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REFORMULATION OF THE ARBITRAGE-FREE PRICING METHOD UNDER
THE MULTI-CURVE ENVIRONMENT

MASAAKI KIJIMA  AND YUKIO MUROMACHI

ABSTRACT. This paper proposes a unified framework for the pricing of derivatives under the
multi-curve setting. It is shown thainy derivative security can be duplicated by using the un-
derlying assets, collateral account and funding account, appropriately. A risk-neutral measure
is defined accordingly under which the derivative price is determined uniquely. This idea is ex-
tended to the pricing of OIS and LIBOR discount bonds and interest-rate derivatives under the
risk-neutral measure, which explains the existence of multiple yield curves simultaneously in the
market. Some specific models are given to demonstrate the usefulness of our approach. Through
numerical examples, we find that the discrepancy of derivative prices under the multi-curve set-
ting from the classical ones becomes significant when the spread volatility between the collateral
and funding rates exceeds some level.

Keywords: Multi-curve, duplication, OIS, LIBOR, collateral rate, funding rate, risk-neutral
measure, forward measure.

1. INTRODUCTION

Since the beginning of the worldwide financial crisis in 2007, LIBOR rates have been devi-
ated from OIS (Overnight Index Swap) rates for the same maturity. Also, a swap rate based on
semiannual payments of the six-month LIBOR rate, for example, has been different from the
same-maturity swap rate based on quarterly payments of the three-month LIBOR rate. Accord-
ing to Mercurio (2009), while the construction of a no-arbitrage framework that is consistent
with the simultaneous existence of such different yield curves can be possible by using the credit
and liquidity theories, practitioners seem to agree with an empirical approach, which is based
on the construction of many possible curves of rate lengths, calledultecurve approach

Recall that, in the classic pricing approach, OIS rates and LIBOR rates with different tenors
are defined through a unique and fully consistent zero-coupon curve, which is thus used both in
the generation of future cash flowsaiyinterest-rate derivatives and in the calculation of their
present values. On the other hand, in the multi-curve setting, future cash flows are generated
through the curves associated with the underlying rates and then discounted by another curve,
not necessary by risk-free discount curve.

A pioneering work of the valuation of interest-rate derivatives under the multi-curve setting
seems the papers by Boenkost and Schmidt (2005) and Henrard (2007), which are followed
and extended by, e.g., Kijima, Tanaka and Wong (2009) and Mercurio (2009). In particular,
Kijima, Tanaka and Wong (2009) assumeogenouslyhat there exists a risk-neutral measure
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under which any price process discounted by the risk-free savings account is a martingale and
other yield curves are given consistently in the market.

In this paper, we construct a no-arbitrage framework of financial market that is consistent to
the multi-curve setting, because using different yield curves at the same time requires a refor-
mulation of the basic assumptions made in the classic interest-rate models. Of our particular
interest are how to define a risk-neutral measure fgivanfinancial market and how to price
derivative securities in the market. However, as in Mercurio (2009) and many others, we do not
take into account the credit and liquidity issues. We rather start from the existence of multiple
yield curves and try to build a consistent framework with the actual market.

One of the promising approaches to explain the existence of multiple yield curves is to use
the collateralization in derivatives contrattdlamely, we assume that there exist not only the
underlying securities but also the collateral account, funding account, and repo account (defined
later) in the market. It is shown thahy derivative security can be duplicated by using these
securities appropriately. A risk-neutral measure is defined accordingly and the derivative price
is determined uniquely under the measure. This idea can be applied to the pricing of OIS and
LIBOR discount bonds and interest-rate derivatives as well, ending up with the simultaneous
existence of multiple yield curves in the market.

This idea is not new in the finance literature. For example, Piterbarg (2010) discusses the
price of a perfectly collateralized derivative by constructing a self-financing risk-free portfolio.
Using a no-arbitrage condition, he derives a partial differential equation (PDE) satisfied by
the price function and obtains the price of OIS discount bonds by applying the Feynman-Kac
theorem to the PDE. See also Piterbarg (2012) and Han, He and Zhang (2014, 2015) for similar
developments.

Application of this framework for the pricing of interest-rate derivatives has been also dis-
cussed in many papers. For example, Bianchetti (2013) and Henrard (2014) have discussed the
pricing of interest-rate derivatives in the multi-curve setting and derived useful formulas which
are widely used in practice for calculating OIS and LIBOR discount curves and for pricing
interest-rate derivatives.

The aim of this article is a reformulation of the no-arbitrage framework in financial markets
that is consistent to the multi-curve environment. Our discussion starts from the construction of
a self-financing duplication portfolio under the physical probability measure. The risk-neutral
measure is defined by the change of measure technique due to the Girsanov theorem. Any
derivative security including interest-rate derivatives can then be priced under the risk-neutral
measure.

This paper is organized as follows. In the next section, we set up the security market model
and show that any derivative security can be duplicated by using the underlying securities, col-
lateral account, and funding account in the market appropriately. The risk-neutral m@asure
is defined and derivative securities are priced uriglaccordingly. A remarkable result is that,
while the instantaneous rate of return of the derivatives ufiddepends on the definition of
collateraization, that of each underlying security is given by its repo rate; hence they are not
identical in contrast to the classic single-curve case. This idea is then applied to the pricing
of OIS and LIBOR discount curves in Section 3, which explains the simultaneous existence of

YIn the last decade, collateralization in the derivatives contracts has increased rapidly along with the CSA (Credit
Support Annex) to the ISDA (International Swaps and Derivatives Association) master agreement. It is quite
difficult now to make a contract without a collateral agreement among the major financial institutions.
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multiple yield curves in the market. In Section 4, we consider the pricing of forward rate agree-
ments (FRASs) and interest-rate swaps (IRSs). Section 5 is devoted to some specific models. In
particular, we develop a short rate model in which the prices of OIS and LIBOR discount bonds
as well as FRA and IRS rates are derived in closed form. Some numerical examples are given to
show the deviation of the two-curve setting from the classic single-curve setting. Through nu-
merical examples, we find that the discrepancy of derivative prices under the two-curve setting
from the classical ones becomes significant when the spread volatility between the collateral
and funding rates exceeds some level. Section 6 concludes this paper. Proofs are provided in
Appendix A for the reader’s convenience.

Throughout this pape(2, F, P, { F; }o<:<7) denotes a filtered probability space whétés
finite and the filtration{ 7, },-, .+ satisfies the usual conditions. The probability measuie
the physical measure and a martingale (pricing) measure will be denot@dHye expectation
operator unde@ is denoted byE.

2. PRICING BY DUPLICATION

In this section, we consider a financial market in which there are availaiis&y assets.Let

S;(t) denote the time-price of risky asset, i = 1,2,...,n. Itis assumed that the risky asset

price S;(t) under the physical measuPefollows the stochastic differential equation (SDE)
dS;(t .

(2.1) ®) = p;(t)dt + o, (t)dW; (), i =1,2,...,n,

Si(t)

where the instantaneous rates of retuyft) and the volatilitiesr;(¢) satisfy the standard con-
ditions and wheréV;(¢) are correlated standard Brownian motions urigler

On the other hand, there are three kinds of non-risky savings accounts; collateral, funding,
and repo accounts. We denote the titrgrice per one unit of the collateral account By:(t),
Whereas%(t) denotes thegth funding accountj = 1,2, ..., m. While the collateral account is
the savings account that is fully secured by collaterals, the funding accounts have no collaterals.
Different quality of the funding accounts are assumed to be available in the market. However,
in order to keep the description as simple as possible, this section considers the eade
only. The next section treats the general case. Denoting:fy andrz(¢) the instantaneous
collateral rate and funding rate at timerespectively, the associated collateral and funding
accounts are defined by

(2.2) dBo(t) = re(t)Be(t)dt,  dBp(t) = re(t) Be(t)dt

with B¢ (0) = Br(0) = 1. Finally, when the funding is secured by asSgt), the short rate

ri,(t) is applied that represents the credit quality of the aSge}. Here, R stands for ‘repo’

as in Piterbarg (2010). In the actual markets, we expectith@) < r%(t) < rp(t) for all 4.

Note, however, that there is no arbitrage opportunity across those savings accounts, because of
the availability of collaterals or not.

Consider a European contingent claim written (@f(¢), . . ., S,,(¢)) with payoff function
h(Si,...,S,) and maturity’, 0 < T < T. The timet price of the claim is denoted by (¢).
Suppose that the contingent clainft) is duplicated through a self-financing strategy of trading
(01(t),...,0,(t),0c(t),0r(t)) units of the underlying risky assets and the two non-risky savings

2For the sake of simplicity, we assume that every asset pays no dividends. It is a straightforward extension to
include positive dividend rates.
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accounts. That is,
(2.3) V()= 6:(0)Si(t)+T(t), 0<t<T,

with V(T') = h(S:(T),...,S.(T)), wherel'(t) denotes the cash amount held in the duplicated
portfolio, i.e.,

(2.4) T(t) = 0c(t)Be(t) + 0p(t) Be(t) — R(t),  R(t) = iw)s /

It should be noted from (2.3) and (2.4) that the valug) of the contingent claim is divided
into the collateral account'(t) = 6¢(t)Bc(t) and the funding accourft(t) = 0p(t)Br(t)
according to a predetermined manadhat is, we have

(2.5) V(t) =C(t)+ F(t), 0<t<T.

Also, the repo rate,(¢) is applied for the funding that is secured by asét). In other words,
the growth of the cash amouRit) is given by

n

(2.6) dR(t) = > ra(t) [0:8)Si(1)] dt.

Now, under the self-financing strategy, (2.3) and (2.4) together imply
(2.7) Z 0t ) 4 0c(t)dBe(t) 4 0p(t)dBr(t) — dR(2).

Substituting (2.1), (2.2) and (2.6) into (2.7), we obtain

(Z 0:(8) (ni(t) — (1)) Si(t) + Oc (t)re(t) Bo(t) + 9F(t)7‘F(t)BF(t)> d

(2.8) + Z 0i(t ()dW;(t).
Let us define the processBs'(t),i = 1,...,n, by
29) AW = aw) +xoar, o = L0,

with W;*(0) = 0. Following the tradition in the standard finance literature, we &gil) the
market price of riskassociated with; ().
Substituting (2.9) into (2.8), we then have

(2.10) AV (t) = (re(t)C(t) + rr(t)F(t)) dt + Z 0 (t ()W ().

Define~(¢) to be the ratio of the collaterél(t) to the total valué/ (t), i.e.,y(t) = C(t)/V (¢).
Using the ratioy(¢), we define the weighted average of the short rates by

(2.11) () = re(t)y(t) +re(t)(1 —(1)).

3In this paper, we assume that the investor who holds the contingent claim can access the funding market at any
time and at any amount. Also, the asymmetric collateralization is not considered, i.e., the lending and borrowing
rates are the same.
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It follows from (2.5) thatro(t)C(t) + rr(t)F(t) = r,(t)V(t), and so we obtain from (2.10)
that

(2.12) AV (t) = t)dt + Ze (&)W (¢).

Associated withr, (¢) defined in (2.11) is the new savings account

B, (t) = exp {/Ot rv(s)ds} . B0) =1

Consider the denominated prieg(¢) = V (t)/ B, (t) with the nunéraireB, (t). It follows from
(2.12) that

AV (t) = Z ()W (¢).

Integrating it ovelt, T'|, we obtain

(2.13) VAT Z / (u)dW (u).

Let us define a probability measu@ethat makes the process@$’ (¢), ..., W, (¢)) standard
Brownian motions. The existence of sughs guaranteed by the standard Girsanov’s theorem
under regularity conditions. Taking the conditional expectation of (2.13), we get

T
(2.14) V(t) =E, {exp {—/ Tv(u)du} V(T)} , 0<t<T,
t
subject to regularity conditions, whelfg denotes the conditional expectation operator uriler
given F;.
By substituting (2.9) into the SDE (2.1), we obtain
d
(2.15) Silt ) rh(t)dt + o () AW (L), i=1,2,...,n,

Si(t)
under the martingale measuge Hence, undef), the instantaneous rate of return of risky asset
S;(t) is given by its repo rate,,(¢). Again, by adopting the standard terminology in the finance
literature, we callQ therisk-neutralprobability measure.
Since the denominated prié€’(t) = V (t)/B,(t) is aQ-martingale from (2.14), it follows
that
dV (t)
V(t)
for some volatility process, (t), wherelV(¢) denotes a standard Brownian motion under the
risk-neutral measur®. Hence, in contrast to the underlying ass&{$), the instantaneous rate
of return of the derivative security is given by(t); cf. Equation (2.15). This is the remarkable
difference of the multi-curve setting from the standard single-curve world. In this paper, we call
Equation (2.14) théundamental pricing formula
Summarizing, we have the following result.

=1, (t)dt + o, (£)dW (t)

Proposition 2.1. Suppose that there are risky assét$t) and non-risky savings accounts,
called collateral and funding accounts, whose short rates are givenclog) and rr(t), re-
spectively. Then, there exists a pricing measQrecalled the risk-neutral measure, such that
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the time¢ price V (¢) of a derivative written on the risky assets is given by

V() = E, {exp {— /t ' r,y(u)du} V(T)] ,

wherer, (t) = y(t)rc(t) + (1 —~(t))rr(t) for somey(t), and wherek, denotes the conditional
expectation operator undép. UnderQ, the derivative pricé/(t) follows the SDE
dvi(t) _
V()
for someo, (t), whereW(t) is a standard Brownian motion und€. On the other hand, the
price of risky asses;(t) follows the SDE

dS;(t )
Si(t)

whereri,(t) denotes the short rate of funding that is secured by the a$etand W;(¢) is
another standard Brownian motion under

7y (t)dt + o, (t)dW (1)

rp(t)dt + o () dW; (1),

Remark 2.1. In the multi-curve setting, we note that (i) the instantaneous rate of return of the
underlying asses;(t) is equal to its repo rate,(¢) under the risk-neutral measuge (i) the
risk-neutral measur® depends on the repo rates, but neither on the collateratsatenor the
funding raterx(t), (iii) the derivative pricel/(¢) depends on the measugeand~(t¢) (hence,
bothrq(t) andrg(t)), and (iv) the nuraraire which makes the denominated derivative price a
Q-martingale isB,(t), which depends on the collateral rate(t), the funding rate»(¢), and

the ratioy(t) = C(t)/V (t) of the collateral account to the derivative value.

Remark 2.2. Suppose thati,(t) = rc(t), i.e., the repo rate of asséf(t) is the same as the
collateral rate. Then, we defile. (1) Bo(t) = 0c(t)Be(t) — R(t) in (2.4). In this case, we take
the collateral accounB(t) as the nuraraire so that, from (2.3), we have

Ze ) + 0c(t) + 0r(t) By(1),
whereV*(t) = V(t)/Bc(t) and so on. Under the self-financing strategy, it follows that
AV*(t) = 0 (1) (rp(t) — ro(t) Bh(t dt+29 (t)dW; (1),

where we define the market price of risk in (2.9) byt) = (u;(t) — re(t))/oi(t) as in the
ordinary single-curve setting. But, sinée(t)Br(t) = (1 — v(¢))V (t) by the definition of the
ratioy(t), we obtain from (2.11) that

AV*(t) = (ry(t) — re(t)) V(1 dt+29 (t)dW; (t).

Hence, the denominated procdgs(t) with numéraire B¢ (t) is not a martingale under the
risk-neutral measur®, unlessy(t) = 1, i.e., the perfect collateral case.

We now proceed to consider some special cases of the fundamental pricing formula (2.14).
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Example 2.1(Perfect Collateral)Suppose that(u) = 1, i.e.,C(u) = V(u), t < u < T. This
case is known as thgerfect collateral In this case, from the pricing formula (2.14), we have

(2.16) V(t) = E, [exp {— /t ' rc(u)du} V(T)} _E, [ 55((;)) v(T)} :

which has been obtained by many auttfbBecausd’ *(t) = V(t)/Bc(t) is a martingale under
Q from (2.16), the value proce$§(t) follows the SDE

dV(?) '
for some volatility process¢(t). On the other hand, the price of risky assgi) follows the
SDE (2.15), i.e.,

= rh(t)dt + oy (1) AW} (1),

whereri,(t) denotes the repo rate. Hence, onlyeiferyunderlying assef;(¢) is perfectly
healthy so that its repo raté,(¢) is equal to the collateral rate (¢), then the instantaneous rate
of return ofS;(¢) is given byrq(t) underQ. In this case, we can recover the classic risk-neutral
framework in the single-curve world.

Example 2.2(No Collateral) On the other hand, if(v) = C(u) = 0,t < u < T, i.e., with no
collateral, then the pricing formula (2.14) becomes

(2.18) V(t) = E [exp {— /t ' rF(u)du} V(T)] _E, [ gj(?) V(T)] ,

and the value process(¢) follows the SDE

dV(t
(2.19) dvie) _ re(t)dt + op(t)dWi(t)
V()
for some volatility process(t). Moreover, only ifeveryunderlying asses;(¢) is unhealthy
so that its repo rate,(¢) is equal to the funding rate-(t), then the instantaneous rate of return
of S;(¢) is given byrg(t) underQ. Again, this case is reduced to the classic risk-neutral world

under the single-curve setting.

3. INTERESTFRATE DERIVATIVES UNDER MULTIPLE CURVES

In this section, we consider the pricing of interest-rate derivatives under the multi-curve set-
ting. It is assumed throughout that the market considered in the previous section is rich enough
S0 as to take the same risk-neutral meagueyen in this section.

3.1. OIS Discount Bond. Suppose that, under the physical meadtrthe price dynamics of
the collateralized discount bond maturing at tifyéollows the SDE

dD(t,Ty)
D(t,T;)
whereD(T;,T;) = 1 for all 7, and wherd¥;(t) denote correlated standard Brownian motions

underP. The collateralized discount borid(z, T') is usually called the OIS discount bond and
considered to be perfectly secured.

4See, e.g., Piterbarg (2010) who applies the Feynman-Kac formula to derive (2.16).
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Letrq(t) be the collateral rate, and suppose that the OIS discountbohd") is duplicated
by the instrument®(¢) and D(t, T;) with different (finitely many) maturitie$;. Thatis, asin
the framework of Heath, Jarrow and Morton (1992), the OIS discount bonds;), 7; > T,
are used as the underlying securities. Becd&E 7') = 1, it then follows from (2.16) that

(3.2) D(T) = F, [exp {— /tT rg(u)duH _E {55—8} L teT

which is known as the “OIS discounting” in practice. Note that the denominated price process
D(t,T)/Bc(t) is a martingale unde®, and so we have
dD(t,T)
—_— = t)dt t, T)dW™(t
as thederivativesecurity; see (2.17)
Itis plausible to assume that the repo rate for the OIS discount bonds is equal to the collateral
raterc(t), because they are perfectly secured. Hence, under the risk-neutral m8asuee
have from (2.15) that

dD(t,T;)
D(t,T;)
for eachT;, as theunderlyingsecurities. The market price of risk that changes the SDE (3.1)

underP to the SDE (3.3) unde® is defined by (2.9) in an obvious manner. Hence, the OIS
discount bonds alone are treated as if they were in the single-curve world.

(33) — re(t)dt + op(t, T)AW; (1)

3.2. LIBOR Discount Bond. Consider the LIBOR rate with tenot,, kK = 1,2,...,m, and
denote the time-price of the associated LIBOR discount bond maturing at tiiney L, (¢, ;).
Suppose that its price dynamics follows the SDE
dLg(t,T})
Ly (tv TJ)
whereL,(T;,T;) = 1 for all j, and wherdV () denote correlated standard Brownian motions
underP.
Itis widely believed by practitioners that LIBOR discount bonds are unsecured. Suppose that
the funding rate and repo rate for the LIBOR discount bonds are the same and givg(t by

If the LIBOR discount bond_,(¢,7) can be duplicated by other LIBOR discount bonds with
different (finitely many) maturities but with the same temgrthen we have from (2.18) that

(3.4) Li(t,T) =E /T’“()d E By (1) t<T
. == ex — rmluw)du =
k\Y) t p \ F t B?(T) ) )
which is known as the “LIBOR discounting” in practice, wheBé (¢) is the funding account
associated with the funding raté (¢). Hence, the denominated price procésst, T')/ Bk (t)
is a martingale unde@®, and so we have
dLg(t,T)
as thederivativesecurity; see (2.19).
Also, under the risk-neutral measupe we have from (2.15) that
dLy(t,T})
Lk<tﬂ TJ)

= i (t, Ty)dt + o (¢, Tj)dWS (1),

= rh(t)dt + ok (t, T)dW* (1),

(3.5) = rp(t)dt + o} (¢, T;)dW(t)
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for eachl’;, as theunderlyingsecurities, because the repo ratépft, 7;) is equal to the funding
rater®(t). Hence, the LIBOR discount bonds with the same tenor alone are treated as if they
were in the single-curve world.

We have thus proved the following, which shows the simultaneous existence of multiple yield
curves in the market.

Proposition 3.1. Let D(¢,T;) and L,(t,7;) be the OIS and LIBOR discount bonds defined
above. Suppose that the collateral and repo rates of the OIS discount bynds;) are the
same and given by (t). Further, suppose that the funding and repo rates of the LIBOR dis-
count bonds.(t, T;) are the same and given by.(¢) for each tenorr. If the market is rich
enough, then there is a unique risk-neutral meagmender which the denominated price pro-
cessed(t,T;)/Bc(t) and Ly (t,T;)/ B (t) are martingales simultaneously, whelBe:(¢) and
B*(t) are associated savings accounts defined above.

Remark 3.1. While the procesé,. (¢, T)/B%(t) is a martingale unde® for eachk, the process
L(t,T)/B(t) denominated by thetheraccountB(¢) is no longer a martingale under the risk-
neutral measur@ in the multi-curve setting.

In the rest of this paper, for the sake of notational simplicity, we treat only thergasel
and simply callL(t, T") the LIBOR discount bond maturing at timié Extension to the general
case is straightforward.

3.3. Forward-Neutral Method. We have already seen that the derivative price process follows
the SDE
dV(t) x
for some volatilityo., (¢, 7) under the risk-neutral measu@e Similarly, from (3.3) and (3.5),
the price processes of OIS and LIBOR discount bonds can be written by

(3.7) % =ro(t)dt + op(t, T)dW7 (1), t<T,
and
(3.8) djﬁf’f)) =rp(t)dt + o (t, T)dW/ (1), t<T,

for someop(t,T) ando(t,T), respectively, wheré&l/(¢) andWW;(t) are standard Brownian
motions undefQ with correlationsiW (¢)dW;,(t) = p,n(t)dt for M = D, L.

Let us denote the OIS and LIBOR forward pricesW§ (t) = V(t)/D(t,T) andVE(t) =
V(t)/L(t,T), respectively. By applying Ito’s division rule to (3.6) and (3.7), the OIS forward
price is given by

dv‘;? (Sf; [ry(t) = ra(t) — op(t,T) (pr.p(t)oy(t, T) — op(t,T))] dt

(3.9) + 0 (6, T)AW? (1) — op(t, T)AWp(1).

Now, define the process&g’ ,(t) andIW} () by
(3.10) AW p(t) = dW}(t) — pyp(t)op(t, T)dt, dWp(t) = dWp(t) —op(t,T)dt,
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respectively. By substituting (3.10) into (3.9), we obtain
dVP ()
Vi (t)
LetQ! ;, be a probability measure that makes the proce8sgs(t) andV} (t) standard Brow-
nian motions. The existence of su@ ;, is guaranteed by Girsanov’s theorem; however, the
OlSs-forward priceV;”(t) cannot be &7 ,-martingale, since the drift term in (3.11) is not
eliminated except the case thatt) = 1. This is a remarkable difference from the ordinary
forward-neutral method under the single-curve setting. Note also that the m@@grde-

pends ony(t), in contrast to the risk-neutral measiipe
Next, we define the spread by

(3.11) = (ry(t) = re(t)) dt + oo (¢, T)AW. [ (t) — op(t, T)AW(2).

(3.12) yy(t) = ry(t) = ro(t) = (L =~()(re(t) —ro(t))
and the associated savings account by
dBy(t)

B Ok Bro) =1

Note that we havey, (t) = 0 and By, (t) = 1 for the perfect collateral case(f) = 1). It
follows from (3.11) that

d (VP (t)/By,(1))
VP (t)/ By 4(t)

Since the procesg;’(t)/ By, (t) is aQl ,-martingale from (3.13), we can get the following
expression:

(3.13)

= o, (t, T)AW. (t) — op(t, T)dW}(t).

VP = EP" { g;j((;)) VP (T)} S {%Wﬂ] )

where EQ’DT is the conditional expectation operator undgf ,, given the informationr;.
Therefore, we obtain

1) V)= DDEY e~ [ 0= 26)0s(s) — re(eas | V)]

Although not exactly the same, we call the measlfg, the 7-OlS-forward measure because
of the resemblance (see (3.15) and (3.16) below) to the ordinary forward measure (see, e.g.,
Kijima, 2013).

In the case of perfect collateraj(¢) = 1), the OIS-forward pricé’ P (t) = V(t)/D(t,T) is a
martingale under thé&-OIS-forward measur@fD. It follows from the pricing formula (3.14)
that

(3.15) V(t) = D(t, T)EFP" [V(T)],

which is equivalent to the forward-neutral pricing formula in the single-curve setting. On the
other hand, in the non-collateral casé«) = 0), the pricing formula (3.14) becomes

18) V=D DE” [ow{= [ (rso) - ety ashvin).

which is different from the ordinary pricing formula derived in the previous literature unless
rr(t) = ro(t).
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Similarly, the LIBOR-forward price is given by

?%g:=h@—ww—m@ﬂwww%mﬂ—@@nmn

(3.17) +o,(t, T)AW(t) — op(t, T)AWL(2).

Define the processé§”” (t) and W/ (t) by

(3.18) AW (t) = AW} (t) — pyp(t)or(t, T)dt, dW[(t) = AW (t) — or(t, T)dt,
respectively. By substituting (3.18) into (3.17), we obtain

dVE(t)
V(1)
Let Q7 ; be a probability measure that makes the proceldggs(t) andiV/ (¢) standard Brow-
nian motions. We calQ? ; the T-LIBOR-forward measure. Agairl//(t) cannot be & ;

martingale, since the drlft term in (3.19) is not eliminated except the case(that 0.
Under theT-LIBOR-forward measur& ;, similar to (3.14), we obtain

(3.19)

= (ry(t) = rp(t)) dt + o (t, VAW L (t) — o (t, T)AW/ (2).

T
e20) Vi~ 20 e { [ 2)n(e) — reteas v
In the no-collateral case, the pricing formula (3.20) becomes
(3.21) V(t) = L(t, T)EY"" [V(T)],

and the LIBOR-forward pricé’%(t) = V(t)/L(t,T) is a martingale under th&-LIBOR-
forward measur@aL, which is equivalent to the forward-neutral pricing formula in the single-
curve setting. However, the forward measure used in (3.21) is different from that in (3.15). The
perfect collateral case can be obtained similarly and is given by

T
(3.22) V(t) = L(t, T)Etl’LT [exp {/ (rp(s) —ro(s)) ds} V(T)} :
t
Again, note the difference of the measures used in (3.16) and (3.22).

4. FORWARD-RATE AGREEMENT AND INTERESFRATE SWAP

In this section, we discuss the pricing of forward-rate agreements and interest-rate swaps
based on our pricing formulas obtained in the previous section.
Suppose that the OIS and LIBOR discount bonds, denoteB (#y7") and L(¢,T") respec-
tively, are traded in the market, and consider the paymentatd, < 77 < --- < Ty with
0i =T — T;.
TheT;-forward LIBOR rate at time is defined by
L(t,T;) — L(t, Ty11)
51L(t7 E—i—l) 7
The LIBOR rate at timd; is thus equal td;(T;) with L(T;,T;) = 1.
Similarly, theT;-forward OIS rate at timeis defined by
D(t7 E) - D(t7 ﬂ+1>
6:;D(t, Tit1) 7
The OIS rate at timé is given byD;(7;) with D(T;,T;) = 1.

(4.1) Lit) = 0<t<T,.

(4.2) Dj(t) =

0<t<T,.
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4.1. Forward-Rate Agreement. We begin by the definitions of forward-rate agreement (FRA)
and FRA rate.

Definition 4.1 (FRA). A forward-rate agreement (FRA) is a contract which allows the holder to
lock in att < T; the interest rate betwedT;, T, ;| at a fixed valugs. At the maturity7;,,, one
pays the cash based on the rateand another pays the cash based on the LIBORIFA(E).

Definition 4.2 (FRA rate) The FRA rate is defined as the rate where the present value of the
FRA is equal to zero.

4.1.1. Perfect collateral caseln the perfect collateral case(f) = 1), it follows from (2.16)
that the no-arbitrage price of the FRA with maturity ; and exercise rat&” is given by

Vona (7, T, K) = 68 exp { - [ rolu)du | (L(7) - )|

SettingVera (t; T3, Ti41, K) = 0 and then solving it with respect t& yields the FRA rate at
timet as

o 7 i )]
Dt, Tz‘+1) ’

where we have used the result (3.2) for the denominator.
On the other hand, under tfig, ;-OIS-forward measur@ll+1 we have from (3.15) that

(4.3) FRA(t; 15, Tit) =

Vera (8, 15, T, K) = 52'D(757Ti+1)Etp o [Li(Ti) — K].
The FRA rate is thus obtained as
(4.4) FRA(L: T, Trr) = By [L(T)

which has been treated as a definition or an assumption of the FRA rate by many authors
such as Bianchetti (2013). Note that(t) is not a@l’*1 martingale so that the equation
FRA(t; T;, T;11) = L;(t) fails.

Similarly, under thel’;, ;-LIBOR-forward measur@l‘+1 we have from (3.22) that

1 Tina
Vera (6T, Ton, K) = SiL(E, Ty BV [exp { / yo<s>ds} (L(T) K>] |
t

whereyy(t) = rr(t) — rc(t) denotes the spread defined in (3.12) with) = 0. The FRA rate
is thus obtained as

ELE [e p{ft e )ds}L (T)]

)

Note the difference of the measures used in (4.4) and (4.5).

(4.5) FRA(t; T3, Tia) =

4.1.2. No-collateral case.Iln the no-collateral casey(t) = 0), it follows from (2.18) that the
no-arbitrage price of the FRA with maturijy, ; and exercise rat& is given by

Vira(t; T3, Tigr, K) = 0, {exp {— /tTiH TF(U)dU} (Li(Ti) — K)} -
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Solving Vera (t; T3, Ti1, K) = 0 with respect taX yields the FRA rate at timeas

E, [exp {_ [T TF(u)du} Li(TZ-)]

4.6 FRA(t: T}, Ty ) = ,
( ) ( ) +1> L(taﬂ—i-l)

where we have used the result (3.4).
On the other hand, under tfig, ;-LIBOR-forward measur@gle, we have from (3.21) that

Vera (6 T, Tor, K) = 6:L(6, Ty )ESE ™ [L(Ty) — K]

and the FRA rate is obtained as
(4.7) FRA(L T, Tisr) = BV [Li(T))] = Li(t).
Recall thatZ;(¢) is a martingale undd@gjgl.

Similarly, under ther;, ;-OIS-forward measur@aigl, we have from (3.16) that

0,DTi+1 T
VFRA(t; T;, Titq, K) = 51'D(t,Ti+1)]Et’ [exp {—/ ZJO(S)dS} (Lz'(Ti) - K)} )
t

and the FRA rate is obtained as
EP7 [exp { = 7 wols)ds } Li(T))

B lexp {= [ n(s)as ]

Note the difference of the measures used in (4.7) and (4.8).

(4.8) FRA(t; T;, Tiva) =

4.2. Interest-Rate Swap. Consider a plain-vanilla, interest-rate swap (IRS) which starts at
time 7, > 0. For simplicity, suppose that the notional amount is unity and cash flows are
exchanged atdatB, i =1,--- , N.

Definition 4.3 (Swap Contract)In the LIBOR swap, party A pays to party B the interést, K

with fixed rateK at datesl;, whereas party B pays to party A the interést L; ;(7;_1) with
LIBOR rateL; 1(7;_1). The OIS swap is the same when the interest is based on the OIS rate
D; 1(T;—1).

Definition 4.4 (Swap Rate) The swap rate is defined as the rate where the present value of the
swap contract is equal to zero.

4.2.1. Perfect collateral caseln the perfect collateral case(f) = 1), it follows from (2.16)
that the no-arbitrage price of the OIS swap contract with matdiityand fixed rates is given
by

Viwp(t, Ty, K) = é@ﬂ@t [exp {— /t ! rc(u)du} DH(TH)}
_K il 5; 1F, {exp {— /t ) rc(u)du}]

N N
(4.9) = N 6D THE [Dir(Tion)] = K> 61 D(1T),

i=1 i=1
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where we have used the results (3.2) and (3.15). But/#@IS forward rateD;_,(t) defined
in (4.2) is aQ;",-martingale, so that we have

81 D(t, TYE"" [Di_y(Tim)] = 6,1 D(1, T) Diss (1) = D(t, Tiy) — D(t,Ty).
It follows from (4.9) that

N
‘@QNP(t7TN7 K) = D(t7T0) - D(tJTN) - Kzél—lD(tﬂ)?
=1

and the OIS swap rat€C (¢, T ), at timet is obtained as

D(t,Ty) — D(t,Tn)
S0 D(t T)

which is the well-knowrtelescopdormula for the OIS swap rate.

On the other hand, from (2.16) again, the no-arbitrage price of the LIBOR swap contract with
maturity 7'y and fixed rate is given by

Vot T, K) = iila._g@t {exp {— /t " rc(u)du} L,»_I(Ti_l)}
K é 5 1K, {exp {— /t ; rc(u>duH |

SettingV&yp (t, T, K) = 0 and then solving it with respect t yields the LIBOR swap rate
at timet as

(4.10) SO, Ty) =

)

iy 61 FRA(t Ty, T3) DI, T;)
ity 0t D(8,T5)
where we have used the results (3.2) and (4.3). The formula (4.11) has been obtained by many

authors including Bianchetti (2013). Note that the swap rate given in (4.11) cannot be reduced
to the telescope formula other than the case that#RA |, T;) = D;_(t).

)

(4.11) SE(t, Ty) = 2

4.2.2. No-collateral case.In the no-collateral case/(t) = 0), we consider LIBOR swap con-
tracts only. It then follows from (2.18) that

T;
t

Vp(t, Ty, K) = é@ﬂ@t [exp {— / rp(u)du} LH(TH)}
_K i 51 {exp {— /t : rF(u)duH |

and thus the LIBOR swap rate is given by
iy 51 FRA® T, T) (8, Th)
S G L(t,T))

where we have used the results (3.4) and (4.6). However, in this case, we have from (4.7) and
(4.1) that

I

SE(t, Ty) = 2

L(ta iri—l) - L(t7 T;)
81 L(t,T;)

0io1L(t, T;)FRA(t; 1,21, T;) = 0,1 L(t, T;) = L(t,T;-1) — L(t, T5).
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It follows that
L(ta TO) — L(tv TN)
S i L(tTy)

which is again the classic telescope formula under the single-curve setting.

(4.12) SE(t, Ty) =

4.2.3. Telescope propertyWWe have seen that, in the multi-curve setting, the LIBOR swap-
rate (4.11) does not display the so-called telescope formula in the perfect collateral case. In
this subsection, we show that the telescope property can be recovered by using some adjusted
discount curves. See Ogawa (2015) for a different derivation of the same result.

Let us define the swap spredt (¢) and annuityA,,(¢) by

@13) B = ST - SOT, At =D 6D(.T).

respectively, wher® < t < Ty and By(t) = 0. Furthermore, we define thajusteddiscount
curve by

(4.14) D*(t,T,) = D(t,T,) — Bn(t)A,(t), 0<t<Ty.
It is readily seen that
D*(t,Ty) — D*(t,T,) = D(t,Ty) — D(t,T,,) + Bn(t)A,(t)
So<t> Tn)An(t) + (SL(t> Tn) - So(t7 Tn>>An(t)
= SE(t,T,)Au(t).

It follows that
D*(t,Ty) — D*(t,T,,)

> im0 D(T)

Hence, the LIBOR swap rat&” (¢, T,,) displays the telescope property in terms of the adjusted
discount curves.
We note that (4.15) suggests the identity

(4.16) 8 1 FRA(t; Tt T)D(t, T,)) = D*(t, 1) — D*(t,T,).

(4.15) SL(t,T,) = 0<t<Ty.

Hence, in the perfect collateral case, the FRA rate is given by

D*(t, Tp_1) — D*(t,T})
417 FRA t; Tn— ’ Tn - )
( ) ( ’ 1 ) 6n_1D(t, Tn)

which should be compared with (4.11) and (4.12). The quantities involved in (4.17) are all
observed in the market; hence, the formula (4.17) is extremely useful in practice.
To see that (4.16) indeed holds true, we first note that

So(t7 Tn+1>An+1<t) - So<t7 Tn)An(t) = D(ta Tn) - D(t, Tn+1)a

where we have used (4.10). Also, for the LIBOR swap, we have from (4.11) that
SE(t, Toi1)Apia (t) — SE(t, T,) An(t) = 6, D(t, Ty 1 )FRA(t; Ty, Try1).
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It follows that
D*(t,T,) = D*(t, Ts1)
= D(t,T,) = D(t. Tu1) = Bu(t)An(t) + Bugr (£) Ania (1)
(thn) - D(taTn—H) - (So(thn+1)An+1(t) - So(thn)An(t))
+ (S(t, Tosr) A (1) — SE(t, T) An(t))
(t,T,) — D(t,Tyi1) — D(t,Ty) + D(t, Tri1) + 6. D(t, Tri 1 )FRA(E; Ty, T 1),
which proves (4.16).

D
= D

5. SOME SPECIFICMODELS

This section provides some specific models under the multi-curve setting. In order to keep our
presentation as simple as possible, we considepdnictcollateral case only. More general
cases including the no-collateral case follow similarly. In this section, we start with a simple
extension of the Black—Scholes model (1973) and then move to spot rate models. Forward rate
models such as HIM and BGM models are treated in a separate paper.

5.1. Equity Options. In the framework of Section 2, consider a European derivative written
on a risky asse$(t) whose repo rate is given by;(¢). Then, from (2.14), the timeprice of
the derivative is obtained as

V({t) =E, [exp {— /tT rc(u)du} h(S(T))] . 0<t<T,

where the underlying risky asset follows the SDE

dS(t)
— = t)dt t)dW™(t
S = "R+ (AW ()
under the risk-neutral measuge Here,h(S) denotes the payoff function of the derivative and
W*(t) is a standard Brownian motion und@r
Suppose that the interest rates are positive constants-withrz. Then, for example, a call
option price at timé) with strike K and maturity7” is given by

V(0) = e TR, [(S(T) — K)4],

where(X), = max(X,0), S(T) = Se’T+sW" (1) with S = S(0), andv = rg — 0%/2. It
follows that

(5.1) V(0) = e"2 ) TBS(S, K, T 1, 0),

whereBS(S, K, T'; r, o) stands for the Black—Scholes call option price with risk-free spot rate
r and volatilityo.

We note that the call option price (5.1) can be very different from the classic Black—Scholes
price BS(S, K, T;rc,0) whenA, = rp — r¢ is large. Figure 1 shows the discrepancy of the
two prices

Ay = e TOTBS(S K T;rgp,0) — BS(S, K, T;r¢, 0)
with respect ta,, where we sef = 100 andrc = 1%. The differencedy increases a4,
(and also the maturit{") increases. Also, the discrepancy becomes more significant for the
ITM options than the OTM options. However, the impact of volatititpn option prices seems
negligible.
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Figure 1: Difference\y of call option price from the classic Black—Scholes price with respegt tor¢:
The parameters are chosen$as- 100 andr¢c = 1%.

5.2. Spot Rate Models.In the multi-curve setting, several spot rate models have been pro-
posed in the finance literature, Among them, Kijima, Tanaka and Wong (2009) consider a spot
rate model in which the collateral rate(t) is modeled by the quadratic Gaussian (QG) model
of Pelsser (1997) and the spread) = rr(t) — rc(t) follows a Vasicek model (1977). On
the other hand, Morino and Runggaldier (2014) consider an (independent) affine factor model
®,(t) in which the collateral rate and the spread are givenrblt) = ®,(t) — &4(¢) and
s(t) = kP4 (t) + P5(t), respectively. While Kijima, Tanaka and Wong (2009) assumerthi?
ands(t) are mutually independent, Morino and Runggaldier (2014) introduce a possible (neg-
ative) correlation between them through the parameter(. This section introduces another
spot rate model in the framework of Section 2.

Suppose that the two latent factarg@) andy(t¢) follow mean-reverting processes

(5.2) dz(t) = —cx(t)dt + o, AW (1), dy(t) = ¢y(my — y(t))dt + o, dW5 (1),

respectively, wher&@/’;(t) andIV; (¢) are independent standard Brownian motions urf@léne
define the spot rates-(¢) andr(t) as follows. Lets(¢) be the spread betweep(t) andrg(t),
and suppose that

(5.3) ro(t) = y(t) + kx(t), s(t) = (0 +z(t))>

Hence, while the OIS spot rate (¢) can be negative with positive probability, the spreéd
is always kept to be non-negative ane(t) = rc(t) + s(t) > rc(t) as desired.Note that the

SWhile negative interest rates are often observed in the recent interest-rate market, the spread should be non-
negative by the definition.
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parametek represents the dependency betweef(t) ands(t). In fact, from (5.2) and (5.3),
we have

(5.4) dre(t)ds(t) = (dy(t) + kdz(t))ds(t) = 2k02(¢ + z(t))dt.

Hence, ifx < 0, the OIS rate and the spread are negatively correlated as lahg ast) > 0.
Also, denoting the volatility of variable(t) by o[z], we have

(5.5) olrc] = \/o2 + K?*0%,  o[s] =2({+a(t))o,, o[rp| = \/05 + (k+2(0 4+ z(1)))?02,

respectively.

5.2.1. Discount Bond PricesFirst, from (3.2), (5.3) and the independencé&igf(t) andIV; (¢),
the timet price of OIS discount bond maturing at tirfieis given by

D(t,T) = E, {exp {— /tTy(u)duH E, [exp {—p/tTm(u)duH |

Since bothe(t) andy(t) follow the Vasicek model (1977), we obtain

(5.6) D(t,T) = HX(T —t, p)HY(T — t)e PHE(T=Dz(t)=HI(T=t)y(t)
where
2 2 2 2
. PO (rre P70 (1re
Hi(t) = e {52 (H5(0)° - 52 (1) - 1))
o2 9 o2
HY(t) = expq—— (H(t)" + (my — 5 | (HS(t) —t) ¢,
4c, 2c;
1_e—czt 1 e—cyt
Hit) = ——— HY(t) =
2 (1) P— 2 (1) e

Next, from (5.3), we have
re(t) = y(t) + (2(t) + @)’ —d,  t>0,
where

2

ax:ug, d:ag—ﬁzﬁu%

SinceWW;(t) andW; (t) are independent, we obtain

(5.7) L(t,T)=e""VE, [exp {—/tTy(u)du}] E, [exp{—/tT (z(u) +ozx)2duH .

The first expectation in the right hand side of (5.7) is given by

T
(5.8) E, [exp {_ / y(u)duH  HUT — f)e 00,

where H{(t) and HY(t) are defined above. On the other hand, the second expectation in the
right hand side of (5.7) is the quadratic Gaussian (QG) model of Pelsser (1997). The closed
form solution of the expectation is obtained in Kijima, Tanaka and Wong (2009) as

E, [exp {— /t " o) + a)? duH

(5.9) = exp {A(t,T) — B(t,T)z(t) — C(t, T)z*(t)}
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wherey = /c2 + 202, 1, = v — ¢, I'y = v + ¢, and

Ay, T)
At T) = —0? | —1L + As(t, T) | — (T —t
0T) = (5o HAeT)) —elT -0
2B, (t,T)
Bt,T) = ——————~
( ’ ) ’72A5(t7T)’
627(T_t) — 1
C.T) = pmaniT,
A (t,T) = —T0 44— e T3 4 29(T — 1)),
A1b<t7 T) = ei’Y(Tit) —4+ e’Y(Tit)(B - 27<T - t)):
A T) = a2y (CaAia(t,T) + TyAy(t,T)),
As(t,T) = TDe"TD 4T,
(T-p@,' =0y 1 -1 As(t,T)
Ag(t,T) = — z — )1
Bi(t,T) = —apy(e " —e )(Tee? + Tye'™).

Substituting (5.8) and (5.9) into (5.7), the LIBOR discount bond pfi¢eT") is obtained.

5.2.2. Interest-Rate DerivativesA significant advantage of this spot-rate model is that we can
obtain the prices of various interest-rate derivatives in closed form. For example, the FRA rate
is given by the next theorem. The proof is given in Appendix A.1.

Theorem 5.1. Under the spot rate model (5.3), the FRA rate is given by
FRAL T, Tiyy) = MR 1

ta iy L1 i - 5
" HY (6 /T = 20(T;, Try1) ok (1, T)

0;
where
K (H3(6:)* B*(T;, Ti11)
K(t,T;,T; = —kK0; =) — AT T A2 T) —
<t7 3 7«+1) H(Sl <£+4> (27 z+1)+ 2 ay(ta 1) 4C(E7ﬂ+1>
O(iriaj—‘i-‘rl)

+ H (00 (8, T3) + 1y (T3, T

1 —2C(T;, Tiy1)o% (L, Th)
Here, we define

o? 1 — o—2cy(T—1)
MNJW=7%+@®—m%%”“—%(kw%@w_ew;;%—_g’
C
Y
2
GALT) = —L (12T
v 2¢y ’
Ty KOZ T 51— ey
px(t, Ty Tiva) = a(t)e =it — = (1 _eme(Timt) _ g zaf)
2C(ﬂ7 ﬂ+1)’
Ugf(t, T) = U_i (1 _ e—?cx(T—t)) 7
2¢,

and the functiond?{ (¢), Hy(t), A(t,T), B(t,T) andC(t,T) are given above.
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Recall that the LIBOR swap rate is given by (4.11) using the FRA rates in Theorem 5.1 and
the OIS swap rate is given by (4.10).
Next, from (3.15), the price of a LIBOR caplet is given by

Cplt(Ti11, K) = D(0, Tip By [(Li(T)) — K)4].

The next theorem provides the analytical solution of the caplet price. The proof is given in
Appendix A.2.

Theorem 5.2. The price of a LIBOR caplet is given by
00 1 _ (e pa (T3))2
Cplt(Tiy, K) = / Col(Tir, K|2(Ty) = 2)——eee  #3(00 da,
—o0 2102(T5)
where
Cplt(Tr, Ka(T)) = @)

D(07 ﬂ+1)
0i

log 2@ 4 i, (T;
S($)e—a2Z(Ti)(Zuz(Ti)—Fa%(Ti))(I)( gl-&-K&i ’uZ( )“'O—Z(Ti)

UZ<Ti)

S(x
1+ Ky [ 8T k)
’ oz(T;)

Here, we defing,.(T;) = 1ux (0, T3, Tiv1) — 5o 225, 02(Th) = 0% (0, T0), iz (Ti) = HY(5:)y (0, Ty),
03(Ti) = [H}(5:)0,(0, T,)*, and

e d0i—A(Ti,Tix1)+B(Ti,Tiy1)2+C(Ti,Titr a2

HY(6:)

S(z) =

The other functions such as (¢, T;, T;1 ) are defined in Theorem 5.1.

The caplet price given in Theorem 5.2 involves one-dimensional numerical integration which
can be easily evaluated by using, e.g., the Gaussian quadrature.

5.2.3. Numerical Exampleln the following numerical examples, we set

t o0, z(0) ¢ y0) ¢, m,
0 05 0 0.1 0.01 01 0.03 0.001

as the base-case parameters, and consider the four cases; Case (1) to Case (4).

To this end, we fixo[rc| = 0.01 ando, = 0.01 for Case (1),0, = 0.02 for Case (2),
o, = 0.04 for Case (3), and, = 0.08 for Case (4). The other parameters are determined from
(5.4) and (5.5) withz(0) = 0, i.e.,

_ N — S22 4 k252 _ _ [ -~
p o]’ olrel] m, ols] = 2lo,, o[rp] \/aer(,H_Qg) o2,

In each case, we consider the positively correlated gase((.5) and negatively correlated case
(p = —0.5). Hence, for example, for Case (1) with= 0.5, we first determine the parameter
x from the relationp = xo,/o(rc], and theno, from or¢] = (/o2 + k?02 = 0.01. The
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volatilities o[s] ando[rr] are calculated by these parameter values. Summarizing, we have the
following set of volatilities (in terms of%).

Case 1o, = 0.01 | Case 20, = 0.02 | Case 30, = 0.04 | Case 40, = 0.08
p —0.5 0.5 —0.5 0.5 —0.5 0.5 —0.5 0.5

olre] | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[re] | 0.970 1.033 0.943 1.069 0.901 1.148 0.866 1.327

ols] 10.063 0.063 0.126 0.126 0.253 0.253 0.506 0.506

Note that for the negatively correlated cage( —0.5), the volatility o[r ] of the funding rate
decreases as, increases; however, for a range, (> 0.08), o[rx| turns to be increasing in,.
If o, = 0.16, the three volatilities become similar (abddt).

Figure 2 depicts the swap spread defined by (4.13), i.e.,

B,=S"0,T,) - S°(0,T,), T.=)_6,

with respect tdl},. In the upper panel, we consider the negatively correlated(gase—0.5),
whereas the lower panel considers the positively correlated(gpase0.5). The swap spread

B,, becomes wider as the spread volatilitt] gets large for the both cases. The increase of the
spread amplitude seems much faster than the increase of the volgtilityand the correlation

p has only little impact on the swap spread. Recall that, when the correlation is negative, the
volatility o[rr| of the funding rate decreases as the spread volati[itjyincreases in the range

of o, < 0.08. Hence, the spread volatility[s| between the collateral and funding rates seems

to play a significant role for the swap spread.

Recall that, in the multi-curve setting, the FRA rate can be different from the forward LIBOR
rate L;(t), becausd;(t) is not anngl-martingale; see (4.4) As a result, the modern pricing
formula for LIBOR swap rates does not display the telescope property; see (4.11). Motivated
by this stylized fact, let us define the discrepancy of the modern swap pricing from the classic

pricing by

Ag(T,) = S5(0,T,) = SH0,T,),  T=> 4.
=1

Here,m stands for ‘modern’ and’ (0, Ty) is calculated according to (4.11), whereagands

for ‘classic’ andS% (0, Ty) is given by (4.12). Figure 3 depicts the discrepadgyT;,) with re-

spect tol,,. In the upper panel, we consider the negatively correlated(gase—0.5), whereas

the lower panel considers the positively correlated ¢ase 0.5). Again, the swap discrep-

ancy As(T,,) becomes wider as the volatility[s] gets large for the both cases. Surprisingly,

the spread\s(7,,) is negligible when the maturity is short (say, shorter than 1 year) and the
spread volatilityr[s] is small. However, the spread suddenly becomes significant wiseax-

ceeds some level. This suggests the importance of considering the regime-switching model for
the volatility o[s], i.e., high volatility regime such as the credit crisis period and low volatility
regime for the calm period.

SWhen the spread volatility [s] is small, the swap spread becomes nearly constantBi,es ¢2 for all n; see
Figure 2. In this case, it follows from (4.14) and (4.17) that RRA, T + §,,) =~ D,,(0) + £2 for all n.



22 MASAAKI KIJIMA  AND  YUKIO MUROMACHI

1 =-cCasel
| —A—Case 2

—>—Case 3

—=¥—Case 4

Swap Spread (%)

2.0

1 =-cCasel

—A—Case 2

—>%—Case 3

L i
N B OO
T
]
]
]

o

Swap Spread (%)
© o B
a o

© o o
o N &

maturity (years)

Figure 2: Swap spreaB,, (T;,) between the LIBOR and the OIS swap rates (upper panel for the nega-
tively correlated case with = —0.5, lower panel for the positively correlated case witk 0.5)

6. CONCLUDING REMARKS

In this paper, we construct a no-arbitrage framework of financial market that is consistent to
the multi-curve setting. It is shown thahy derivative security can be duplicated by using the
underlying assets and collateral and funding accounts appropriately. A risk-neutral measure is
defined accordingly and the derivative price is determined uniquely under the measure. This
idea is extended to the pricing of OIS and LIBOR discount bonds, which shows the simultane-
ous existence of multiple yield curves in the market.
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Figure 3: DiscrepancAs(T;,) of the modern swap rate from the classic swap rate (upper panel for the
negatively correlated case with= —0.5, lower panel for the positively correlated case with- 0.5)

Some specific spot rate model is provided to derive the formulas of interest-rate derivatives
such as forward rate agreement and LIBOR swap rates in closed form under the multi-curve
setting. Numerical examples are given to demonstrate the discrepancy of the derivative prices
under the multi-curve setting from the classic ones. Our important finding is that the discrepancy
suddenly becomes significant when the spread volatilitybetween the collateral and funding
rates exceeds some level. This suggests the importance of considering the regime-switching
model for the volatilityo|[s], i.e. high volatility regime such as the credit crisis period and low
volatility regime for the calm period. This theme is left for future research.
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APPENDIXA. PROOFS
From (5.6), we have
dlog D(t,T) = (... )dt — ko, Hy (T — t)dW7 (t) — o, Hy (T — t)dW5 (t).
It follows from (3.7) that the OIS discount bond price follows the SDE

% e ()t + op(t, TYAW(E),
where
op(t, T) = \ /K202 HS (T — 1)) + o3 (HY(T — t))?
and
A1) W) = — koL HY (T = H)AW; (1) + o, HY(T — )dW; (1)

op(t,T)
Similarly, from (5.7), we have

dlog L(t,T) = (... )dt — 0, [B(t,T) + 2C(t, T)z(t)|dW; (t) — o, Hy (T — t)dW5 (1).
Hence, from (3.8), the LIBOR discount bond price follows the SDE

dL(t,T) )
Ty~ e+ st TIAW(),
where
o1(t,T) = \Jo2[B(, T) + 2C(1, T)a(t)]? + o2(HY(T — 1))
and
A2) Qe — _ZBOT) 200 T)e(ldWE (1) + 0, HY(T — dW5 (t)

UL(ta T)
It follows from (A.1) and (A.2) that
ko2HE(T — t)[B(t,T) + 2C(t, T)x(t)] + o2(HY (T — t))?
A. ; () = —= ’ ’ K .
(A.3) AW () dW/(t) oo Tor.T) dt
Recall thatiV},(t) andW/(¢) are standard Brownian motions under the risk-neutral me&gure
with the correlation given in (A.3).

A.l. Pricing of FRA Rate. From (4.4) and (4.1), the FRA rate is given by

i 1 Ti41 1
A.4 FRA(t: T, Thry) = EXP T [L(T)] = =EMP™ .
( ) ( ) ) +1) t [ ( )] 5Z t L—(TL‘,T;-+1)

under ther;, -OIS-forward measur@lTj'gl, where the LIBOR discount bond prideT;, 7;1)
is given by (5.7). Let us denote the correlationgby, (t)dt = AW (¢t)dW;(t) andps p(t)dt =
dW5(t)dW7(t). Itis readily seen that
ko, HY (T —t)
)= ——22+ 7 t) =
Pl,D( ) o (6, T) ) pa2.p(t)
Now, define the processe, }' (t) and W, ' () as

dwfgl(t) = AW (t) — pr.p(t)op(t, Tiwr )dt,
AW, 31 (t) = dW5(t) — pap(t)op(t, Tir)dt,

_UyHg(T —t)
O'D(t,T)

(A.5)
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respectively. It is well known tha(thgl(t), WQngl(t)) are independent standard Brownian
motions unde@fgl.7 Substituting (A.5) into (5.2), we obtain

= [—c,z(t) — ko*HZ (T — o Tit
e {dx@) = [rear(t) — o2 (T — O]t + 0,0 W5 ()

dy(t) = [ey(my —y(t)) — o2HY (Tipy — t)]dt + aydwggl(t),

under theTl; -OIS-forward measur@lTjgl. It follows from (5.7) that

T 1
gL [ ]
O Ny
e*d&i*A(Ti,Ti+1)

)

1,01 [ HY(5,)y(T:) | pl.DTi+1 [ B(Ty,Tig1)a(Ti)+C(Ty, Tipr )2 (T
—ma [eg()y()}Et [e( +)(T)+C(T T ) ()
because:(t) andy(t) are independent.

Note that the procesg(t) given in (A.6) follows a mean-reverting process which can be
solved as

y(s) = y(t)e’cl’(sft) + / (cymy — JSH%’(T@»H — u)) e~ (5= qy,

—l—oy/ e_Cy(s_“)dwggl(u).
t

Hencey(T;) is normally distributed with mean

2

o 1 — —2¢y (T;—t)
iy (6, T3) = my + (y(t) — my )T — 2 (1 —emeulTit) _ e—cwi%)
C

Yy

and variance
a,

< N

ai(t,Ti) = (1- e_QC“(Ti_t)) .

[\

<

C
It follows that

]EtLDTm [eHé’(&-)y(Ti)} = exp {Hg(&-)uy(t, T) + @03(@ Tz)} _
Similarly, from (A.6), we obtain
x(s) = x(t)e_c”(s_t) — po? /S HS(Ti 1 — u)e_c”(s_“)du + 0y /S e_Cw(S_“)degl(u).
t t
Hencez(T;) is normally distributed with mean

2 1 — o—2¢a(Ti—1)
(8, T) = a(t)ee= ) - e (1 _ et _ gmeati 1 7 © >
C{E

and variance

Defining ( |
B Z—Zh E-ﬁ-l

X(T) =20+ 57Ty

A concrete derivation is available from the authors upon request.
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we have

B
1,DTiH1 [ B(Ty Tiy1)2(T3)+C(Ty, Tig1)x2(T}) 40557735“5 LDTHAL [ C(T3,Ti1) X2(T)
Et e ’ ) = e i+1 E e ’ .

Note thatX (7;) is normally distributed with mean
e(Ti-t) KOy 1 — eca(Timt) _ g—cads 1 —e 2D\ B(T, Tiy)
6525 2 20(E7 7-;+1>

and variance? (t,T;) = o(t, T;). Hence X*(T;) /0% (z, T;) follows a non-centra}?-distribution
with 1 degree of freedom and non-centraliy (¢, T;) /0% (¢, T;). It follows thaf

(8, T, Ti) = a(t)e”

T 1 C(TivTiJrl)N%((t:Ti:TH»l)
E;’D i+1 [eC(Ti,TiH)XZ(Ti)] _ e 1-2C(T;, Ty 1) 0% (4.T;) )

V1 =2C(T;, Ti1)0% (¢, T;)
Putting these results into (A.4), we obtain the FRA rate given in Theorem 5.1.

A.2. Pricing of Caplet. From (4.1) and (3.15), we have

D(0, T41)

s Tip1 1
7 (3] (3 —+

Givenx(T;) = x, it follows that
T, 1
EDM{Q_____1+K@)JJ;:4

( e—ddl —A(Tl ,Ti+1)+B(Ti 7Ti+1 )$+C(T1 7Ti+1 )2}2

HYGOWT) _ (14 k5| |
05 ‘ e »J

Now, definingZ(T;) = Hj(4:)y(T;), we have

1
gL 1+ K6,
t Ty~ L)

_ E%,DTZH [(S(l‘)e (T:) _ (1+ K(si))+]

1,0Ti+1 A 1,DTi+1
= S(2)E, |:eZ(T)1{S(x)eZ(Ti)>1+K6i}i| (14 K6,)E, |:1{S(a:)eZ(Ti)>1+K6i}] ;

where

Tit1

1D
= Et

amzﬂ

+

e—déi—A(Ti,Ti+1)+B(Ti,TZ‘+1):D+C(Ti,TZ'+1):D2

HY(6:)
Note thatZ(7;) is normally distributed with meap;(7;) = Hj(0;)1,(0,T;) and variance
o3 (T;) = [HY(6;)0,(0,T;)]*. It follows that

S(z
1,pTi+1 log 1+(K2$i + pz2(T;)
Et 1{S(x)eZ(Ti)>1+K5¢}j| = Uz(T‘) ’

8If v follows a non-centray2-distribution withv degree of freedom and non-centralityts moment generating
function is given by

S(x) =

v ot 1
Ef[eY]=(1-2t)"% =
[e™] = ( t) ze><p{12t}, t<2
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where®(x) denotes the cumulative distribution function of the standard normal distribution.
Also, recall that

2 2\2
e 1 exp{ — (I B lu) _ e—02(2u+0'2) 1 exp{ — (ZL‘ —H—0 ) )
V2mo? 202 V2ro?2 202

Defining Z'(T;) = Z(T;) + o%(T;) and using the above relation, we obtain
E%’DTiJrl [eZ(Ti)1{S($)eZ(Ti)>1+K(Si}:| = e_U%(Ti)(2MZ(Ti)+U%(Ti))E%7DTi+1 |:1
1+ K9,
S(x)

5(z) 2
o2 (2un(T)+o3(T) log 17 ks; + 12(Ti) + 07(T3) ‘
CTZ(Tz')

Putting these results together, we obtain the caplet price given in Theorem 5.2.

{scwez%%>>1+4(&}]

e~ B (T (2 (T +o3(T0) i {Z’(Ti) > log
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