the maximum minimum payoff for player

three is an equilibrium of the entire game. We will prove these observations formally in the

sequel.

We are mostly concerned with pure Nash equilibria of finite or infinite normal form

games. This does not preclude mixed Nash equilibria of finite games, however, for it can be

thought of as pure Nash equilibria of infinite games. Mixed Nash equilibria of finite games
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l r

u 2, 2, 2 7, 1, 3

d 1, 3, 7 0, 4, 6

A

l r

u 3, 7, 1 6, 0, 4

d 4, 6, 0 5, 5, 5

B

Figure 1: A three-person UC game. Player three chooses A or B.

will be discussed in the final section.

The rest of the paper is organized as follows. Section 2 gives some preliminaries, Section

3 gives our main results, and Section 4 concludes with some comments.

2 Preliminaries

2.1 Games, subgames, and player subgames

Throughout, we denote by G an n-person normal form game (N, (Si)i∈N , (ui)i∈N ), where

N = {1, . . . , n} is a set of players, Si is a set of strategies of player i ∈ N , and ui is a real-

valued payoff function of player i ∈ N defined on the set of strategy profiles S =
∏

i∈N Si.

Here S is either finite or infinite. If infinite we assume that Si are compact and ui are

continuous, endowing the product topology to S. Let S−i =
∏

j 6=i Sj . As usual, a strategy

profile s = (s1, . . . , sn) ∈ S is also denoted as s = (si, s−i) ∈ Si × S−i. A strategy profile

s∗ = (s∗i , s
∗
−i) ∈ S is a pure Nash equilibrium if

ui(s
∗) ≥ ui(si, s

∗
−i) ∀si ∈ Si ∀i ∈ N.

We denote by E(G) the set of pure Nash equilibria of G.

A subgame of a game G is a game G′ obtained from G by replacing Si with their nonempty

and closed subsets S′i ⊆ Si and restricting the domain of ui to S′ =
∏

i∈N S′i. Note that if

s∗ ∈ E(G) and s∗ ∈ S′ then s∗ ∈ E(G′). We denote by G(si) a subgame of G such that

player i’s strategy set is replaced with {si}. Thus, in G(si), player i is inactive. We call such

a player restricted subgame a player subgame. The set of strategy profiles of G(si) is S(si),

where S(si) = {si} × S−i. The set of equilibria of G(si) is E(G(si)), where E(G(si)) ⊆

S(si). We also denote by G(si, sj) a player subgame of G such that players i and j’s

strategy sets are replaced with {si} and {sj}, respectively. The set of strategy profiles (resp.

equilibria) of G(si, sj) is S(si, sj) (resp. E(G(si, sj))), where S(si, sj) = {si} × {sj} × S−ij

(resp. E(G(si, sj)) ⊆ S(si, sj)).
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2.2 Unilaterally competitive games

A game G is unilaterally competitive (UC) (Kats and Thisse (1992)) if, for any i ∈ N ,

ui(s
′
i, s−i) > ui(s) ⇐⇒ uj(s

′
i, s−i) < uj(s) ∀j ∈ N \ {i} ∀s′i ∈ Si ∀s = (si, s−i) ∈ S.

The following two theorems are proved in Kats and Thisse (1992).1

Theorem 1 (Payoff equivalence: Kats and Thisse (1992, Theorem 1)). If G is UC and

s∗, s∗∗ ∈ E(G) then for each i ∈ N , ui(s
′) = ui(s

′′) for all s′, s′′ ∈
∏

i∈N{s∗i , s∗∗i }.

Theorem 2 (Interchangeability: Kats and Thisse (1992, Theorem 2)). If G is UC and

s∗, s∗∗ ∈ E(G) then s ∈ E(G) for all s ∈
∏

i∈N{s∗i , s∗∗i }. In other words, E(G) is a Cartesian

product, if nonempty.

Nash (1951) proposed, after having established the existence of a mixed Nash equilibrium,

the solution of noncooperative finite games as the set of mixed Nash equilibria satisfying the

above interchangeability in mixed strategies, and called a game solvable if it has the solution.

Kats and Thisse (1992) generalized this concept to general noncooperative games, and called

UC games solvable in the sense of Nash (Kats and Thisse, 1992, page 291). It is important

to note, however, that the existence of an equilibrium should be guaranteed in order for a

game to be called solvable, so we will call a game solvable in the sense of Nash if it has a

nonempty set of equilibria forming a Cartesian product.

Nash (1951) also defined the strong solution and called a game strongly solvable if it has

the strong solution; we will introduce this stronger concept in Section 3 below.

Remark 1. If G is UC then its subgames are UC, in particular, player subgames are UC. The

payoff equivalence also holds for the inactive players of player subgames, i.e., ui(s
∗) = ui(s

∗∗)

for any s∗, s∗∗ ∈ E(G(si)). To see this, note that uj(s
∗∗
j , s∗−j) = uj(s

∗) implies ui(s
∗∗
j , s∗−j) =

ui(s
∗) by UC, and apply this unilateral deviation from s∗j to s∗∗j for each j ∈ N \ {i} until

we reach to s∗∗.

2.3 Maximin strategies and the maximin solvability of games

A maximin strategy of a player i in an n-person game is a strategy si ∈ Si that secures the

maximin payoff vi such that

vi = max
si∈Si

min
s−i∈S−i

ui(si, s−i).

1In Kats and Thisse (1992) the payoff equivalence is proved for the class of weakly unilaterally competitive

(WUC) games, which is a superclass of UC games, and the interchangeability is also shown for two-person

WUC games. The results of the current paper do not extend to WUC games.
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That is, si is a strategy such that

ui(si, s−i) ≥ vi ∀s−i ∈ S−i.

See De Wolf (1999) for more on the maximin strategies and maximin payoffs for n-person

games. We say that a game is maximin solvable if the set of equilibria coincides with the set

of profiles of maximin strategies of players. De Wolf (1999) shows the following result.

Theorem 3 (Maximin solvability: De Wolf (1999, Theorem 3.4)). Let G be a UC game. If

there exists an equilibrium, then s = (s1, . . . , sn) is an equilibrium of G if and only if si is a

maximin strategy of player i for any i ∈ N .

2.4 Improvement path, acyclic games, and weakly acyclic games

Let us call a sequence (sk)tk=0 of strategy profiles in S a sequence of unilateral deviations

in S if, for each k = 1, . . . , t, ski 6= sk−1i and sk−i = sk−1−i for some i ∈ N (i depends on k).

An improvement path in S is a sequence of unilateral deviations in S such that, for each

k = 1, . . . , t,

ski 6= sk−1i , sk−i = sk−1−i , and ui(s
k) > ui(s

k−1) for some i ∈ N (i depends on k).

Here, ski such that ski 6= sk−1i is a better-response of player i to sk−1 = (sk−1i , sk−1−i ). If this is a

best-response of i to sk−1−i , i.e., if ski additionally satisfies that ui(s
k
i , s

k−1
−i ) ≥ ui(si, s

k−1
−i ) ∀si ∈

Si, then we call it a best-improvement path in S. We also call these paths in S paths in the

game G. If st = s0 then the path is called a cycle. We say that a game G is acyclic if it

contains no improvement cycle; best-response acyclic if there is no best-improvement cycle.

A game G is said to be weakly acyclic if for any s ∈ S there exists an improvement path from

s to some s∗ ∈ E(G). G is best-response weakly acyclic, or weakly acyclic under best-response,

if for any s ∈ S there exists a best-improvement path from s to some s∗ ∈ E(G).

Note that acyclicity and weak acyclicity here are defined not only for finite games but also

for infinite games, i.e., for games with infinite S as well as finite S. The following theorem

is proved by Fabrikant et al. (2013) for finite games.

Theorem 4 (Fabrikant et al. (2013, Theorem 1)). Every finite game G that has a unique

pure Nash equilibrium in every subgame G′ of G is weakly acyclic, even under best-response.

2.5 Ordinal potential games

A function P : S → R is an ordinal potential function of G (Monderer and Shapley (1996)) if

ui(s
′
i, s−i) > ui(s) ⇐⇒ P (s′i, s−i) > P (s) ∀i ∈ N ∀s′i ∈ Si ∀s = (si, s−i) ∈ S.
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If −P is an ordinal potential function of G, we call P a diminishing ordinal potential function

of G. A game G that has a (diminishing) ordinal potential function is called an ordinal

potential game (Monderer and Shapley (1996)). In the following, we will make use of a

diminishing type of ordinal potential function. Any minimizer of a diminishing ordinal

potential function P of G, if any, is a pure Nash equilibrium of G, i.e., arg mins∈S P (s) ⊆

E(G). It is easy to see that if G is an ordinal potential game then G is acyclic, i.e., G does

not have an improvement cycle. A fortiori, G is then best-response acyclic. Note that if G

is an ordinal potential game then its subgames are also ordinal potential games, where the

(diminishing) ordinal potential function is given by the restriction of the original one.

3 Main results

3.1 Existence of a pure Nash equilibrium when n > 2

Recall that we assume compact Si and continuous ui for infinite games. These guarantee the

existence of mins−i ui(si, s−i) and maxsi mins−i ui(si, s−i), which is trivial for finite games.

We first prove the following lemma. This lemma holds for n ≥ 2.

Lemma 1. Let G be an n-person UC game with n ≥ 2. Then every player subgame of G

is an ordinal potential game having a diminishing ordinal potential function. Moreover, the

set of its pure Nash equilibria coincides with the set of potential minimizers.

Proof. It suffices to show for a player subgame in which only one player is inactive. Fix an

arbitrary i ∈ N and si ∈ Si, and consider the player subgame G(si), whose set of strategy

profiles is S(si) = {si} × S−i. Letting uj(si|·) be the restriction of uj to S(si) for all j ∈ N ,

UC property says that

uj(si|s′j , s−ij) > uj(si|s−i) ⇐⇒ ui(si|s′j , s−ij) < ui(si|s−i) ∀j ∈ N\{i} ∀s′j ∀s−i = (sj , s−ij),

i.e., ui(si|·) is a diminishing ordinal potential function of G(si). Hence G(si) is an ordinal

potential game having a diminishing ordinal potential function.

Note that every minimizer of ui over S(si) is an element of E(G(si)) by potential ar-

gument, i.e., arg mins∈S(si) ui(s) ⊆ E(G(si)). To see the converse, let s ∈ E(G(si)). If

s′ ∈ arg mins′′∈S(si) ui(s
′′), then s′ ∈ E(G(si)), and ui(s) = ui(s

′) by Theorem 1 (see also

Remark 1). Thus s ∈ arg mins′′∈S(si) ui(s
′′), and we have E(G(si)) ⊆ arg mins∈S(si) ui(s).

Hence E(G(si)) = arg mins∈S(si) ui(s).

The following lemma asserts, in essence, that player subgames are “well-ordered”.
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Lemma 2. Let G be an n-person UC game with n > 2. If s ∈ E(G(si)), ui(s
′
i, s−i) > ui(s),

and s′ ∈ E(G(s′i)), then ui(s
′) > ui(s).

Proof. Assume that s ∈ E(G(si)), ui(s
′
i, s−i) > ui(s), s

′ ∈ E(G(s′i)), and suppose by way

of contradiction that ui(s
′) ≤ ui(s). We let Ĝ be a finite subgame of G such that the

set of strategy profiles is Ŝ =
∏

h∈N{sh, s′h}, which is UC, and show that there exist two

contradictory sequences (xk)pk=0 and (yk)qk=0 of unilateral deviations in Ĝ. Note that s ∈

E(Ĝ(si)) and s′ ∈ E(Ĝ(s′i)). Also s′ 6= (s′i, s−i) (since ui(s
′) ≤ ui(s) < ui(s

′
i, s−i)), so there

exists some j ∈ N \ {i} such that s′j 6= sj . Fix such j.

(i) (xk)pk=0: Let x0 = s, z = (s′i, s−i), and x2 = (s′i, s
′
j , s−ij). We have ui(x

0) < ui(z)

by assumption. There are two cases. (a) uj(z) ≥ uj(x
2): In this case let x1 = z. Then

ui(x
0) < ui(x

1) with x0i 6= x1i , and uj(x
0) > uj(x

1) ≥ uj(x
2) by UC property. (b) uj(z) <

uj(x
2): In this case let x1 = (s′j , s−j). Then uj(x

0) ≥ uj(x
1) by x0 = s ∈ E(Ĝ(si)).

Also ui(x
1) < ui(x

2), since if ui(x
2) ≤ ui(x

1) with x2i 6= x1i , then by uj(x
1) ≤ uj(x

0)

with x1j 6= x0j , ui(x
0) < ui(z) with x0i 6= zi, and uj(z) < uj(x

2) with zj 6= x2j , we have

uh(x2) ≥ uh(x1) ≥ uh(x0) > uh(z) > uh(x2) by UC property for h 6= i, j, a contradiction.

Hence ui(x
1) < ui(x

2), and uj(x
0) ≥ uj(x

1) > uj(x
2) by UC property. Now, we have

uj(x
0) > uj(x

2) in both cases. If x2 6∈ E(Ĝ(s′i, s
′
j)) then append a best-improvement path

in Ĝ(s′i, s
′
j) from x2 to some xp ∈ E(Ĝ(s′i, s

′
j)), along which uj is diminishing; otherwise let

p = 2. Since s′ ∈ E(Ĝ(s′i)), we have s′ ∈ E(Ĝ(s′i, s
′
j)), and we have uj(x

p) = uj(s
′) by

Theorem 1. Hence

uj(s) = uj(x
0) > uj(x

p) = uj(s
′). (1)

(ii) (yk)qk=0: The construction is similar to (i). Let y0 = s′, z = (si, s
′
−i), and y2 =

(si, sj , s
′
−ij). We have ui(y

0) ≤ ui(z), i.e. ui(s
′) ≤ ui(si, s

′
−i) (since ui(s

′) ≤ ui(s) ≤

ui(si, s
′
−i); this second inequality is by s ∈ E(Ĝ(si)) and Lemma 1). Again there are two

cases. (a) uj(z) ≥ uj(y
2): In this case let y1 = z. Then ui(y

0) ≤ ui(y
1) with y0i 6= y1i , and

uj(y
0) ≥ uj(y

1) ≥ uj(y
2) by UC property. (b) uj(z) < uj(y

2): In this case let y1 = (sj , s
′
−j).

Then uj(y
0) ≥ uj(y

1) by y0 = s′ ∈ E(Ĝ(s′i)). Also ui(y
1) < ui(y

2), since if ui(y
2) ≤ ui(y

1)

with y2i 6= y1i , then by uj(y
1) ≤ uj(y

0) with y1j 6= y0j , ui(y
0) < ui(z) with y0i 6= zi, and

uj(z) < uj(y
2) with zj 6= y2j , we have uh(y2) ≥ uh(y1) ≥ uh(y0) > uh(z) > uh(y2) by UC

property for h 6= i, j, a contradiction. Hence ui(y
1) < ui(y

2), and uj(y
0) ≥ uj(y

1) > uj(y
2)

by UC property. Now, we have uj(y
0) ≥ uj(y

2) in both cases. If y2 6∈ E(Ĝ(si, sj)) then

append a best-improvement path in Ĝ(si, sj) from y2 to some yq ∈ E(Ĝ(si, sj)), along which

uj is diminishing; otherwise let q = 2. Then since s ∈ E(Ĝ(si, sj)), we have uj(y
q) = uj(s)

by Theorem 1. Hence

uj(s
′) = uj(y

0) ≥ uj(y
q) = uj(s). (2)
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Since (2) contradicts (1), we must have that ui(s
′) > ui(s).

See Figure 2 for the illustration of the choice of x1 and y1. The (dotted) arrows represent

the directions of (weak form of) improvement. The sequences (xk)pk=0 and (yk)qk=0 are chosen

so that uj(·) is decreasing.

x0 = s

x2

i (a)

y2

y0 = s `

y1 = z

ii (a)
x0 = s

x2

x1

z

i (b)

y2

y0 = s `

z

ii (b)

y1y0 = s ` y0 = s `

x0 = s x0 = s

x1 = z j

i

Figure 2: Choice of x1 and y1. i(a) uj(z) ≥ uj(x
2), i(b) uj(z) < uj(x

2); ii(a) uj(y
2) ≤ uj(z),

ii(b) uj(y
2) > uj(z). The sequences are chosen so that uj(·) is decreasing.

Now we are ready to prove the following existence theorem.

Theorem 5. Every n-person UC game with n > 2 has a pure Nash equilibrium.

Proof. By Lemma 1, E(G(si)) is nonempty for any i ∈ N and si ∈ Si. In addition, any

s, s′ ∈ E(G(si)) are payoff equivalent by Theorem 1. Let vi(si) = ui(s) with s ∈ E(G(si)).

Then, by Lemma 2, we have for any si and s = (si, s−i) ∈ E(G(si)) that

ui(s
′
i, s−i) > ui(s) =⇒ vi(s

′
i) > vi(si)

i.e., by taking the contrapositive,

vi(s
′
i) ≤ vi(si) =⇒ ui(s

′
i, s−i) ≤ ui(s).

Let s∗i ∈ Si be such that vi(s
∗
i ) = maxsi∈Si vi(si), i.e., vi(s

∗
i ) = maxsi∈Si mins−i∈S−i ui(si, s−i),

and s∗ = (s∗i , s
∗
−i) ∈ E(G(s∗i )). Then since vi(s

′
i) ≤ vi(s

∗
i ) for all s′i ∈ Si, we have

ui(s
′
i, s
∗
−i) ≤ ui(s

∗) for all s′i ∈ Si. Also uj(s
′
j , s
∗
−j) ≤ uj(s

∗) for all s′j ∈ Sj and all j ∈ N \{i}

by s∗ ∈ E(G(s∗i )). Hence s∗ is a pure Nash equilibrium of G.

3.2 Maximin solvability

Recall that a game G is maximin solvable if the set of equilibria and the set of maximin

strategy profiles coincide. While the latter is always nonempty, the former is not, so the

maximin solvability requires the set of equilibria be nonempty. By Theorems 3 and 5, we

have established the following result.
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Theorem 6. Every n-person UC game with n > 2 is maximin solvable in pure strategies.

We here give a proof of Theorem 3 differently to De Wolf (1999).

Proof of Theorem 3. Let G be an n-person UC game with n ≥ 2. By Lemma 1, we observe

that player i chooses si to maximize ui(si, s−i) given s−i and player −i (“other than i”)

chooses s−i to minimize ui(si, s−i) given si, and this is true for any i ∈ N . Since the

minimization of ui is equivalent to the maximization of −ui, this game of players i and −i is

equivalent to a two-person zero-sum game, for any i ∈ N . Now, if there exists an equilibrium

in a two-person zero-sum game then a pair of strategies is an equilibrium if and only it is

a pair of maximin strategies (see e.g. Osborne and Rubinstein (1994, Section 2.5)). If s is

an equilibrium of G, then (si, s−i) is an equilibrium of two-person game of i and −i, for any

i ∈ N . Thus, in particular, if there exists an equilibrium in G, then s = (s1, . . . , sn) is an

equilibrium of G if and only if si is a maximin strategy of player i, for any i ∈ N .

3.3 Strong solvability in the sense of Nash

Recall that a game G is solvable in the sense of Nash if it has the solution, namely, a

nonempty set of interchangeable equilibria. By Theorems 2 and 5, we can now say that

every n-person UC game with n > 2 is solvable in pure strategies. Actually, more can be

said.

A solvable game G is said to be strongly solvable (Nash, 1951) if it has the strong solution

E(G), which is the solution with additional property such that

s ∈ E(G), (s′i, s−i) ∈ S, ui(s
′
i, s−i) = ui(s) =⇒ (s′i, s−i) ∈ E(G).

Thus, if s is a unique equilibrium of a game G, G is strongly solvable if and only if s is a

strict unique equilibrium of G. We now prove the following result.

Theorem 7. Every n-person UC game with n > 2 is strongly solvable in pure strategies.

Proof. Assume that s ∈ E(G), (s′i, s−i) ∈ S, and ui(s
′
i, s−i) = ui(s). If (s′i, s−i) 6∈ E(G) then

there exists j ∈ N \ {i} such that uj(s
′
j , s
′
i, s−ji) > uj(sj , s

′
i, s−ji) for some s′j ∈ Sj . Let

x0 = (sj , si, s−ji), x1 = (sj , s
′
i, s−ji), x2 = (s′j , s

′
i, s−ji), x3 = (s′j , si, s−ji).

Then ui(x
0) = ui(x

1) with x0i 6= x1i , uj(x
1) < uj(x

2) with x1j 6= x2j , and uj(x
3) ≤ uj(x

0) with

x3j 6= x0j since x0 ∈ E(G). Note that x2i 6= x3i . If ui(x
2) ≥ ui(x

3) then by UC property

uj(x
0) = uj(x

1) < uj(x
2) ≤ uj(x

3) ≤ uj(x
0),
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a contradiction. If ui(x
2) < ui(x

3) then, for h 6= i, j, by UC property

uh(x0) = uh(x1) > uh(x2) > uh(x3) ≥ uh(x0),

another contradiction. Hence we must have that (s′i, s−i) ∈ E(G).

3.4 Weak acyclicity

Assume first that G is a finite UC game with more than two players. Lemmas 1 and 2 readily

suggest the existence of a best-improvement path from any profile s to some s∗ ∈ E(G), as

shown in the proof of the following theorem.

Theorem 8. Every finite n-person UC game with n > 2 is weakly acyclic, even under

best-response.

Proof. Pick an arbitrary s ∈ S. We are done if s ∈ E(G). Otherwise fix an i ∈ N , and follow

a best-improvement path in G(si) to some (si, s
′
−i) ∈ E(G(si)), which is a best-improvement

path in G. If si is not a best-response to s′−i then switch to a best-response s′i, and follow a

best-improvement path in G(s′i) to some (s′i, s
′′
−i) ∈ E(G(s′i)), which is a best-improvement

path in G. Iteration of this procedure terminates at a pure Nash equilibrium of G in finite

steps by Lemma 2 and finiteness of Si.

Although it may not be so common to consider weak acyclicity in infinite games, we have

the following result for infinite games.

Theorem 9. Every n-person UC game with n > 2 is weakly acyclic.

Proof. Pick an arbitrary s ∈ S. We are done if s ∈ E(G). Otherwise pick an arbitrary

s∗ ∈ E(G), and let Ĝ be a finite subgame of G such that the set of strategy profiles is

Ŝ =
∏n

h=1{sh, s∗h}, which is UC. Here ui(s) < ui(s
∗
i , s−i) for some i. To see this, suppose to

the contrary. Then uh(s) ≥ uh(s∗h, s−h) for all h, i.e., s is an equilibrium of Ĝ. We then have

s, s∗ ∈ E(Ĝ), so s ∈ Ŝ are all equilibria by Theorem 2, and payoff equivalent by Theorem 1.

However, since s 6∈ E(G), there must exist j ∈ N and s′j ∈ Sj such that uj(s) < uj(s
′
j , s−j),

i.e., uj(s
∗
j , s−j) < uj(s

′
j , s−j) since uj(s) = uj(s

∗
j , s−j). Notice that s∗ ∈ E(G(s∗j )) and

uj(s
∗) = uj(s

∗
j , s−j) imply (s∗j , s−j) ∈ E(G(s∗j )) by Lemma 1, and uj(s

∗
j , s−j) < uj(s

′
j , s−j)

implies that uj(s
∗) < uj(s

∗∗) with s∗∗ ∈ E(G(s′j)) by Lemma 2, contradicting that s∗i of

s∗ ∈ E(G) is a maximin strategy of i (Theorem 6). Hence ui(s) < ui(s
∗
i , s−i) for some i.

Let s0 = s, s1 = (s∗i , s−i), and follow the best-improvement path s1, s2, . . . , st in Ĝ(s∗i ) to

some st ∈ E(Ĝ(s∗i )), which is an improvement path in G. Note that st ∈ E(Ĝ(s∗i )) is also an

equilibrium of G, because by s∗ ∈ E(Ĝ(s∗i )), ui(s
∗) = ui(s

t) by Theorem 1, and st ∈ E(G)
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by Lemma 1. We thus have an improvement path s0, s1, . . . , st in G from s to a pure Nash

equilibrium st ∈ E(G).

For finite G, there is an alternative proof of Theorem 8. Recall Theorem 4 (Fabrikant et

al. (2013, Theorem 1)). For the games of Theorem 8 the uniqueness of equilibrium does not

hold in general. However, we can generalize Theorem 4 in the following way.

Theorem 10. Every finite game G that has a strong solution in every subgame G′ of G is

weakly acyclic, even under best-response.

This theorem does not require G be UC. Notice that that every subgame has a unique

pure Nash equilibrium implies that every subgame is strongly solvable. To see this, let s

be the unique pure Nash equilibrium of a subgame G′ whose set of strategy profiles is S′,

and consider the subgame of G′ whose set of strategy profiles is S′i × {s−i}. Since s must

also be a unique pure Nash equilibrium of this subgame, we have ui(s
′
i, s−i) < ui(s) for all

s′i ∈ S′i \ {si}, and this is true for any i ∈ N , i.e., s is a strict unique pure Nash equilibrium

of G′, which shows that G′ is strongly solvable.

In the following, we provide a proof of Theorem 10 along the line of proof in Fabrikant

et al. (2013). We use Lemma 1 of Fabrikant et al. (2013) as follows. Here BRG(s) is the set

of strategy profiles reached by best-responses in a game G starting from a profile s ∈ S.

Lemma 3 (Fabrikant et al.’s Lemma 1). If s is a strategy profile in G, and G′ is the subgame

of G spanned by BRG(s), then any best-improvement path s, s1, . . . , sk in G′ that starts at s

is a best-improvement path in G.

Proof. See Fabrikant et al. (2013).

Proof of Theorem 10. Every single profile subgame of G is trivially best-response weakly

acyclic. Suppose, by way of induction, that for some subgame G′ of G every strict subgame

of G′ is best-response weakly acyclic. We show that G′ is then best-response weakly acyclic.

Let s ∈ G′, and G′′ the subgame of G′ spanned by BRG′(s). Letting S′ and S′′ be the sets

of strategy profiles of G′ and G′′, respectively, we consider the cases (i) E(G′) ∩ S′′ 6= ∅ and

(ii) E(G′) ∩ S′′ = ∅. In the former case we assume that s 6∈ E(G′) since otherwise trivial.

Case (i): E(G′)∩S′′ 6= ∅. Pick an arbitrary s′ ∈ E(G′)∩S′′. Then, since s′ ∈ S′′ and S′′

is spanned by BRG′(s), there is for any j ∈ N such that s′j 6= sj a best-improvement path

in G′ from s to some ŝ ∈ S′′ such that ŝj = s′j . Fix one such j and consider G′(ŝj), a strict

subgame of G′ where j is restricted to playing ŝj = s′j . The inductive hypothesis guarantees

a best-improvement path in G′(ŝj) from ŝ to some s′′ ∈ E(G′(ŝj)), where s′′j = ŝj = s′j . The

path is also a best-improvement path in G′. Notice that s′ ∈ E(G′) is also in E(G′(ŝj)).
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Since E(G′(ŝj)) is a solution, we must have
∏

i∈N{s′i, s′′i } ⊆ E(G′(ŝj)), where s′j = s′′j .

Since the solution is strong, we must have (s′′1, s
′
−1) ∈ E(G′) since u1(s

′′
1, s
′
−1) = u1(s

′),

(s′′1, s
′′
2, s
′
−12) ∈ E(G′) since u2(s

′′
1, s
′′
2, s
′
−12) = u2(s

′′
1, s
′
−1), and likewise, s′′ ∈ E(G′). Hence

we have a best-improvement path in G′ from s to s′′ ∈ E(G′) via ŝ.

Case (ii): E(G′) ∩ S′′ = ∅. Then E(G′) ∩ E(G′′) = ∅. Also G′′ is a strict subgame

of G′. Because s′′ ∈ E(G′′) implies s′′ 6∈ E(G′), any s′′ ∈ E(G′′) must have an outgoing

best-improvement edge to some profile ŝ(s′′) in G′. But the inductive hypothesis ensures

that s′′ ∈ BRG′′(s) for some s′′ ∈ E(G′′). By Lemma 3, s′′ ∈ BRG′(s), which then ensures

that ŝ(s′′) must also be in BRG′(s), and hence in G′′. Thus, s′′ is not an equilibrium of G′′,

which is a contradiction. This case (ii) is impossible.

Note that, by Theorem 7, if n > 2 then all the subgames of an n-person UC game are

strongly solvable since they are n-person UC with n > 2. Thus the games of Theorem 8

satisfy the condition of Theorem 10, and we can prove Theorem 8 also by using Theorem 10.

4 Concluding comments

Since subgames of a UC game are also UC, our results also hold for the subgames of n-person

UC games with n > 2. The weak acyclicity are strengthened in player subgames to acyclicity

because they are ordinal potential games.

Take the game of Fig. 1 again. As we have seen, this three-person UC game has a

cycle in the entire game. Note that, when applied to this game, Lemma 2 is saying the

impossibility of a cycle in the entire game that involves equilibria of player subgames. This

is a sharp contrast to two-person UC games, which permits a cycle involving equilibria of

player subgames (e.g. Matching Pennies).

Our results rest on Theorems 1 and 2 that are proved in Kats and Thisse (1992), for

which we did not give the proofs. We also used and cited the results of De Wolf (1999) and

Fabrikant et al. (2013), namely, Theorems 3 and 4 of current paper, respectively, for which

we gave alternative proofs. Except for the last Theorem 4 (and its base Lemma 3), all the

theorems mentioned here are valid for both finite and infinite games. Also our Lemmas 1, 2,

and Theorems 5, 6, 7, are valid for both finite and infinite games, whereas Theorems 8 and

10 are for finite games, and Theorem 9 for infinite games; these differ in whether the weak

acyclicity is in best-response or not.

We have hitherto considered the pure Nash equilibria of finite or infinite games. Let us

now briefly look at the mixed Nash equilibria of finite games. Since such an equilibrium, i.e.,

an equilibrium of the mixed extension of finite games, is thought of as a variant of a pure
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Nash equilibrium of infinite games, our theorems mentioned above as being valid for infinite

games are also valid for mixed Nash equilibria of finite games. We note, in particular, that

if G is a finite game that is UC in mixed strategies then Theorem 7 applied to the mixed

extension of G implies that G is strongly solvable in Nash’s original sense. As remarked in

Nash (1951, page 290), G that is strongly solvable (in mixed strategies) has a pure Nash

equilibrium. It can be shown that the set of equilibria of such games is the convex hull of

the set of pure Nash equilibria. Therefore, such games are sufficient to be considered in pure

strategies. However, as De Wolf (1999) has remarked, such games are very restrictive, and

tend to be degenerate in the sense that most of pure strategies are dominated.

As a final comment, we note, analogously to the convexity theorem of Kats and Thisse

(1992, Theorem 3), that the set of pure Nash equilibria of finite games with linearly ordered

finite strategy sets that are UC in pure strategies, if nonempty, is convex in the sense of

order if the payoff functions are quasiconcave with respect to the own strategy; see Iimura

and Watanabe (2016, Theorem 3.2). The results of this paper also apply to such ordered

finite n-person UC games, provided that n > 2.
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