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Abstract

I propose a Bayesian VAR model with added priors from a combination of multi-
ple DSGE models. The prior of the combination of multiple DSGE models improves
the marginal likelihood of the DSGE-VAR with respect to a single DSGE model.
This approach might be useful for model comparison between two or more DSGE
models and for measuring the relative degrees of misspecification of DSGE models
through comparing impulse responses of DSGE models with those of the multiple
DSGE-VAR. From the data of Japanese economy including the “Bubble Boom” and
the “Lost Decade”, I demonstrate the multiple DSGE-VAR combined two DSGE
models with and without financial frictions, and evaluate misspecification of both
DSGE models from their impulse response functions.
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1 Introduction
Del Negro and Schorfheide (2004, 2009) and Del Negro et al. (2007) propose to es-
timate Bayesian vector auto-regressive (VAR) models using priors with a dynamic
stochastic general equilibrium (DSGE) model, which imposes cross-equation restric-
tions on multivariate time series. These are referred to as DSGE-VARs. The ad-
vantages of DSGE-VARs are their abilities to measure the misspecification of DSGE
models in terms of cross-equation restrictions and to provide more plausible forecast-
ing and policy analysis using impulse responses. And, Consolo et al. (2009) expanded
them to DSGE-FAVARs.

This study considers which model weights should be used as a combination of two
or more DSGE models with respect to the spirit of the DSGE-VAR approach. I refer to
the new DSGE-VAR approach as multiple DSGE-VARs (MDSGE-VARs). The advan-
tages of MDSGE-VARs are their ability to compare misspecification between two or
more DSGE models in terms of (1) cross-equation restrictions and (2) contemporane-
ous impacts of shocks on observable variables and to conduct model selection among
multiple DSGE models in terms of data-generating processes such as VAR. The idea of
MDSGE-VARs is similar to the Minnesota prior approach proposed by Sims and Zha
(1998), which uses multiple priors formed from several kinds of dummy variables. To
show the advantage of my approach empirically, a standard New Keynesian model
with financial friction invented by Kaihatsu and Kurozumi (2014a, b) along the line
of Bernanke et al. (1999) is adopted as well as the model without friction.

The remainder of the paper is organized as follows. Section 2 describes the MDSGE-
VAR approach. Section 3 deals with the estimation of two DSGE models as priors.
Section 4 reports the estimated results, including the model weights of the two mod-
els against the data and impulse responses of the MDSGE-VAR. Section 5 concludes.

2 Multiple DSGE-VAR

2.1 Setup
To define a standard DSGE-VAR that uses a single DSGE model as a prior, I firstly
describe a VAR specification for yt, following Del Negro and Schorfheide (2004) and
Del Negro et al. (2007). The p-th order VAR is represented as

∆yt = Φ0 + Φ1∆yt−1 + · · ·Φp∆yt−p + ut. (1)

n denotes the dimension of ∆yt and I let the k × 1 vector xt =[1, ∆y′t−1,· · · , ∆y′t−p] and
Φ = [Φ0,Φ1, · · · ,Φp]

′. I build the DSGE model prior by generating dummy observations
from the DSGE model as the following artificial sample moments. Let DSGE moments
be defined as ΓY Y (θ) = ED

θ [∆yt ∆y′t], ΓXX(θ) = ED
θ [xt x

′
t] and ΓXY (θ) = ED

θ [xt y
′
t] where θ is

the deep parameters of the DSGE model. The derivation of the moments is described
in Appendix A3. Using the DSGE moments, I obtain the mapping from the DSGE
model to the VAR parameters as below:
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Φ∗(θ) = Γ−1
XX(θ)ΓXY (θ), (2)

Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)Γ−1
XX(θ)ΓXY (θ), (3)

The prior distribution from an individual DSGE model follows the inverted-Wishart
multivariate normal (MNIW) form:

Φ, Σ|θ ∼MNIW
(
Φ∗(θ), [λTΓXX(θ)]−1, λTΣ∗(θ), λT − k

)
, (4)

where λ ∈ (0, ∞) is a hyperparameter and the ratio of the DSGE prior to the actual
observation is represented as λ

1+λ
. In addition, I express the standard DSGE-VAR with

the hyperparameter as DSGE-VAR(λ). When λ = 0, then DSGE-VAR(0) is equivalent
to a pure VAR model, and when λ =∞, then DSGR-VAR(∞) is a pure DSGE model.

The posterior distribution with combined artificial and actual sample moments
also follows the inverted-Wishart multivariate normal form:

Φ, Σ|Y, θ, λ ∼MNIW
(
Φ̂(θ), [(λ+ 1)T Γ̂XX(θ)]−1, (λ+ 1)TΣ̂(θ), (λ+ 1)T − k

)
, (5)

where
Φ̂(θ) = (λΓXX(θ) + Γ̂XX)−1(λΓXY (θ) + ˆΓXY ), (6)

Σ̂(θ) =
1

(λ+ 1)
[ (λΓY Y (θ) + Γ̂Y Y )− (λΓY X(θ) + Γ̂Y X)

× (λΓXX(θ) + Γ̂XX)−1(λΓXY (θ) + Γ̂XY ) ], (7)

and Γ̂XX is the actual sample moments.
The marginal likelihood (Zellner, 1971) is given by

pλ(Y | θ) = (2π)−nT/2
|λΓXX(θ) + Γ̂XX |−

n
2 |Σ̂(θ)|−

T (λ+1)−k
2

|λΓXX(θ)|−n2 |Σ∗(θ)|−Tλ−k2

2
n(T (λ+1)−k)

2

2
n(Tλ−k)

2

×
∏n

i=1 Γ [( (λ+ 1)T − k + 1− i )/2]∏n
i=1 Γ [(λT − k + 1− i )/2]

, (8)

Furthermore, normalization (or integration out) with respect to θ is implemented from
the modified harmonic mean by Geweke (1999):

pλ(Y ) =

ˆ
pλ(Y | θ)p(θ)dθ. (9)
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2.2 Multiple DSGE Priors
Let two different DSGE models denote M1 and M2, respectively, and the deep pa-
rameters used in the models denote θ1 and θ2. Using these notations, the DSGE
artificial sample moments built from the two models are given by ΓY Y (θ1 |M1) =
ED
θ1|M1

[∆yt4y′t], ΓXX(θ1 |M1) = ED
θ1|M1

[xt x
′
t], ΓXY (θ1 |M1) = ED

θ1|M1
[xt ∆y′t], for model M1 ,

and ΓY Y (θ2 |M2) = ED
θ2|M2

[∆yt4y′t], ΓXX(θ2 |M2) = ED
θ2|M2

[xt x
′
t], ΓXY (θ2 |M2) = ED

θ2|M2
[xt ∆y′t]

for model M2.
As Eq.(6) and Eq.(7), the posterior mean and variance are formed from linear com-

bination of the artificial and actual sample moments. We can easily extend from the
single prior of dummy variables to muliple priors by redefining as,

λΓXX(θi) ≡ λ1 ΓXX(θ1) + λ2 ΓXX(θ2) + · · ·+ λm ΓXX(θm), (10)

where for each model i, hyperparameters of priors are given as λi ∈ (0, ∞), i =
1, 2, · · · ,m. λΓY Y (θi) and λΓXY (θi) are also redefined in the same way. Since the pur-
pose of this study is model comparison, let us introduce an additional hyperparameter
to compare models conveniently, instead of using λi. The additional hyperparameter
is µ ∈ (0, 1), which indicates a model probability (or a model weight) of model M1 from
both models, then the priors of multiple DSGE moments are defined as

λΓY Y,µ(θ1, θ2) ≡ λµΓY Y (θ1 |M1) + λ (1− µ)ΓY Y (θ2 |M2), (11)

λΓXX,µ(θ1, θ2) ≡ λµΓXX(θ1 |M1) + λ (1− µ)ΓXX(θ2 |M2), (12)

λΓXY,µ(θ1, θ2) ≡ λµΓXY (θ1 |M1) + λ (1− µ)ΓXY (θ2 |M2), (13)

where relations between hyperparameters λi and µ are λ1 = λµ and λ2 = λ(1−µ), and
the number of models is set to m = 2 in this case. I express the multiple DSGE-VAR
(MDSGE-VAR) with the two hyperparameters as MDSGE-VAR(λ,µ). When µ = 1,
then MDSGE-VAR(λ, 1) is equivalent to the standard DSGE-VAR(λ) based on the prior
from model M1, and when µ = 0, then MDSGE-VAR(λ, 0) is equivalent to the standard
DSGE-VAR(λ) based on the prior from model M2.

The prior and posterior distributions from the multiple DSGE models are the
same as Eq.(4) and Eq.(5) by replacing ΓY Y (θ), ΓXX(θ) and ΓXY (θ) with ΓY Y,µ(θ1, θ2),
ΓXX,µ(θ1, θ2) and ΓXY,µ(θ1, θ2), respectively. In the same manner, the marginal likeli-
hood of MDSGE-VAR(λ,µ), pλ,µ(Y | θ1, θ2) , is also given by Eq.(8) by replacing them
with their counterparts.

2.3 Choice of Hyperparameters
The marginal data density of the MDSGE-VAR(λ,µ) is given by

pλ,µ(Y ) =

ˆ
pλ,µ(Y | θ1, θ2)p(θ1, θ2)dθ, (14)
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where p(θ1, θ2) = p(θ |M1) p(θ |M2), meaning that the priors of the structural parame-
ters of model 1 and 2 are assumed to be independent of each other. Additionally, the
normalization (or integration out) in terms of the hyperparameters is implemented
using the modified harmonic mean by Geweke (1999). The choice of the hyperparam-
eters, λ and µ, is derived from the following maximization of the marginal likelihood
conditional on the hyperparameters:

[̂λ, µ̂] = arg max
λ∈Λ,µ∈M

pλ,µ(Y ). (15)

2.4 Impulse Response Functions
The impulse response functions (IRFs) of the MDSGE-VAR are calculated as well as
the IRFs of the DSGE-VAR, following Del Negro and Schorfheide (2004). Here, I show
how to derive the IRFs, step by step. Firstly, the contemporaneous impact of structural
shocks on the endogenous variables in the DSGE model M1 is given by(

∂yt
∂εt

)
DSGE(M1)

= A0︸︷︷︸
J×J

(θ1 |M1) = Σ∗tr(θ1 |M1)Ω∗(θ1 |M1),

where a square matrix A0 is the contemporaneous impact matrix. The matrix A0 is
built from multiplication of a matrices Λ and H(θ) of the state space model described
in Appendix A1. However, since ∂yt

∂εt
= ∂yt

∂∆St
∂∆St
∂εt

= Λ︸︷︷︸
J×J

H(θ)︸ ︷︷ ︸
J×L

, (J ≤ L), we need to

change matrix H(θ) to a square matrix by reducing the number of columns of H(θ) to
the number of variables: J . Since the structural shocks are independent of each other,
we must identify the impact matrix even cutting some of columns of H(θ). We select
common shocks between the two DSGE models as the columns of the matrices H(θ1)
and H(θ2) in order to evaluate combination of the models. And, the impact matrix A0

is uniquely decomposed into the two factors Σ∗tr(θ1 |M1) and Ω∗(θ1 |M1) by using QR
decomposition. Here, Σ∗tr(θ1 |M1) is a lower triangular matrix and Ω∗(θ1 |M1) is an
orthogonal matrix, that is, Ω∗(θ1 |M1)Ω∗(θ1 |M1)′ = I.

Secondly, the QR decomposition is also useful for identifing the shocks of structural
VARs. Using the decomposition, Rubio-Ramirez et al. (2010) propose an efficient
and fast identification method of structural VARs by imposing sign restrictions or
zero restrictions for their impulse response function. The contemporaneous impact of
structural shocks in the version of structural VARs is the same structure given as(

∂yt
∂εt

)
SV AR

= Σtr Ω,

where Σtr is a lower triangular matrix generated from Choleski decomposition of
variance-covariance matrix of one-step ahead forecasting errors of a reduced VAR.
Under a given Σtr, an orthogonal matrix Ω can be calculated to satify sign restric-
tions or zero restrictions. Although Σtr would influence to determine sizes of impulse
reponses, Ω would determine shape of those.
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Thirdly, in the case of the DSGE-VAR, we replace the factor Ω with Ω∗(θ |M1), and
the impact matrix is rewritten as(

∂yt
∂εt

)
DSGE−V AR

= Σtr Ω
∗(θ1|M1),

where Σtr is obtained from the DSGE-VAR.
Finally, in the case of the MDSGE-VAR, instead of the factor Ω∗(θ1 |M1), I use a

combination of factors of the two DSGE models given by:(
∂yt
∂εt

)
MDSGE−V AR

= Σtr EΩ∗(θ1, θ2), (16)

EΩ∗(θ1, θ2) = µΩ∗(θ1 |M1) + (1− µ)Ω∗(θ2 |M2),

where EΩ∗(θ1, θ2) is the expected values weighted on model weight µ. Although the
expected values are not orthogonal such that EΩ∗EΩ∗(θ)′ 6= I, the realized values are
an orthogonal matrix, Ω∗(θ1, θ2)Ω∗(θ1, θ2)′ = I, where Ω∗(θ1, θ2) = S(M1)Ω∗(θ1 |M1) +
(1 − S(M1))Ω∗(θ2 |M2), using the regime variable weighted on model M1, such that
S(M1)= 1, if model = M1, and S(M1)= 0, otherwise.

As mentioned above, the QR decomposition must be widely applicable for identi-
fication of VARs, although the decomposition would not be used as perfect identifi-
cation. In fact, we simulate IRFs to a shock unidentified by VARs but identified by
DSGE models, using Ω∗(θ1 |M1) and Ω∗(θ2 |M2) derived from impact matrices A0 of
DSGE models. In Section 4.4, I consider usefulness of the method again, by checking
impulse responses of MDSGE-VAR.

3 DSGE Models with/without Financial Friction

3.1 Benchmark Model
The standard New Keynesian model, into which Calvo-style staggered price and wage
settings are incorporated, is selected as the benchmark model. In this model, the
economy consists of three representative agents: households, firms and the central
bank. There are fourteen log-linearized structural equations in the benchmark model,
the following Eq.(17) through Eq.(30).1

Households

The marginal utility of the households, λt, is represented as:

λt = − 1

1− θπ/rn

{
σ

1− θ/z∗

(
ct −

θ

z∗
(ct− − z∗t )

)
− zbt

}
+

θπ/rn
1− θπ/rn

{
σ

1− θ/z∗
(
Etct+1 + Etz

∗
t+1 − θ/z∗ct

)
− Etzbt+1

}
, (17)

1A detailed explanation of the DSGE model and the derivation of log-linearized structural equations
is proveded by Kaihatsu and Kurozumi(2014a,b).
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λt = Etλt+1 − σEt z∗t+1 + rnt − Etπt+1, (18)

where ct is consumption, and rn and π are the steady states of the nominal interest
rate and inflation, respectively. In addition, rnt and πt are the nominal interest rate
and inflation. zbt and z∗t are a preference shock and a composite technological shock,
respectively. The real wage version of the New Keynesian Phillips curve is as follows:

wt = wt−1 − πt + γwπt−1 − z∗t +
z∗π

rn
(Etwt+1 − wt + Etπt+1 − γwπt + Etz

∗
t+1)

+
(1− ξw)(1− ξwz∗π/rn)

ξw(1 + χ(1 + λw)/λw)
/(χlt − λt − wt + zbt ) + zwt , (19)

where wt is the real wage, lt: the labor supply, and zwt : the real wage markup shock.
Futhermore, z∗t is a composite technology shock, such as z∗t = zzt + α/(1 − α)zψt , where
zzt is a neutral technology shock.

The utilization rate of capital, ut, is represented as:

ut = µ(rkt − qt), (20)

where rkt is the rental rate, and qt is the price of capital. The current and expected
marginal returns on capital, χt, are given as:

χt =

(
1− 1− δ

rnψ

)
rkt +

1− δ
rnψ

qt − qt−1 − zψt , (21)

Etχt+1 = rnt − Etπt+1, (22)

where zψt is an IS technology shock.

Firms

The aggregate production function and marginal rate of substitution are given by

yt = (1 + φ)
{

(1− α) lt + α(ut + kt−1 − z∗t − z
ψ
t )
}
, (23)

0 = wt + lt − (rkt + ut + kt−1 − z∗t − z
ψ
t ). (24)

where yt, and kt are the output and capital, respectively. The real marginal cost, mct,
is given by

mct = (1− α)wt + αrkt . (25)

The consumption goods version of the New Keynesian Phillips curve is represented
by

πt = γpπt−1 +
z∗π

rn
(Etπt+1 − γpπt) +

(1− ξp)(1− ξp z
∗π
rn

)

ξp
mct + zpt , (26)

where zpt is a price markup shock.
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The capital accumulation equation is given by

kt =
(1− δ − rnψ/π)

z∗ψ
ut +

1− δ
z∗ψ

(kt−1 − z∗t − z
ψ
t ) +

(
1− 1− δ

z∗ψ

)
it, (27)

Furthermore, the price of capital is represented by

qt =
1

ζ
(it − it−1 + z∗t + zψt )− z∗π

ζrn
(Etit+1 − it + Etz

∗
t+1 + Etz

ψ
t+1) + zνt + zit, (28)

where it is investment. zνt and zit are a shock to MEI and an investment-good price
markup shock, respectively.

The central bank and the market clearing condition

The monetary policy rule conducted by the central bank is represented as:

rnt = φrr
n
t−1 + (1− φr)

{
φπ
4

Σ3
j=0πt−j + φyyt

}
+ φ∆y(yt − yt−1 + z∗t ) + zrt , (29)

where zrt is a monetary policy shock. The market clearing condition is given by

yt =
c

y
ct +

i

y
it +

g

y
zgt , (30)

where c
y
, i
y

and g
y

are ratios of consumption, investment and government expenditure
to output in terms of steady states, respectively. zgt is a government expenditure shock.

3.2 DSGE Model with Financial Friction
Financial intermediaries

In the economy with financial friction, financial intermediaries are added as addi-
tional agents. The loan rate of financial intermediaries, rEt , and the net worth of
entrepreneurs, nt are represented as

rEt = rnt + µE(qt + kt − nt) + zµt , (31)

z∗

η rE
nt =

1 + λi
n/k

[
(1− 1− δ

rEψ
)rkt +

1− δ
rEψ

qt − qt−1 − zψt
]

−
(

1 + λi
n/k

− 1

)
Et−1r

E
t + nt−1 − z∗t + zηt , (32)

where µE is the degree of external financial premium (EPF) decided by the leverage
ratio, qt + kt − nt, and zµt is an EPF shock. The real borrowing of entrepreneurs, bt is
represented as

bt =
1 + λi

1 + λi − n/k
(qt + kt) +

(
1− 1 + λi

1 + λi − n/k

)
nt, (33)
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In addition, the expected marginal return on capital is replaced as

Etχt+1 = rEt − Etπt+1, (34)

with Eq. (22).
To sum up, there are seventeen log-linearized structural equations in the DSGE

model with financial friction, consisting of both Eq.(17) through Eq.(21) and Eq.(23)
through Eq.(34) based on Kaihatsu and Kurozumi (2014a, b).

4 Empirical Results

4.1 Data
The data to estimate the models are based on Kaihatsu and Kurozumi (2014 b). The
data on output, Yt, and consumption, Ct, are obtained by dividing nominal GDP and
nominal consumption with the CPI. The sample period is from 1981:Q1 to 1998:Q4,
after the hyperinflation caused by the oil shock in 1979 and before the zero interest
rate policy conducted by the Bank of Japan starting from 1999Q1. For the VAR model,
I use six variables: (1) output, (2) consumption, (3) investment, (4) real wage, (5)
inflation and (6) nominal interest rate.

4.2 Model Misspecification
Before evaluating model combination of the two DSGE models by the MDSGE-VAR
approach, I measure their model misspecifications in terms of predictive densities.2
One model with small degree of misspecification might have better performance of
forecast than another with the large degree. Figure 1 shows predictive densities of the
models at the point of 1990:Q4. Panel (a) and (b) are those of model without and with
the financial friction, respectively. The blue lines are actual data, and the red lines
and the light red shade areas denote posterior means and 68% interval of predictive
densities. From comparison of the red lines and shade areas in these figures, FF model
makes the forecasts of key macroeconomic variables such as output, consumption,
investment, inflation and interest rates more fluctuate and more volatile than those
of NK model, because financial accelerator mechanism works.

Using predictive densities of the models generated from multi-step forecasting, I
calculate log scores of the models as measure of their model misspecifications as below.

2There are large literature on model misspecification. The index of measuring model misspecifi-
cation in this study is provided from the concept of optimal prediction pool proposed by Geweke and
Amisano (2010). In their method, the pool combines predictive densities of alternative models where
each model may be misspecified. The predictive densities are measured from log score. The log score
calculated from multi-step forecasting are also used by Del Negro et al. (2014), who propose dynamic
prediction pool method by extending constant model weight by Geweke and Amisano (2010) to time-
varying model weight. My calculation of log score is based on Waggoner and Zha (2012) as well as Del
Negro et al. (2014).
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Figure 1: Forecasts of Two Models

(a) NK model: Forecast 1990:Q4
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(b) FF model: Forecast 1990:Q4
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Notes: The blue lines are actual data, and the red lines and the light red shade areas
denote posterior means and 68% interval of predictive densities. The posterior predic-
tion distributions of the two models are calculated based on the posterior estimates
of parameters of the models, using 10,000 draws of posterior estimates over the full
sample.

log score yt =
4∑

h=1

log p(yOt − yFt |Y O
t−h, θ),

where function p(·) is likelihood function, and h is forecast horizon. I forecast from
1Q ahead to 4Q ahead. The superscript “O” and “F ” denote observed and forecasted
variables, respectively. Figure 2 shows time series of the log scores of the two models.
The blue solid and red dashed lines are FF and NK models, respectively. Basically,
from 1988:Q1 to 1994:Q4, so-called the “bubble boom and burst” periods, the log scores
of FF model are higher than those of NK model. It indicates that the former’s model
misspecication is smaller than the latter’s. In the period, it is thought that many
firms of corporate sector have faced credit constraints and the financial accelerator
explains the business cycle much better. In contrast, after 1995:Q4, the NK model’s
log scores are better than its counterpart, since financial market might come to work
more smoothly than the previous period. In this way, one model does not dominate
the other model for the whole sample period. We can conclude that each model may
be misspecified and model combination of the two model would be significant.
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Figure 2: Log Scores of Two Models
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Notes: The log score at each period is calculated from log likelihood function of fore-
casting errors of the individual model such as the NK model and the FF model as
explained in Sec 4.2.

4.3 Posterior Distributions of Hyperparameters
Using the posterior, Eq.(5), with the multiple DSGE moments, Eq.(11), Eq.(12) and
Eq.(13) derived from estimations of the deep parameters in the two DSGE models
with and without financial friction, the MDSGE-VAR (λ, µ) is estimated.3 The bench-
mark (NK) model is set as model M1 and the financial friction (FF) model as model
M2, so that the weights of models M1 and M2 against the data are λµ

1+λ
and λ(1−µ)

1+λ
,

respectively. The marginal likelihood, Eq.(8), is calculated using the posterior esti-
mates of the MDSGE-VAR (λ, µ) given the values of the hyperparameters. As long
asλ ≥ (k + n)/T (in this study, (k + n)/T + 0.264 since n = 6, k = 1 + p n and T = 72
), the prior is proper. If the prior is improper, the marginal likelihood, Eq. (8) cannot
be calculated. Accordingly, the values of λ and µ are selected as 0.3, 0.35, 0.4, 0.45,
0.5, 0.75, 1, 2 and 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1, respectively. I set the lag order of the
MDSGE-VAR as 2, that is, p = 2, for the estimation for Japan. When p = 4, the prior
is improper because of the small λ. For each λ and µ, Markov chain Monte Calro
(MCMC) simulation is conducted with 30, 000 iterations. The first 5000 iterations are
discarded and the next 25, 000 iterations are sampled as posterior estimates. Figure
3 show the posterior distributions of λ and µ. In Panel (a) of Figure 3, the marginal
likelihoods of MDSGE-VARs are drawn in terms of two hyperparameters from three

3Posterior estimates of parameters are obtained from Bayesian estimation via MCMC, using the
state space model in Appendix A1, and measurement equations are in A2. MCMC simulation is con-
ducted with 300, 000 iterations. The first 100, 000 iterations are discarded and the next 200, 000 iterations
are sampled as posterior estimates. Out of 200, 000 samples, I use 30, 000 samples for estimateing the
MSDSGE-VAR model.
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dimensions, whereas Panel (b) is reduced to two dimensions version. The vertical axis
of both figures denotes the marginal likelihood and it is convenient that the horizon-
tal axis of λ is modified to that of data-model ratio such as λ/(1 + λ) ∈ [0, 1], since the
range of data-model ratio is between zero and one. As λ becomes larger after λ = 0.4 ,
the marginal likelihood drops monotonically. It indicates evidence of misspecification
of both DSGE models. However, these DSGE models are still useful for explaining the
data, since the marginal likelihood is maximized when λ = 0.4 (or data-model ratio:
λ/(1+λ) = 0.28). Furthermore, when µ = 0.5, the marginal likelihood is maximized. It
indicates that the combination of the two models is useful and the model probability
of the FF model is almost the same as that of the NK model. This result is consistent
with the log scores of the two models in Section 4.2, where one DSGE model does not
dominate the other over all of the sample period.
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Figure 3: Posterior Distributions of Hyperparameters ( Lag=2)
(a) Three-Dimension Version
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Notes: µ denotes the hyperparameter of model weight between two DSGE models, and
λ the hyperparameter of the DSGE models prior to the actual observation. FF denotes
the DSGE model with financial friction, NK the DSGE model without the friction.
When µ = 0.5 (NK model:50%, FF model:50%) and λ = 0.4 ( or λ

1+λ = 0.28 : Model:28%,
Data:72%), the marginal likelihood is the largest one.

4.4 Comparison of IRFs
Using the structural shocks identified by the QR factorization described in Section
2.4, the contemporaneous impact in the MDSGE-VAR(λ = 0.4,µ = 0.5), maximizing
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the marginal likelihood as shown in Figure 3, is calculated from(
∂yt
∂εt

)
MDSGE−V AR

= Σtr EΩ∗(θ)︸ ︷︷ ︸
6×6

. (35)

where EΩ∗(θ) = 0.5Ω∗(θ1 |NKmodel) + 0.5Ω∗(θ2 |FF model), using Eq.(16).
I select six shocks: (1) preference, (2) monetary policy, (3) neutral technology, (4) IS

technology, (5) price markup, (6) government expenditure shocks, as common shocks of
both DSGE models. Panel (a) and (b) of Figure 4 show that the IRF to preference and
monetary policy shocks in the MDSGE-VAR (λ = 0.4, µ = 0.5), respectively. The black
dotted line and light blue shaded area denote the means and 95% credible interval,
respectively. These figures also depict those of the two individual DSGE models; red
solid lines and blue dashed lines are the financial friction model and the benchmark
model.

As Panel (a) of Figure 4, the contemporaneous impact of output, consumption and
investment to the preference shock in MDSGE-VAR are almost same as both DSGE
models. In contrast, the impact inflation of the VAR is negative or almost zero, and
that of real wage is obviously positive unlike those of the DSGE models. In the mone-
tary policy shock as Panel (b), the contemporaneous impacts of endogenous variables
except interest rate are not matched between the MSDSGE-VAR and the DSGE mod-
els. It seems to be ambiguous about effect of monetary policy from MDSGE-VAR
unlike original DSGE approach.

However, overall the IRFs of endogenous variables except the inflation and interest
rate in the two theoretical models are within the blue shaded interval of the empir-
ical VAR model. During the estimation period, the interest rate had already been
persistent even before the zero interest rate policy, since the Japanese economy had
suffered from deflation. Finally, it is noteworthy that coefficients of VAR determine
path of IRFs after the second horizon, and the contemporaneous impacts matrix de-
termines only values of endogenous variables at the first horizon. Accordingly, the
gaps of IRFs between the VAR and the DSGE models after the second horizon show
misspecification of the DSGE models from the VAR model regarded as the reference
model. The gaps indicate that the preference shock simulates good performance in
the both DSGE models, while simulations of the monetary policy shock might not be
good.
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Figure 4: Impulse Response Functions
(a) Preference Shock
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(b) Monetary Policy Shock
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Notes: The impulse response function of the MDSGE-VAR is calculated from Eq.(35),
in which the hyperparameters, µ and λ, are set to 0.5 and 0.4, respectively. FF denotes
the DSGE model with financial friction, NK the DSGE model without the friction.

5 Conclusion
This study considers the model weights that should be used as the model combination
in terms of the spirit of the DSGE-VAR approach. The prior of the combination of
multiple DSGE models makes the marginal likelihood of the DSGE-VAR better than
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that of a single DSGE model. From the data of Japanese economy including the “Bub-
ble Boom” and the “Lost Decade”, I demonstrate the multiple DSGE-VAR combined
two DSGE models with and without financial frictions, and evaluate misspecification
of both DSGE models from their impulse response functions. The estimation results
show that the multiple DSGE-VAR might be useful for model comparison between two
or more DSGE models and for measuring the relative degrees of misspecification as
additional advantages.

A Appendix

A.1 State Space Representation
From observable variables, yt, and state variables, st , a state space model for the
DSGE model with the first difference series 4yt is represented as:

4yt︸︷︷︸
J×1

= D︸︷︷︸
J×1

+ Λ︸︷︷︸
J×K

4St︸︷︷︸
K×1

+ et︸︷︷︸
J×1

, (36)

St︸︷︷︸
K×1

= G(θ)︸ ︷︷ ︸
K×K

St−1︸︷︷︸
K×1

+H(θ)︸ ︷︷ ︸
K×L

εt,︸︷︷︸
L×1

εt ∼ N(0,Q(θ)), (37)

where Eq. (36) is a measurement eq. and Eq. (37) is a state eq. D is a vector of
constant terms. et and εt are measurement errors and structural shocks, respectively.

Using matrix expression, we rewrite Eq. (36) and Eq. (37) as below.

4̃yt = D +
[

Λ −Λ
]︸ ︷︷ ︸

Λ̃

[
St

St−1

]
︸ ︷︷ ︸

S̃t

+νt, νt ∼ N(0,R), (38)

[
St

St−1

]
︸ ︷︷ ︸

S̃t

=

[
G(θ) 0
I 0

]
︸ ︷︷ ︸

G̃

[
St−1

St−2

]
︸ ︷︷ ︸

S̃t−1

+

[
H(θ)

0

]
︸ ︷︷ ︸

H̃

εt, εt ∼ N(0,Q(θ)), (39)

A.2 Measurement Equations
State space models of the DSGE models consist of a measurement equation and a
state equation, which are described in Appendix A1. In the following subsection, I
explain about the measurement equations.

(1) Benchmark Model The measurement equation of the benchmark model is rep-
resended as below. There are eight observed variables such as ouyput;Yt, consumption;
Ct, investment; It, real wage; Wt, labor input; Lt, inflation; πt, investment price; P i

t ,
nominal rate; rnt .
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100∆ log Yt
100∆ logCt
100∆ log It
100∆ logWt

100 log lt
100∆ logPt

100∆ log(P i
t /Pt)

100rnt


=



z̄∗

z̄∗

z̄∗ + ψ̄
z̄∗

l̄
π̄
−ψ̄
r̄n


+



z∗t + yt − yt−1

z∗t + ct − ct−1

z∗t + zψt + it − it−1

z∗t + wt − wt−1

lt
πt

−zψ + zνt − zνt
rnt


+



eYt
eCt
eIt
eWt
eIt
ePt
ePit
ert


, (40)

where z̄∗ = 100(z∗−1), ψ̄ = 100(ψ−1), r̄n = 100(rn−1), and l̄ is normaized to be equal to
zero following Kaihatsu and Kurozumi (2014a,b). Small letters indicate log-deviations
from steady state values after detrending by level of composite technology Z∗t .

(2) DSGE model with Financial Friction The measurement equation of the fi-
nancial friction model is represended as below. There are additional two observed
variables such as loan rate;rEt , and real borrowing; Bt.

100∆ log Yt
100∆ logCt
100∆ log It
100∆ logWt

100 log lt
100∆ logPt

100∆ log(P i
t /Pt)

100rnt
100 rEt

100∆ logBt


=



z̄∗

z̄∗

z̄∗ + ψ̄
z̄∗

l̄
π̄
−ψ̄
r̄n

r̄E

z̄∗


+



z∗t + yt − yt−1

z∗t + ct − ct−1

z∗t + zψt + it − it−1

z∗t + wt − wt−1

lt
πt

−zψ + zνt − zνt
rnt
rEt

z∗t + bt − bt−1


+



eYt
eCt
eIt
eWt
eIt
ePt
ePit
ert
erEt
eBt


, (41)

wherer̄E = 100(rE − 1).

A.3 Derivation of DSGE moments
Using the state space model, Eq.(36) and Eq.(37), the DSGE moments are given by

ED
θ [∆yt ∆y′t] = ΛΩssΛ

′ + Σee +DD′,

ED
θ [∆yt ∆y′t−h] = ΛG(θ)hΩssΛ

′ +DD′.

where Ωss = ED
θ [St S

′
t], and can be obtained by solving the following Lyapunov equation,

Ωss = ΛΩssΛ
′ +H(θ)Q(θ)H(θ)′.

And ED
θ [xt x

′
t] is defined as
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ED
θ [xt x

′
t] =


ED
θ [∆yt ∆y′t] ED

θ [∆yt ∆y′t−1] · · · ED
θ [∆yt ∆y′t−p+1] D

ED
θ [∆yt ∆y′t−1] ED

θ [∆yt ∆y′t] · · · ED
θ [∆yt ∆y′t−p+2] D

...
... . . . ...

...
ED
θ [∆yt ∆y′t−p+1] ED

θ [∆yt ∆y′t−p+2] · · · ED
θ [∆yt ∆y′t] D

D D · · · D 1

 ,
where D is the vector in Eq.(36).
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