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1 Introduction

Modigliani and Miller (1958) argue that in a frictionless market, financing and investment
decisions are completely separable. Once capital market imperfections are introduced,
however, financing and investment decisions are not necessarily independent. Since their
seminal work, corporate finance literature has highlighted the role of financial frictions
between financing and investment decisions. For example, following Rauh (2006) and
Almeida and Campello (2007), the issue of how financing frictions affect financing and
investment decisions is a central, unsettled issue in corporate finance.

Brennan and Schwartz (1984), Mauer and Triantis (1994), Hackbarth et al. (2007), and
Sundaresan and Wang (2007) examine the interaction between financing and investment
decisions in contingent claim (real option) model. These models have a limitation. There
are no financial frictions. In other words, the authors assume a frictionless market.

Several studies incorporate financial frictions in a contingent claim model. Boyle and
Guthrie (2003), Hirth and Uhrig-Homburg (2010), and Nishihara and Shibata (2013)
investigate the interactions between financing and investment decisions under internal
financing constraints in a contingent claim (real option) model. Shibata and Nishihara
(2012), Shibata and Nishihara (2015a), and Shibata and Nishihara (2015b) examine the
interactions between financing and investment decisions under external financing con-
straints in a contingent claim model. An interesting result in these papers is that in-
vestment strategies are non-monotonic with respect to financial frictions. These models
do not, however, consider the role of collateral during the times of financial distress.!
Mella-Barral and Perraudin (1997) and Fan and Sundaresan (2000) derive bankruptcy
strategies that account for the role of collateral. However, these models do not examine
the interactions between financing and investment decisions.

In this paper, we investigate the interactions between financing and investment deci-
sions that account for the role of collateral in a contingent claim model. Specifically, we
consider how collateral constraints influence the interactions between financing and invest-
ment decisions. Our contribution is to provide a theoretical examination of how collateral
constraints affect investment timing, default timing, liquidation timing, leverage, credit

spreads, default probabilities, and so forth. To the best of our knowledge, this is the first

! Collateral plays an important role in bank lending in most developed countries.



paper to incorporate collateral constraints in a contingent claim (real options) model.?
Despite the strong belief in non-stochastic dynamic models (e.g., macroeconomics) and,
in practice, in the importance of collateral constraints, there has not been a contingent
claim model that identifies and quantifies the impact of collateral constraints on firm’s in-
vestment timing, default timing, liquidation timing, credit spreads, default probabilities,
and so forth. This paper represents an effort to fill this gap.

Our model builds primarily on two papers: Mella-Barral and Perraudin (1997) and
Shibata and Nishihara (2012). Our paper presents the optimal bankruptcy decision model
after considering financing and investing (i.e., consistent with Mella-Barral and Perraudin
(1997)). In our model we incorporate collateral constraints where the upper limit of debt
issuance is restricted by the value of collateral when a firm is financed by debt financing.
These constraints are similar to those used by Kiyotaki and Moore (1997). Our model
is consistent with Shibata and Nishihara (2012) if the upper limit of debt issuance is
restricted by the amount of investment expenditure instead of collateral value. Thus,
our model can be regarded as a natural extension of these two papers, and it provides
a useful framework for addressing many questions in the contingent claim (real option)
literature. For example, how do collateral constraints affect financing and investment
decisions? How do collateral constraints influence corporate leverage, credit spreads, and
default probabilities? How do collateral constraints change corporate management (e.g.
bankruptcy) strategies after investment? Answering these questions is the purpose of our
model.

We provide five important results. The first result is that collateral-based financing
constraints do not always delay corporate investment. This is because the investment
thresholds of a constrained levered firm may be smaller than those of an unconstrained
levered firm, implying that the investment thresholds of a constrained levered firm are
not necessarily in between those of an unconstrained levered firm and an unlevered firm.
In the literature, once the state variable, starting at a sufficiently low level, reaches the
investment threshold, the firm makes the investment. Following existing studies, we

assume that a smaller (larger) threshold implies earlier (later) investment. We intuit that

2A partial list of non-stochastic dynamic models that incorporate collateral constraints is Kiyotaki
and Moore (1997), Bianchi (2010), Jeanne and Korinek (2010), Rampini and Viswanathan (2010), and
Gottardi and Kubler (2015).



collateral-based financing constraints always delay investment. However, our theoretical
result is contrary to our intuition. The coupon payment is the other control variable at
the time of investment in our model. The coupon payments of a constrained levered firm
are in between those of an unconstrained levered firm and an unlevered firm. Thus, if
a firm is financially constrained with a collateral-based upper limit, it is less costly to
distinguish the constrained investment thresholds from the unconstrained ones than to
distinguish the constrained coupon payments from the unconstrained ones.

The second result is that financing constraints may change the default (“operating con-
cern bankruptcy”) and shutdown (“liquidation bankruptcy”) strategies from sequential
to simultaneous. Suppose that, as a benchmark, a firm exercises sequential bankruptcy
strategies at the equilibrium when there are no financing constraints. The firm may
exercise simultaneous bankruptcy strategies at the equilibrium because the firm is finan-
cially constrained when financing constraints exist. The reason is as follows. Because the
coupon payment is reduced by the upper limit of debt issuance at the time of investment,
the face value of the debt is reduced. The reduced face value of debt leads to a change
in bankruptcy strategies from sequential to simultaneous. This result is similar to that
in Nishihara and Shibata (2016b), where asymmetric information leads to change the
bankruptcy strategy.

The third result is that upper limits of debt financing create low return and low
risk for debt holders. In our model, we show that financing constraints decrease credit
spreads and default probabilities. The return and risk for debt holders can be measured
by credit spreads and default probabilities, respectively. Thus, we shed light on the
determinants of upper limits for debt holders. In addition, financing constraints decrease
corporate leverages. In the absence of financing constraints, leverages are almost flat with
collateral, credit spreads decrease with collateral, and default probabilities are almost
flat with collateral. If financing constraints exist, leverages, credit spreads, and default
probabilities increase with collateral.

The fourth result is that the agency costs of financing constraints are not monotonic
with cash-flow volatility. The reason is as follows. The firm is financially constrained in
low-volatility or high-volatility regions, while it is not in an intermediate-volatility region.

These results imply that agency costs exist in low-volatility or high-volatility regions,



while they do not exist in an intermediate-volatility region. The agency costs decrease
with volatility for the low-volatility region, they are zero for the intermediate-volatility
region, and they increase with volatility for the high-volatility region. Thus, agency costs
have a discontinuous U-shaped curve with volatility.

The fifth result is that debt financing with an upper limit does not always accelerate
investment, compared with all-equity financing, even when debt financing with an upper
limit is preferred to all-equity financing. Suppose that, as a benchmark, there are no
financing constraints. Under these conditions, investment thresholds for a levered firm
are always smaller than those for an unlevered firm, implying that debt financing always
accelerates investment. The equity option values for a levered firm are always larger
than those for an unlevered firm. Thus, debt financing always decreases the investment
threshold and increases the equity option value before investment. We call this property
the symmetric relationship between investment threshold and equity option value. This
relationship has already been shown by Sundaresan and Wang (2007) and Shibata and
Nishihara (2010). By contrast, suppose that financing constraints exist. In that case,
the investment thresholds for a constrained levered firm may be larger than those for
an unlevered firm, implying that debt financing with an upper limit does not always
accelerate investment, even though the equity option values for a constrained levered firm
are larger than those for an unlevered firm. As a result, financing constraints distort
the symmetric relationship that is always obtained in a frictionless market. This result
is similar to that in the Modigliani and Miller (1958) theorem, where financial frictions
distort the independence between investment and capital structure that is obtained in a
frictionless market. This outcome is a new result. In previous models about financing
constraints, debt financing with an upper limit always accelerates investment, because the
investment thresholds for a constrained levered firm are always smaller than those for an
unlevered firm. See Shibata and Nishihara (2012), Shibata and Nishihara (2015a), and
Shibata and Nishihara (2015b) for detail.

The reminder of the paper is organized as follows. Section 2 describes the model
setup and derivation of the value functions. Section 3 provides the solution of our model.

Section 4 examines the model’s implications. Section 5 concludes.



2 Model

In this section, we begin with a description of the model. We then provide the value
functions after investment and derive the optimal exit (default and shutdown) strategies.

Finally, we formulate the financing and investment decision problem.

2.1 Setup

A firm possesses an option to invest in a single project at any time. If the investment

@
1

option is exercised at time 7" where superscript represents the investment strategy,
the firm pays a fixed cost I > 0 at time 7" and receives an instantaneous cash inflow X (t)

after time T". Here, X (t) follows the geometric Brownian motion:
dX(t) = puX(t)dt + o X (t)dz(t), X(0) ==z >0, (1)

where > 0 and o > 0 are positive constants and z(t) denotes a standard Brownian
motion. For convergence, we assume that r > p where r > 0 is the risk-neutral interest
rate. We assume that the current value X (0) = x > 0 is sufficiently low that equity
holders do not undertake the investment option immediately.

In this paper, we assume that the firm issues a debt at the time of investment in order
to finance the investment cost of I > 0. For analytical convenience, we limit the condition
that the debt is perpetual. If the firm issues the debt, the firm obtains X (¢) — ¢, where
¢ > 0 is the coupon payment. When X (¢) is decreased after investment, it is difficult for
the firm to pay ¢ > 0. In that case, the firm files bankruptcy. At the same time, debt
holders decide whether to operate or liquidate the corporation, depending on the collateral
as an exogenous liquidation value 6 > 0. Following Leland (1994), we assume that there
is a bankruptcy cost during financial distress. Thus, if the corporation is operated by
debt holders (as new equity holders) who gain ownership of the corporation after default,
the new owners obtain the cash inflow (1 — o)X (¢) at time ¢ where aX () represents a
bankruptcy cost (a € (0,1)). Alternatively, when the firm is liquidated at the time of
default, debt holders obtain min{c/r, (1 — a)f}.> To summarize, the default (“operating

concern bankruptcy”) is defined by the transfer of management rights from equity holders

3Under these conditions, when # > 0 goes to zero, value functions converge to those in Sundaresan

and Wang (2007) and Shibata and Nishihara (2012).



to debt holders. The shutdown (“liquidation bankruptcy”) is defined by the cessation of
management.

Let T', T9, and T® denote the investment, default (“operating concern bankruptcy”),
and shutdown (“liquidation bankruptcy”) times, where the superscripts “i,” “d,” and “s”
stand for the respective investment, default, and shutdown strategies. Mathematically,
these times are defined as 7" := inf{t > 0|X(¢) > '}, T := inf{t > T X (t) < 24},
and T® := inf{t > T9 X (t) < 2°}. Here, 2!, 29, and z° denote the respective investment,
default, and shutdown thresholds. Note that 0 < 7% < T < T® a.s., implying that the
default is defined only after the investment is exercised, and that the liquidation is defined

only after the firm is bankrupted.?

2.2 Value function after investment for an unlevered firm

This subsection provides the value functions after investment for an unlevered (all-equity
financed) firm. In this case, coupon payment is zero, i.e., ¢ = 0.

Now we consider any time ¢ after the investment is exercised (¢ > Ti). Here, the
subscript “0” represents the unlevered firm. We denote by E3(X(t)) the equity value
after investment for the unlevered firm, where the superscript “a” represents the value
function after investment. The equity value after investment, E§(X (t)), is defined as

TS
E(X(t)) := sup EX® [/ ' e "1 — 1) X (u)du 4 e"T0 (1 — )8, (2)
t

T5(>t)

where EX(®) denotes the expectation operator conditional on X(t), 7 > 0 represents the
tax rate, and « € (0, 1) represents the proportional bankruptcy cost parameter to the

firm value during financial distress. Using standard arguments, E3(X (t)) is given by

E§(X(t)) = max {UX(t) + ((1 —a)f — vx%) (X;U(St)>7}, (3)

z3(>0) 0

where v := (1 —7)/(r — ) > 0 and v := 1/2 — p/o? — ((n/o? — 1/2)% + 2r/0?)'/? < 0.

Then, the optimal threshold for shutdown (“liquidation bankruptcy”) is obtained by

zy = (1 —a)Ad > 0, (4)

4« ”»

a.s.” stands for “almost surely.”



where A := v/((y — 1)v) > 0. Note that z{ is a linear function of § with limgozf = 0.
Clearly we have limgjo E§(X(t)) = vX(¢), which is the value of discounted cash inflow

without shutdown.

2.3 Value functions after investment for a levered firm

In this subsection, we derive the value functions after investment for a levered (debt-equity
financed) firm. In this case, coupon payment is strictly positive, i.e., ¢ > 0.
Because we assume a perpetual debt, ¢/r > 0 is the value for the principal of debt

(i.e., face value of debt). Thus, if the following inequality

F(e) =5 < (1—a)d, (5)

S1Io

is satisfied for a fixed ¢ > 0, debt holders never take risks. Here, we denote the face value

of debt as F(c) for a fixed ¢ > 0. We define 05(c) > 0 as

c
=1 > >
By (c) 1nf{0_0|9_r(1_a)}, (6)
for a fixed ¢ > 0. Thus, we define risky debt and riskless debt as follows.

Definition 1 Debt is risky if 6 € [0,02(c)) for a fized coupon payment ¢ > 0. Debt is

riskless otherwise.

If 0 € [0,0,(c)) for a fixed ¢ > 0, debt holders take a risk at the time of liquidation.
Otherwise (6 € [f2(c), +o0) for a fixed ¢ > 0), and debt holders do not have any risks
because there will always be sufficient collateral to meet the firm’s liabilities (i.e., the
value for the principal of perpetual debt). Let g(X (¢), ¢) denote the value for the levered

firm after investment as follows:

gl(X(t),C), 0 [0792(0))7
g2(X(t),¢), 0 € [0:(c),+0),

9(X(1),0) =

for a fixed ¢ > 0 where g, € {Dj, E Vi*} for any k (k € {1,2}). Here, D, E} and
V2(:= D + E}) denote the value functions of debt, equity, and total firm. In addition,
subscripts “1” and “2” represent the value functions for “risky debt” and “riskless debt,”

respectively.

5In our model, ¢ = 0 is equivalent to the fact that the debt value is zero.
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2.3.1 Value functions when debt is risky

Suppose that debt is risky (i.e., 6 € [0, 0(c)) for a fixed ¢ > 0). Consider any time ¢(> T")
after investment. For a fixed ¢ > 0, the equity value after investment, E¥(X(t),c), is

defined by

77
BY(X(1).) = sup B0 / 01— 7)(X (1) — )]
Ti(>t) t
1—7

= UX(t)—l_Tc—(U:r(li(c)— c)( 5

r r

where the optimal default threshold, z{(c), is obtained by

2(c) = ke >0, (8)

where x = r/(A(1 — 7)) > 0. Note that F#(X(t),c) and 29(c) are independent of §. In
addition, x¢(c) is a linear function of ¢ > 0. This result is originally obtained by Black
and Cox (1976). We denote by T8(c) := inf{t > T}|X(t) < z{(c)} the optimal stopping
time for default for a fixed ¢ > 0. In our model, we do not consider debt renegotiation
during financial distress.5

We derive the value of debt backward. Let EP(X(t)) denote the value of equity after

default where the superscript “b” represents the value function after default. For a fixed

¢ > 0, the equity value after default, E*(X(7¢(c))), is defined as

E°(X(T}(c))) 9)
by
= sup EXT©) [/ e T (1 — ) X (u)du + e "I TEO)g]
T3 (>Tf(0)) Ti(c)

Using standard arguments, we have

d S xcli(c) 7 :
vri(c 0 — vxi (0 . , if6e€]0,6:(c)),
) - 0+ @) (=) € 0,01(c)) o)
9, if § € [01(c), 02(c)),
where 23 = argmaxﬁ{vx‘f(c) + (0 — vas) (zi(c) /x5)7}, ie.,
] =M >0, (11)

6See Mella-Barral and Perraudin (1997), Fan and Sundaresan (2000), Broadie et al. (2007), and
Sundaresan and Wang (2007) regarding coupon reduction as debt renegotiation during financial distress.

See Nishihara and Shibata (2016a) regarding asset sale as debt renegotiation during financial distress.
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and 6, (c) > 0 is defined by

1—7
T

0, (c) == inf{ﬁzo 16> c} < 05(c), (12)

for a fixed ¢ > 0. The inequality of 6,(c) < 02(c) for a fixed ¢ > 0 is obtained by the

inequalities of 1 —7 <1 < 1/(1 — ) because 7 > 0 and « € (0,1). Note that
d x5, if6el0,6(c)),

2d(c) =25, if0=0,(c),
d
1

() <zj, if @€ (01(c),b:(c)),

—
o

~
\

for a fixed ¢ > 0.

The upper equation of (10) corresponds to the value at the time of default (“operating
concern bankruptcy”) where debt holders will operate the firm after changing its own-
ership. Because v < 0, we have limg o E®(z{(c)) = va{(c) > 0, which is consistent with
Shibata and Nishihara (2012). Note that (§ —va}) = 6/(1 — ) > 0. The lower equation

of (10) is the value when shutdown (“liquidation bankruptcy”) is exercised at the time of

default. We summarize the above results as follows.

Lemma 1 Suppose that debt is risky, i.e., 6 € [0,0(c)) for a fized coupon payment ¢ > 0.
Then, default (“operating concern bankruptcy”) and shutdown (“liquidation bankruptcy”)
are ezercised sequentially for 0 € [0,6,(c)), while default and shutdown are exercised

simultaneously for 6 € [61(c),02(c)).

From Lemma 1, we understand that bankruptcy strategies (i.e., E®(z{(c))) are defined
according to the magnitude of collateral § (6 € [0,605(c)) for a fixed ¢ > 0). For 0 €
[0, 61 (c)), sequential strategies imply that default and shutdown are exercised one by one,
on the condition that both are exercised. To be more precise, for 8 € [0,6;(c)), suppose
that X (t) arrives at 2%(c). Then, debt holders with ownership transferred from equity
holders continue to operate the management after default. If X(¢) is further decreased
to a level 2% lower than z{(c), shutdown is exercised. If X (¢) does not arrive at z$ after
default, shutdown is not exercised. For 6 € [0(c),02(c)), once X (¢) arrives at z{(c) < a5,

the equity holders declare the default, and at the same time, debt holders declare the

shutdown (liquidation). Thus, default and shutdown are exercised simultaneously.



We define the risky debt value D3(X(t),c) as a function of EP(z{(c)). For a fixed
¢ > 0, the risky debt value D*(X (t),c) is given by

DX, = B0 T a4 e O (1 ) B (o)
- - (E-a-areto)(55)" (13)

Note that we have F?*(c) > D¥(X(t),c) for a fixed ¢ > 0, implying that the value of debt

issuance is discounted below face value if debt is risky.

2.3.2 Value functions when debt is riskless

Suppose that debt is riskless, i.e., 8 € [f5(c), +00) for a fixed coupon payment ¢ > 0.
Consider any time ¢ > T after investment. The value of riskless debt, D3(X(t),c), is
equal to face value of debt, i.e.,

D5(X(t),¢) = -, (14)

r

for a fixed ¢ > 0. Note that D3(X(¢),c) is independent of § > 0. As shown in the

Appendix, we have the following result.

Lemma 2 Suppose that debt is riskless, i.e., 8 € [0y(c),+00) for a fized coupon pay-
ment ¢ > 0. Then, default (“operating concern bankruptcy”) and shutdown (“liquidation

bankruptcy”) are exercised simultaneously.

Lemma 2 implies T3 = T3 a.s. (i.e., 2§ = 25) and EP(z5) = 0 for 0 € [05(c), +00) for a

fixed ¢ > 0. Thus, the equity value after investment, E%(X (¢),c), is obtained by

13
E¥(X(t),¢) = sup EX® [/ e "I ((1 = 7)X (u) + 7¢) + e "TE70(1 - 04)9] ¢
T5(>t) t r
T . T X(t)\? ¢
= vX(t)+ Ze+ (= va3(e) - Tt (1- a)6) (xa(c)) -5, (15)
where the optimal default (“liquidation bankruptcy”) threshold is obtained by
s T

5(c) = )\((1 —a)f — ;c) >0, (16)

for a fixed ¢ > 0. Note that E3(x5(c),c) = (1 — «)f — ¢/r > 0 for a fixed ¢ > 0. In

addition, z3(c) is decreasing with ¢ > 0 (although z{(c) is increasing with ¢ > 0).

10



2.3.3 Two value functions after investment for a levered firm

In the two previous sections, we have derived two value functions ¢, (X (¢), ¢) and ¢2(X (¢), ¢)
for a fixed ¢ > 0 (g € {D} Ep,V;2} for k € {1,2}). This subsection shows that
g1(X(t),c) = g2(X(¢),¢) for § = 02(c) for a fixed ¢ > 0, implying that all the value
functions after investment are continuous with 6 for a fixed ¢ > 0.

The properties of two value functions are summarized in Table 1. Recall that for a
risky debt, i.e., 6 € [01(c), +00), E#(X (t), c) is independent of § > 0, while D*(X (t), ¢) is
dependent on 6 > 0. In contrast, for a riskless debt, i.e., § € [fs(c), +00), E2(X(t),c) is
dependent on 6 > 0, while D¥(X (¢), ¢) is independent of 6 > 0.

[Insert Table 1 about here]

In addition, as in Table 1, the properties of bankruptcy strategies are summarized
according to # > 0. When 6 € [0,6,(c)), we have 28(c) > a5 for a fixed ¢ > 0. This
implies that default and shutdown are exercised sequentially. When 6 € [0(c),05(c)),
default and shutdown are excised simultaneously at z(c)(< %), for a fixed ¢ > 0. When
0 € [02(c), +00), only shutdown is exercised at z5(c) because there is no default for a
riskless debt.

As shown in the Appendix, we have the following results.

Lemma 3 For a fized ¢ > 0, we have

d = -1 = Ii 5 . 17
zi(c) =K "¢ mb?(lc)x c) (17)
In addition, we obtain
BH(X(00) = lim E3(X(0).0), (18)
lim DY(X(t),c) = D3(X(1),c), (19)
0102(c)
and
lim VA(X(t),c) = lim V}(X(t),c), 20
o VE(X(2),0) = lim V3(X(),c) (20)

for a fized ¢ > 0.

Lemma 3 implies that all values and thresholds are continuous with # for a fixed ¢ > 0.

These results are similar to those in Mella-Barral and Perraudin (1997).7

"In Mella-Barral and Perraudin (1997), 7 = 0 and a = 0 are assumed.
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2.4 Problem formulation

In this subsection, we formulate the financing and investment decisions problem under a
debt issuance constraint.

The firm faces a credit friction that limits the maximum amount of debt issuance as
D*(X(t),c) < min{q0, I}, (21)

where ¢ > 0. Here, if ¢§ = min{qf, I} is satisfied, inequality (21) constitutes collateral
constraints because the maximum amount of a firm’s debt issuance is given by the value
of its collateral #. Our collateral constraints are similar to the ones in Kiyotaki and Moore
(1997).% In addition, our collateral constraints are supported by empirical studies such
as Whited (1992) and Gan (2007).° The parameter ¢ > 0 represents the ceiling of debt
issuance in collateral constraints. If we assume ¢ > 1, the firm can issue debt greater
than the amount of collateral # > 0. The condition ¢ < 1 implies that the firm can issue
debt less than the amount of collateral > 0.1°

In addition, note that we assume D?*(X (t),¢) < I'in (21). Otherwise (i.e., D*(X (¢, ), ¢) >
I), the firm issues an amount of debt larger than the amount of investment cost at the
time of investment. Then, in this model, the excess D*(X (t),c) — I > 0 is distributed to
equity holders. At the time of financing, the distribution of the excess financed amount
is illegal in practice. Thus, we need at least the mathematical condition D*(X (t),¢) < I.
See Shibata and Nishihara (2015a) for details.

Let us denote by Ec(x) the equity option value before investment when the firm has an
upper limit of debt issuance under debt-equity financing, where the subscript “C” denotes
the “financially constrained” firm. We formulate the financing and investment decision

problem for a financially constrained firm. The equity option value E¢(z) is obtained by

Ec(r) = max{E™(x), Ej(x)}, (22)

8 An incomplete list of models incorporating collateral constraints is Bianchi (2010), Jeanne and Ko-

rinek (2010), Rampini and Viswanathan (2010), and Gottardi and Kubler (2015).
9Whited (1992) shows that the introduction of a debt constraint greatly improves the performance of

the Euler equation in optimizing a model of investment, compared to the standard specification.
0The condition of q € [0, 1] corresponds to the condition in the repo market where the amount of a

loan is less than the market value of the collateral. This difference 1 — ¢ is referred to as the “margin” or

“haircut.”
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where

E*(z) = max (i)ﬁ{Ea(xi,c)—(J—Da(xi,c))}, (23)

7i(>0),c(>0) \.*
subject to D*(z',c) < min{q#, I}, (24)

and

Ei(z) == max (@)B{Eg(xg) —1}, (25)

zo(>0) VT

for + < min{z',zl} and B := 1/2 — p/o? — ((n/o? — 1/2)? + 2r/c?)Y/? > 1. Here,
E**(z) denotes the equity option value when the firm issues debt under the upper limit
of debt issuance (i.e., constrained levered firm), where the superscript “xx” represents the
optimum for the constrained problem, and E(x) denotes the equity option value when the

Wy ”n

firm does not issue any debt (i.e., an unlevered firm), where the superscript “x” represents

the optimum for the unconstrained problem. See the Appendix for the derivations of (23)

and (25).

3 Model solution

This section provides the solution to our model. First, before solving our (constrained)
problem, we briefly review the unconstrained problem where firm does not have an upper
limit of debt issuance under debt-equity financing. We then provide the solution to our

problem.

3.1 Unconstrained problem as a benchmark

This subsection provides the solutions to the unconstrained problem as a benchmark.
Let us denote by Ey(z) the equity option value before investment when the firm
does not have an upper limit of debt issuance under debt-equity financing, where the
subscript “U” denotes the “financially unconstrained” firm. We formulate the financing
and investment decision problem for an unconstrained firm. The equity option value

Ey(z) is obtained by

Ey(x) = max{E*(z), E;(z)}, (26)
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where

E*(r) = max (E)B{Ea(xi,c)—(J—Da(xi,c))}, (27)

#1(>0),e(>0) \ &1
and Ej(x) is defined by (25) where x < min{zl,z'}. Here, E*(z) denotes the equity
option value when the firm does not issue debt under the upper limit of debt issuance
(i.e., unconstrained levered firm). Note that the superscript “x” in E*(z) in (27) represents
the optimum for the unconstrained problem.
We derive the solution in two steps. We first derive E*(x) and Ej(x), respectively. By
comparing the magnitudes of E*(z) and Ej(x), we then have Ey(z) = max{E*(x), E}(z)}.

We then have the following results (these two proofs are provided in the Appendix).

Proposition 1 Consider the investment decision problem for an unlevered firm. For any

0, the optimal investment threshold z is obtained by solving the following equation:

(B —1)val + %((1 —a)f) TNl — BT = 0. (28)

For any 0, the equity option value before investment is given by

g3() = () {Etel) - 1), (20)

0

Proposition 2 Consider the financing and investment decision problem for an uncon-
strained levered firm. For 6 € [0,07) where there exists a unique 07 that satisfies 6 =
(1 — 7)c*/r, the optimal investment threshold x'* is given by solving the following equa-

tion:

(B — vy ta™ + %(1 — )t N — BT =0, (30)
where ¢ == (1 +7(h(1 — 7)) ) <land h:= (1 —~v(1+a(l —71)/7)"Y7 > 1. The
optimal coupon payment is given by c¢* = c(z™) := (k/h)x™. For 0 € [0},03) where there
exists a unique 0 that satisfies 0 = c*/(r(1 — «)), the solution (z'*, c*) is given by solving

the following simultaneous equations:

. 1 — .
(B —1vx™ + 5;0* + (8 — ’y){ - ﬁT . Ter 4 (1-— a)ﬁ}kﬂc*ﬂxl*v — pI =0,
(31)
;c* — {T;—fyc* + (1 — 04)9};ﬂc"‘_”’avi*7 =0. (32)
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For 0 € [0, 4+00), we do not obtain x* and c¢*. The equity option value before investment

18
B .
B (z) = (—) {Va(:r‘*,c*) - I}, (33)
where x < x* for 6 € [0, 63).
From Propositions 1 and 2, we have the following (the proof is provided in the Appendix).

Corollary 1 Consider the investment decision problem without any financing constraints.

Then, for 6 € [0,0;), we obtain
o <z, Ef(z) > Ej(z), (34)
where x < z'*. That is, we have Fy(z) = E*(x).

Corollary 1 means that, if there are no financing constraints, debt financing decreases
the investment threshold (accelerates the investment) and increases the equity option
value before investment. We call this property the symmetric relationship between invest-
ment thresholds and equity option values.

In addition, we consider the extreme case of # = 0. Substituting # = 0 into (28) and

(30) gives
o =y, (35)
where zi¥ := 3/((8—1)v)I > 0 for § = 0. In addition, as shown in the Appendix, we have
E*(z) = ¢ " B; (), (36)

where E}(z) := (z/xi)?(8 —1)7'T > 0 for § = 0. Because ¢ < 1 and 3 > 1, these two
equations (35) and (36) lead to

o* <ay, Ef(x) 2 By(o), (37)

for # = 0. Thus, in the extreme case of § = 0 in (34), we have the symmetric relationship
between investment thresholds and equity option values. See Shibata and Nishihara
(2012), Shibata and Nishihara (2015a), and Shibata and Nishihara (2015b) for discussion

of such a symmetric relationship.
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3.2 Constrained problem

This subsection provides the solution to the problem for a constrained levered (debt fi-

nanced) firm. As shown in the Appendix, we obtain the following proposition.

Proposition 3 Consider the financing and investment decision problem for the con-
strained levered firm. Suppose that the firm is financially constrained (i.e., the constraint
is binding). For the extreme case of = 0, we have the explicit solution (z™**, ™) = (i, 0)
and the equity option value E**(x) = E§(x). For 6 € (0,05*) where 05* is given by satisfy-
ing 0 = c**/(r(1 — 7)), the solution (x'**,c**) is obtained by solving the two simultaneous

equations:
fjl(xi**a C**) _ fj3(xi**7 C**)
fj2 (.Ti**, C**) - fj4 (ZUi**, C**) )

where fix(z',c) for j € {1,2} and k € {1,2,3,4} is given by

min{qf, I} = D¥(z™*, ¢**), (38)

Fulahe) = (8= 1or' + e+ (8= = (F+al)wret 4 =20 e -,

(39)
Futele) = {7+ (- a)r)we T+ =20 el (40)
ot = = rat)ros” .
fu(zc) = % +(1- 7)( — % +(1- a)%)kﬂcﬂxn, (42)

for 0 € (0,67) where 07* is given by satisfying 0 = (1 — 7)™ /r and

fulal ) == (B—1)va+ ﬁ;c +(B-M{- ﬁT . Lot (1-a)o brre 72 - B,
(43)
oozl c) = 7( - ; (1 a)9) KTl (44)
fala'e) = ==+ (=L (=) )we e, (45)
foala'¢) = % +(-0- 7)% +9(1 = a)fe ) e, (46)

for 6 € [07%,05%). The equity option value before investment is given by

B (z) = ( x )5{‘/&(33”*,0**) N 1}, (47)

Pk
i

where x < x** for 6 € (0,05%). On the other hand, suppose that the firm is not financially
constrained (the constraint is not binding). The solution (x**,c*™) is obtained by (x*, c*)

in Proposition 2.
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4 Model implications

This section examines more important implications of our model. The two key parameters
are collateral § and financing friction q.

Section 4.1 investigates the effects of # and ¢ on financially constrained regions. From
Sections 4.2 and 4.3, we consider the effects of 6 for a fixed ¢ = 1. Section 4.2 discusses
the effects of 6 on entry and exit strategies when a firm is financially constrained. Section
4.3 examines the effects of # on values, leverages, credit spreads, and default probabilities.
Section 4.4 considers the effects of ¢ for a fixed & > 0. Section 4.5 shows comparative
statics that account for the volatility (o > 0), risk-free interest rate (r > 0) corporate tax
(1 > 0), and bankruptcy cost parameter (a > 0).

To consider the properties of the solution, we consider some numerical examples. To

do so, the basic parameters are assumed to be
r=9%, c =20%, u=1%, I =5, 7 = 15%, a = 40%, and = = 0.2.

Recall that in our model the firm makes the investment once X (), starting at the
sufficiently low level of X (0) = =, arrives at the investment threshold z' from below.
Following existing studies, we define the notion of delayed (accelerated) investment as

follows: a larger (smaller) investment threshold implies delayed (accelerated) investment.

4.1 Financially constrained regions

In this subsection, we consider the effects of # and ¢ on financially constrained regions.
Figure 1 demonstrates regions where a firm is financially constrained by the collateral-
based upper limit of debt financing in the space (¢, ). Here, we consider the space (¢, 6)
for ¢ € [0.75,1.25] and 0 € [3.5,6.6666]. The dotted line from (gq,0) = (0.75,6.66) to
(q,0) = (1.25,4) indicates the boundary of satisfying ¢f = I. The lower-left region to the
dotted line represents the region of ¢ff < I. That is, the region of ¢f < I is defined for
0 € [0,6.6666] when ¢ = 0.75, while it is defined for [0, 4] when ¢ = 1.25. The upper-right
region to the dotted line of gf = I is denoted by Region C where we have ¢ > I. Note

that we do not consider Region C.
[Insert Figure 1 about here]
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The solid line from (q, ) = (0.89,5.59) to (¢,0) = (1.25, 3.68) indicates the boundary
of satisfying D?(z™*,c*) = ¢f. Note that D(2'*, ¢*) is monotonically increasing with 6.
Thus, the lower-left region of the lines from (¢,6) = (0.75,6.66) to (¢,0) = (1.25,3.68)
via (¢,0) = (0.89,5.59) is denoted by Region A, which corresponds to the constrained
region where D(x'* ¢*) > ¢fl. The region between the two lines is denoted by Region B,
which corresponds to the unconstrained region where D?(z'*, ¢*) < ¢f). Thus, we have the

following result.

Observation 1 Whether the collateral-based upper limit of debt financing is binding de-
pends on two key parameters: q (financing friction) and 0 (collateral). For a larger g and

a larger 0, the firm is not likely to be financially constrained.

Observation 1 implies that the firm is likely to be financially constrained for a smaller
g or a smaller #. This result is supported by empirical studies such as Almeida and

Campello (2007) and Gan (2007).!!

4.2 Effect of collateral on entry and exit strategies

In this subsection, we consider the effects of §. Here, we assume ¢ = 1 and 6 € [0, 5],
implying that ¢ < I = 5. Then, we consider two extreme cases: § = 0 and 6 > 4.75. For
0 = 0, the firm cannot issue debt, implying that z'** = 2i¥, ¢** = 0, and E**(x) = E} ()
where z < z**. For § > 4.75, the firm is not financially constrained, implying that
' = 2 ¢ = ¢*, and E**(z) = E*(x) where x < z'*.

Additionally, there exists 6 := 6(c*) = 4.1822 because ((1 — 7)/r)c* = 0 for § =
4.1822. By contrast, there does not exist 0;* := 6, (c¢**) because ((1—7)/r)c™ < 6 for any
0 € [0,5]. Moreover, there does not exist 6} := 6,(c?) because ¢//(r(1 — a)) > 0 for any
0 € [0,5] (j € {x,%x}).

Recall that z'* < zi¥) ¢* > 0, and E*(z) > Ej(x) for any 6 and z < z'*. Thus, we

intuitively conjecture the following inequalities:

o [:Ui*,a?%)*], o e [0, C*], E**(x) c [ES‘(:U),E*(;U)], (48)

1 Gan (2007) shows that firms with greater collateral losses are likely to obtain a smaller amount of

bank credit.
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for any 6 and x < min{z™,2**}. These three inequalities in (49) mean that financing
constraints delay the investment, reduce the coupon payment, and decrease the equity
option value before investment. However, contrary to our intuition, we show that the first
inequality is not always correct, although the second and third inequalities are always

correct.
[Insert Figure 2 about here]

The top-left panel of Figure 2 depicts ¥/ (investment thresholds) with 6 (j € {x, *x}).
The investment thresholds z'** (2'* and zl¥) are decreasing with 6. As already described,
we have z** = zi¥ for # = 0 and z'** = z™* for § > 4.75. For 6 € (0,4.75), our intuitive
conjecture is #** € [z*, 21¥]. Interestingly, our conjecture is not always correct. To be
more precise, for 6 € (2.1881,4.75), we have z** ¢ [2'* zl¥]. Note, however, that we
always obtain z** < zi*.

The top-right panel demonstrates ((1 — 7)/r)¢/ with 6 where ((1 —7)/r) > 0 (j €
{*,%x}). Recall that 6,(c*) = 4.1822 exists. The unconstrained coupon payment c* is
decreasing with 6 for 6 € [0,4.1822), while ¢* is increasing with 6 for 6 € [4.1822,5]. By
contrast, because 0 (¢**) does not exist, the constrained coupon payment ¢** is increasing
with 6. In addition, we have ¢** € [0, ¢*| for any €, which confirms our intuition.

The middle-left panel shows E7(z) (equity option values before investment) with
(j € {x,*x}). E*(z) is monotonically increasing with 6 and that E**(x) € [E{(z), E*(z)]
with limgjo B (z) = Eg(x) and lim,,; B (z) = E*(z).

These three panels suggest the following results.

Observation 2 Suppose that a firm is financially constrained by the collateral-based up-
per limit of debt financing. In such a case, financing constraints do not always delay
investment, although financing constraints decrease the coupon payments and equity op-

tion values before investment.
Observation 2 implies that
2" ¢ [, ap], ¢ e0,¢], BY(2) € [B(2), B (v)],

Recall that we have two control variables at the time of investment: z' and ¢. As a

result, it is less costly to distinguish #** from z'* than to distinguish ¢** from c¢*. These
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mechanism are similar to those in previous papers such as Shibata and Nishihara (2012),
Shibata and Nishihara (2015a), and Shibata and Nishihara (2015b).

The middle-right panel demonstrates z% and z% (default and shutdown thresholds)
with 6 (j € {*,%x}). We confirm that the unconstrained firm exercises default and
shutdown sequentially if § € [0, 4.1822), while it exercises them simultaneously otherwise.
To be more precise, if 6 € [0,4.1822), the unconstrained firm defaults once X (¢) arrives
from the above at z%*. Then, corporate ownership is transferred from equity holders to
debt holders. After X (¢) is decreased further and reaches 2°* (< x9*), the firm is liquidated.
Otherwise (if # > 4.1822), the unconstrained firm is liquidated once X (¢) declines to z4*,
not x**. By contrast, the constrained firm exercises default and shutdown simultaneously

Ak

when it declines to 2% (not 2°**) for any 0 € [0,5]. Thus, we have the following result.

Observation 3 Suppose that a firm is financially constrained by the collateral-based up-
per limit of debt financing. Consequently, financing constraints may change default and

shutdown strategies from sequential to simultaneous.

Observation 3 means that financing constraints affect corporate exit strategies via the
change of capital structure. This result is similar to that of Nishihara and Shibata (2016b),
where asymmetric information changes corporate exit strategies.

The bottom panel depicts the agency cost ac(z) with 6. The agency cost ac(z) is
defined by

E*(z) — E*(x)

= > 0. 49
aela) = T 2 (49)
The agency cost ac(z) is the loss of equity option value caused by debt financing con-
straints. We see that ac(z) is decreasing with 6. That is, the larger the collateral, the

less the financing constraint.

Observation 4 Suppose that a firm is financially constrained by the collateral-based up-
per limit of debt financing. In such a case, an increase in collateral decreases agency

cost.

Observation 4 means that firms with less collateral are likely to have larger agency

costs than firms with more collateral. This result corresponds to empirical studies such

as Almeida and Campello (2007) and Gan (2007).
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4.3 Effects of collateral on values, leverage, credit spread, and

default probability

This subsection examines the effect of 6 on debt, equity, total firm values, leverage, credit
spreads, and default probabilities.

The top-left panel depicts D¥ := D2(2, ¢/) (debt values) and F* := F?(¢/) (face
values of debt) with 6 (j € {x,*x}). We identify the following four properties. First,
we have D** < D* and F** < F?* for any 0 € [0,5]. These inequalities imply that
financing constraints decrease debt values and face values. Second, we have D¥ < F?
for any j (j € {*,*x}) because debt is risky for any 6 € [0,5] (i.e., see Equation (13)).
Third, debt and face values of the unconstrained levered firm, D* and F'**, are decreasing
with 6 € [0,4.1822), while they are increasing with 0 € [4.1822,5]. By contrast, debt and
face values of the constrained levered firm, D** and F**  are increasing with 6 € [0, 5].
Finally, debt discounts for a constrained levered firm, F'** — D** > 0, are smaller than
those for an unconstrained levered firm, F** — D* > 0. This implies that financing

constraints decrease the discount value of debt.
[Insert Figure 3 about here]

The top-right panel demonstrates E% := E?(z, ¢/) (equity values) with 6 (j €
{*,#x}). Importantly, we have E** > E?** for any 6 € [0, 5]. The inequality of E** > E?*
is contrary to that of D** < D*. Equity values for a constrained levered firm are larger
than those for an unconstrained levered firm because the debt issuance for a constrained
levered firm is limited.

The middle-left panel displays V* := V22 ¢/) (total firm values) with 6 (j €
{*,%x}). We clearly have V** < V* for any # € [0,5]. On the one hand, V* is
monotonically decreasing with 6 € [0,5]. On the other hand, V** has a U-shaped curve
with 6 € [0,4.75).

The top-left, top-right, and bottom-left panels give the following results.

Observation 5 Suppose that a firm is financially constrained by the collateral-based up-
per limit of debt financing. In such a case, values after investment have the following three
results. First, the constrained debt values are monotonic with the collateral, while the un-

constrained debt values are non-monotonic with the collateral. Second, the constrained and
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unconstrained equity values are monotonic with the collateral. Finally, the constrained to-
tal firm values are not always monotonic with the collateral, while the unconstrained total

firm values are monotonic with the collateral.

The middle-right panel shows leverages with @, where the leverage is defined by

D(zY, ¢7)

Va(zli ef)

€ [0,1], (50)

for any j (j € {*,*x}). We see that I/ is increasing with 6 for any j. In addition, we have
[** < I* for any € € [0,5]. This implies that financing constraints reduce leverages.

The bottom-left panel depicts credit spreads with 0, where the credit spread is defined
by

_ J
cs! = c —r >0, (51)

for any j (j € {x,*x}). We obtain ¢s™ < c¢s* for any # € [0,5]. This leads to the
finding that the upper limit of debt issuance decreases the credit spreads. Interestingly,
the unconstrained credit spreads, cs*, are decreasing with €, while the constrained credit
spreads, cs**, are increasing with 6.

The bottom-right panel shows default probabilities with 6, where the default proba-
bility is defined by

. (:‘fdjj)7 e [0,1], (52)

for any j (j € {x,*x}). We obtain p*™* < p* for any 6 € [0,5]. This means that the
upper limit of debt issuance decreases the default probabilities. On the one hand, the
unconstrained default probabilities, p*, are constant with 6 for § < 6;(¢*) = 4.1822,
although they are increasing with 0 for 6 > 6;(¢*) = 4.1822. On the other hand, the
constrained credit spreads, p™*, are monotonically increasing with 6 (6 € [0, 5]).

The middle-right, bottom-left, and bottom-right panels give the following results.

Observation 6 Suppose that a firm is financially constrained by the collateral-based up-
per limit of debt financing. In such a case, financing constraints decrease leverages, credit

spreads, and default probabilities.
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Thus, the more severe the debt issuance bounds, the lower are the leverages, credit
spreads, and default probabilities. These relationships are the same as those traditionally
suggested in the literature, and they also match the results of Ericsson and Renault (2006)
and Gomes and Schmid (2010).

4.4 Effect of financing frictions

In this subsection, we investigate the effect of financial frictions. Although we assume

¢ = 1 in the previous subsection, we now assume ¢ = 0.75 and ¢ = 1.25.
[Insert Figure 4 about here]

In the two upper panels of Figure 4, suppose that ¢ = 0.75. This assumption implies
that the upper limit of debt issuance is restricted by three-fourths of collateral value.
Then, if 6 € [0,6.6666) for I = 5, we have ¢f < I. In the two lower panels, suppose that
g = 1.25, which means that the upper limit of debt issuance is constrained by five-fourths
of collateral value. Then, if 6 € [0,4] for I = 5, we have ¢ < I. The two left and two
right panels depict 2/ and ¢/ with 6, respectively (j € {x,**}). From these four panels,
inequalities of z** € [z, 21¥] are not always correct, although inequalities of ¢** € [0, ¢*]
are always correct. Interestingly, in the lower-left panel, 2'** has a U-shaped curve with
f. In the upper-right panel, the constrained firm exercises the default and shutdown

simultaneously for any € (6 € [0,6.6666]). In the lower-right panel, the constrained firm
exercises the default and shutdown sequentially for any 6 (0 € [0, 4]).

[Insert Figure 5 about here]

In the two panels of Figure 5, we assume § = 5 and I = 5. If ¢ € [0,1], we have
g0 < I. Accordingly, the firm is constrained by the upper limit of debt issuance for
q € [0,0.9703) while it is not so constrained for ¢ € [0.9703,1]. The left panel displays
7Y (investment thresholds) with ¢ € [0, 1] where we have ¢ < I. Interestingly, z'** has a
U-shaped curve with #. This result is similar to the results of theoretical studies by Boyle
and Guthrie (2003), Shibata and Nishihara (2012), Shibata and Nishihara (2015a), and
Shibata and Nishihara (2015b), and to an empirical study by Cleary et al. (2007). Thus,

the property of z'** € [z'*, zl¥] is not always correct. The right panel demonstrates E’(z)
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(equity values) with ¢ € [0,1] (j € {x,*x}). Clearly, E**(z) is monotonically increasing
with g.

Recall that, if there are no financing constraints, we obtain a symmetric relationship
in (34), where debt financing decreases the investment threshold (accelerates the invest-
ment) and increases the equity option value before investment. Interestingly, if there are
financing constraints, such a symmetric relationship is not always obtained. In the two

panels of Figure 5, we see
o > gl E(x) > Ei(x),
for # € (0.0848,0.1435). These two inequalities lead to the following results.

Observation 7 Suppose that a firm is financially constrained by the collateral-based up-
per limit of debt financing. In such a case, debt financing does not always accelerate
investment, compared with all-equity financing, although the firm prefers debt financing

even under the upper limit constraints.

Observation 3 implies that financial frictions distort the symmetric relationship that
is always obtained in a frictionless market. This result is similar to that in the Modigliani
and Miller (1958) theorem, where financial frictions distort the independence between

investment and capital structure that is obtained in a frictionless market.

4.5 Comparative statics

In this subsection, we consider the effects of o (cash-flow volatility), r (risk-free rate),
7 (corporate tax), and « (bankruptcy cost) on z¥ (investment thresholds), cs’ (credit
spreads), and ac(z) (agency costs) where x < 2" for any j (j € {*, **}). In this subsection,
we assume that ¢ = 1.25 and # = 3.725. The other parameters are the same as in the

previous subsection.
[Insert Figure 6 about here]

The three left panels of Figure 6 display the effects of o (cash-flow volatility) on '/,
cs?, and ac(x), respectively (j € {*,*x}). The top-left panel shows 2"/ with o. To show

clearly whether the firm is financially constrained, we define P as x satisfying
D*(z, c(x)) = qb), (53)
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where ¢(z) := (k/h)x. Then, if 2* > P, the firm is financially constrained. Otherwise,
it is not. We obtain an interesting result. The firm is financially constrained for o €
[0.1,0.118] or o € [0.247,0.3], while the firm is not constrained for o € (0.118,0.247). In
addition, 2V is monotonically increasing with o. This result is the same as in Dixit and
Pindyck (1994). The middle-left panel displays cs’ with o. We see that cs’ is increasing
with 0. That is, an increase in o increases the risk of bankruptcy, implying that debt
holders increase the rate of return of debt. These results are consistent with the empirical
findings of Collin-Dufresne et al. (2001) and Ericsson and Renault (2006). The bottom-left
panel illustrates ac(x) with . We see that ac(z) is decreasing with o for o € [0.1,0.118],
while ac(z) is increasing with o for o € [0.247,0.3]. The next observation characterizes

the properties of volatility on the corporate financial constraints.

Observation 8 A firm s likely to be financially constrained when the value of volatility

1s small or large. Agency costs of financing constraints are not monotonic with volatility.

Observation 8 is the same as the result in Shibata and Nishihara (2012).

The three right panels of Figure 6 illustrate the effects of r (risk-free interest rate).
The top-right panel depicts 2. We have z'* > 2P if r € [0.07,0.0827], while z** < zP
otherwise. Thus, the firm is financially constrained for r € [0.07,0.0827] while the firm
is not constrained for r € (0.0827,0.09]. This is because an increase in r decreases debt
value. Thus, when r is increasing, the firm is not likely to be financially constrained.
The middle-right panel displays cs/. We see that cs’/ is monotonically increasing with
r. The bottom-right panel shows ac(x). We find that ac(z) is decreasing with r for
r € [0.07,0.0827]. The three right panels of Figure 6 gives the following properties of the

risk-free interest rate on the corporate financing constraints.

Observation 9 A firm tends to be financially constrained when the value of risk-free

interest rate is small.
[Insert Figure 7 about here]

The three left panels of Figure 7 show the effects of 7 (corporate tax). The top-left
panel depicts /. For 7 € [0.1,0.155], the firm is not financially constrained because of

x'* < 2P. For 7 € (0.155,0.2], the firm is constrained because x'* > zP. This result is
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intuitive as follows. An increase in 7 leads to an increase in the benefit of tax shields.
Thus, when 7 is large, the firm is likely to be constrained because the firm would prefer to
issue a large amount of debt. The middle-left panel demonstrates cs’. For 7 € [0.1,0.155],
cs* and ¢s™ are increasing with 7. By contrast, For 7 € (0.155,0.2], ¢s* is increasing with
7, while ¢s™ is constant with 7. The bottom-left panel shows ac(x). We see that ac(z)
is increasing with 7 for 7 € (0.155,0.2]. The next observation characterizes the effect of

the corporate tax on corporate financing constraints.

Observation 10 A firm is likely to be financially constrained when the value of corporate

tax is large.

The three right panels of Figure 7 depict the effects of . The top-right panel demon-
strates z'/. We have z'* > aP for 7 € [0.35,0.3882), while z'* < zP for 7 € [0.382,0.45].
Thus, the firm is financially constrained for o € [0.35,0.382) while the firm is not con-
strained for o € [0.382,0.45]. The reason for this is that a smaller v induces a smaller cost
of bankruptcy. Thus, when « is small, the firm is likely to be constrained because the firm
would like to issue a large amount of debt. The middle-right panel shows cs’. Interestingly,
cs* is decreasing with « for o € [0.35,0.45]. On the other hand, c¢s** is increasing with
a for a € [0.35,0.45], while ¢s™ is decreasing with « for o € [0.382,0.45]. The bottom-
right panel demonstrates ac(x). We see that ac is decreasing with « for a € [0.35,0.382).
The three right panels of Figure 7 provide the properties of the bankruptcy cost on the

corporate financial constraints.

Observation 11 A firm tends to be financially constrained when the value of the corpo-

rate tax 1s small.

5 Concluding remarks

We have investigated the optimal financing and investment timing decisions problem of
a firm constrained by an upper limit of debt financing, depending on the collateral. The
originality of this paper is its incorporation of collateral-based financing constraints in
the investment timing decision problem. We show the effects of collateral-based debt

financing constraints on financing and investment decisions.
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We provide five important results. First, collateral-based financing constraints do not
always delay investment. Second, collateral-based financing constraints may change exit
(default and shutdown) strategies from sequential to simultaneous. Third, collateral-based
financing constraints decrease leverages, credit spreads, and default probabilities. Fourth,
the agency costs due to collateral-based financing constraints are not monotonic with
volatility. Fifth, debt financing with upper limit constraints does not always accelerate
investment, compared with all-equity financing, even when the firm prefers debt financing

with upper limit constraints to all-equity financing.

Appendix

Proof of Lemma 2

To show the proof, we assume that default (“operating concern bankruptcy”) and shut-
down (“liquidation bankruptcy”) will be exercised sequentially, i.e., T5 < T%§ a.s. Then,

for a fixed ¢ > 0, the equity value after investment, E3(X (¢),c), is defined by

19
B(xX0.0 =  sp  {B0] / ¢TI ((1 = )X (u) + 7e)di]
T3\(>t),T5(>T3) t
FEXO e @01 - 0) B(X(15))] - £}, (A1)
;

T

T d v
= max {vX(t) +—c+ ( — QUTy — —c) ( T )
25(>0),25(<25) r r

+(1—a)(9—vx§)<%;))7— £} (A.2)

The optimal default threshold is given by

2= —L T <o, (A.3)

vy—1lavr —

for a fixed ¢ > 0. Because the realized value of X (t) is always nonnegative, we do not
define the default threshold as (A.3), on the condition that default and shutdown are
never exercised sequentially. This is a contradiction. As a result, we have T§ = T5 a.s.
(i.e., 2§ = 23), implying that default and shutdown are exercised simultaneously when

debt is riskless (0 € [f2(c), +00) for a fixed ¢ > 0).
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Proof of Lemma 3

First, recall that 2¢(c) in (8) is constant with § > 0 for # € [0,605(c)), while z5(c) in (16)
is increasing with 6 > 0 for 6 € [fy(c), +00). In the case of § = 0y(c) for a fixed ¢ > 0, we
obtain (17).

Next, we consider the values after investment. Suppose that debt is risky, i.e., 6 €

[0,605(c)) for a fixed ¢ > 0. Substituting (8) into (7) and (13) gives

FI(X(1),¢) = 0X (1) ~ ot - LT e Xy, (A4)

Di(X(2),0)

) é ( _j Fa—a) ) %xwl—v}xu)% repnE).
- + ( — +(1- a)9> K¢ "X (t)7, 0 € [01(c), O2(c)).

The sum of these two values are

V(X (1), ¢)

vX(t) + Tet { — (Z + ag>/<a7cl_7 + %A‘”HI‘V}X(t)7, 6 €10,0:(c)),
r " - (A.6)
oX(0)+ Zet (- ﬁ%w (1 - a)0) WX (1), 0 € [0:(c), Ba(c)).

In the extreme case, limy o D¥(X(t),c) and limgjo V(X (¢),c) are the same as those in
Shibata and Nishihara (2012), Shibata and Nishihara (2015a), and Shibata and Nishihara
(2015b).

Suppose that debt is riskless, i.e., 0 € [f5(c), +00) for a fixed ¢ > 0. Substituting (16)
into (15) gives

BY(X(1),¢) = vX (1) = — et 1=

Tevr(1- a)9)17)\_7X(t)7. (A7)
The debt and the total firm value are
Dy(X(1).¢) = . (A.9)
VAX(t),¢) = vX(t)+ ;c + ﬁ( — ;c +(1- a)H)I_WAWX(t)T (A.9)

By using six equations, (A.4) to (A.9), in the case of § = 0,(c) for a fixed ¢ > 0, we obtain
(18), (19), and (20).
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Derivation of Equations (23) and (25)

The equity option value for the constrained debt-equity financed firm, E**(x; #), is defined
by

E*(z):=  sup Ew[e’rTi{Ea(X(Ti),c)—(I—Da(X(Ti),c)>H. (A.10)

Ti(>0),c(>0)

By the strong Markovian property, (A.10) is given by

E*(z):=  sup Ew[e’rTi]{Ea(X(Ti),c)—(I—Da(X(Ti),c))}. (A.11)

Ti(>0),c(>0)
Using standard arguments, we have E*[e="""] = (2/2')? where 8 :=1/2— pu/o?— ((/0? —
1/2)2 4+ 2r/0?)Y? > 1 and x < 2! = X(T"). Thus, we obtain (23).
The equity option value for the all-equity financed firm, Ej(x;#), is given by

Ei(z) == sup E° [e”"Té{Eg(X(Tg))—IH. (A.12)

T3(>0)

As as in (23), we have (25).

Proof of Proposition 1

Substituting (4) into (3) gives

EXNX (1) = vX (1) + ﬁ(l Q) IO TX (1) (A.13)

Note that E2(X (¢);0) in (3) is defined by (A.13). Differentiating (25) with zi yields

B C_ . 1 .
() [ B — 1} + ot ap— -0 a0 =0 (Aag)

By arranging (A.14), we obtain (28).

Proof of Proposition 2

First, suppose that 8 € [0,0(c)) for a fixed ¢ > 0. Then, V2(z2', ¢) := F3(a', ¢) + D*(a', c)

in (27) is defined by the upper equation of (A.6). Differentiating V32(z!, ¢) with ¢ gives

rT_ (T v — YoV iT
" (T—i-aﬁ)(l Y ¢ 0. (A.15)
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Rearranging (A.15) gives c¢(2') = (k/h)z'. By substituting c(z') into V2(', ¢) and differ-

entiating (27) with z!, we have

1l -«

0o (= (o)) 0= B o o

Note that we have

(i (vt o

where ¢ := (1 + 7(h(1 — 7))7")~=" < 1. Thus, z™* should be satisfied with (30) and
¢t = c(x™) = (k/h)a™ for 0 € [0,0;), where 0] = 6,(c*), i.e., 0 is given by 0 satisfying
with 0 = (1 — 7)c*/r.

Next, suppose that 0 € [0,(c), 02(c)) for a fixed ¢ > 0. Then, V?(z!, ¢) in (27) is defined
by the lower equation of (A.6). Recall that we have E®(z{(c)) = 6 > 0. By differentiating
(27) with z' and ¢, 2™* > 0 and ¢* > 0 are obtained by solving simultaneous equations
of (31) and (32) for 0 € [07,05) where 85 = 05(c*), i.e., 05 is given by 6 satisfying with
6= (1/r(1—a))c

Finally, suppose that 6 € [fy(c), +00) for a fixed ¢ > 0. Recall that V?*(X (¢), ¢) in (27)
is given by (A.9). Differentiating V(X (¢),c) with ¢ yields ¢(X(t)) = (r/7)[(1 — «)f —
A7'X(t)]. Then, we have

which implies that investment and shutdown are exercised simultaneously. Thus, we do

not obtain z*(#) and c¢*(0) for 6 € [0, +00).

Proof of Corollary 1

Recall that V(X (t), ¢) and E§(X (t)) are given in (A.6) and (A.13), respectively. To show
the proof, it is enough to confirm that, for any X (¢) and 0 € [0, 03), we have

VX (1), (X (1)); 0) = EG(X (1)), (A.18)

where ¢(X (t)) = argmax, V(X (%), ¢).
Now suppose that ¢(X(¢)) > 0 and V(X (t), c(X(t))) < E§(X(t);0) for any X (¢) and
6. Then, we obtain ¢(X(¢)) = 0 and lim._,o V(X (¢),c(X(t))) = E3(X(t)). Thus, the

30



firm can increase the value by choosing ¢(X(t)) = 0, which is a contradiction. As a result,
(A.18) implies that we have z'* < zi¥ and E*(z) > E¢(x) for any 6. To confirm that these
results are correct, see the top-left and middle-right panels of Figure 2 and the left and

right panels of Figure 5, respectively.

Derivation of Equation (36)
Substituting # = 0 into (A.13) yields
E2(X (1)) = vX(1). (A.19)

In addition, substituting # = 0 and ¢(X(¢)) = (k/h)X (¢) into the upper equation of (A.7)

gives
V(X (D), (X (1)) = YoX (1), (A.20)
because of (A.17). Since (A.19) and (A.20) imply V(X (¢),c(X(t))) = YEF(X(t)), we

obtain (36) by using (35).

Proof of Proposition 3

Suppose that 6 € [0,60,(c)) for a fixed ¢ > 0. The Lagrangian is formulated as
L = xi_ﬁ{‘/la(:ri,c) —[} +5{q9—D?(xi,c)}, (A.21)

where § > 0 denotes the multiplier on the constraint. Recall that D#(z!,c) and V(' c)
are defined by the upper equations of (A.5) and (A.6), respectively. The Karush-Kuhn-
Tucker (KKT) conditions are given by

08— (T Vel o) — Iy 4
+( — <; + Oz%) kYT + 1:—:917)\7)%@71}
—5{ < — % +(1- a)%)H’YCl—W + i:_jgl—'y)\—v},mﬂl —0, (A.22)
aa_f = xiiﬂ{% —(1—=9) (; + a%) /{%”x”}
—5{%+(1—7)(—%+(1—a)%>/€70_7x”}:0, (A.23)
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and
5{ min{qf, I} — Dz, c)} —0. (A.24)

Removing 6 > 0 from (A.22) and (A.23) and rearranging gives the first equation of (38)

with fi1, fi2, f13, and fua.

For 6 € [#1(c),0:(c)) for a fixed ¢ > 0, recall that D*(z!,c) and V?(z!, c) are given by
the lower equations of (A.5) and (A.6), respectively. Similarly, we derive KTT conditions.
By arranging the KKT conditions, we obtain the first equation of (38) with fa1, fo2, fo3,
and foy.
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debt-equity financing

all-equity financing

risky debt riskless debt -
0€0,0,(c) | 0€[0:(c),0:(c) | 0€Bs(c),+o0) | 0 €0, +00)

Debt value DX (2),¢) D3(X (1), ¢) -

Equity value EA(X (1), ¢) B2 (X (1), ¢) EA(X (1)

Default equity holders - -
2¢(c) equity holders — —
Shutdown debt holders z{(c) equity holders equity holders
2 z3(c) 7
Exit strategies sequential simultaneous only shutdown

Table 1: Values and bankruptcy strategies for a fixed ¢ > 0

If & € [0,6,(c)) for a fixed ¢ > 0, default and shutdown are exercised sequentially. If

6 € [01(c),02(c)) for a fixed ¢ > 0, they are exercised simultaneously. Otherwise, shutdown

only is done because there is no default.
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6.66
.

Region C

5.59 -

0 (collateral)

Region A

3.68 -

| | |
0.75 0.89 097 1 1.25
q (financial friction)

Figure 1: Constrained regions in space (¢, 6) for I =5
The other parameters are r = 9%, 0 = 20%, p = 1%, 7 = 15%, a = 40%, I = 5,
and z = 0.4. The dotted line from (gq,0) = (0.75,6.66) to (¢,0) = (1.25,4) indicates
the boundary of satisfying ¢ = I = 5. The upper-right region to the dotted line of
qf = I is denoted by Region C, where g6 > I. The solid line from (g,0) = (0.89,5.59)
to (¢,0) = (1.25,3.68) indicates the boundary of satisfying D?(z'*,¢*) = ¢f. Note that
D?(z™, ¢*) is monotonically increasing with §. Thus, the lower-left region of the line from
(q,0) = (0.75,6.66) to (q,0) = (1.25,3.68) via (¢,0) = (0.89,5.59) is denoted by Region
A, which corresponds to the constrained region where D*(z'* c*) > ¢f = min{q0,I}.
The region between the two lines is denoted by Region B, which corresponds to the

unconstrained region where D?(2'* ¢*) < ¢ = min{q¢f, I}.
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Figure 2: Effects of collateral § on financing and investment thresholds
Suppose ¢ = 1 and I = 5. We then have ¢f < I for any 6 € [0,5]. The other parameters
are r = 9%, 0 = 20%, p = 1%, 7 = 15%, a = 40%, and = = 0.4.
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Figure 3: Effects of 6 on values, leverage, credit spread, and default probability
Suppose ¢ = 1 and I = 5. We then have ¢f < I for § € [0,5] The other parameters are
r=9%, o0 =20%, un=1%, 7 = 15%, a = 40%, and = = 0.4.
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Figure 4: Effects of # for ¢ = 0.75 and ¢ = 1.25
Suppose ¢ € {0.75,1.25} and I = 5. For ¢ = 0.75 in the two upper panels, we have ¢ < I
for 6 € [0,6.6666]. For ¢ = 1.25 in the two lower panels, we have g8 < I for § € [0,4].
The other parameters are r = 9%, o = 20%, u = 1%, 7 = 15%, a = 40%, and = = 0.4.
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Figure 5: Effects of financing friction ¢ for § =5
Suppose # = 5 and I = 5. We then have ¢f < I for ¢ € [0,1]. The other parameters are
r=9%, o0 =20%, p=1%, 7 = 15%, a = 40%, and = = 0.4.
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Figure 6: Effects of volatility (o) and risk-free interest rate (r)

Suppose ¢ = 1.25, § = 3.725, and I = 5. The other parameters are . = 1%, 7 = 15%,

a = 40%, and = 0.4.
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Figure 7: Effects of bankruptcy cost () and corporate income tax (7)

Suppose ¢ = 1.25, 0 = 3.725, and I = 5. The other parameters are r = 9%, o = 20%,

pw=1%, and z = 0.4.
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