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REFORMULATION OF THE ARBITRAGE-FREE PRICING METHOD UNDER
THE MULTI-CURVE ENVIRONMENT

MASAAKI KIJIMA AND YUKIO MUROMACHI

ABSTRACT. This paper proposes a unified framework for the pricing of derivatives under the
multi-curve setting. It is shown thatanyderivative security can be duplicated by using the un-
derlying assets, collateral account and funding account, appropriately. A risk-neutral measure
is defined accordingly under which the derivative price is determined uniquely. This idea is ex-
tended to the pricing of OIS and LIBOR discount bonds and interest-rate derivatives under the
risk-neutral measure, which explains the existence of multiple yield curves simultaneously in the
market. Some specific models are given to demonstrate the usefulness of our approach. Through
numerical examples, we find that the discrepancy of derivative prices under the multi-curve set-
ting from the classical ones becomes significant when the spread volatility between the collateral
and funding rates exceeds some level.

Keywords: Multi-curve, duplication, OIS, LIBOR, collateral rate, funding rate, risk-neutral
measure, forward measure.

1. INTRODUCTION

Since the beginning of the worldwide financial crisis in 2007, LIBOR rates have been devi-
ated from OIS (Overnight Index Swap) rates for the same maturity. Also, a swap rate based on
semiannual payments of the six-month LIBOR rate, for example, has been different from the
same-maturity swap rate based on quarterly payments of the three-month LIBOR rate. Accord-
ing to Mercurio (2009), while the construction of a no-arbitrage framework that is consistent
with the simultaneous existence of such different yield curves can be possible by using the credit
and liquidity theories, practitioners seem to agree with an empirical approach, which is based
on the construction of many possible curves of rate lengths, called themulti-curve approach.

Recall that, in the classic pricing approach, OIS rates and LIBOR rates with different tenors
are defined through a unique and fully consistent zero-coupon curve, which is thus used both in
the generation of future cash flows ofanyinterest-rate derivatives and in the calculation of their
present values. On the other hand, in the multi-curve setting, future cash flows are generated
through the curves associated with the underlying rates and then discounted by another curve,
not necessary by risk-free discount curve.

A pioneering work of the valuation of interest-rate derivatives under the multi-curve setting
seems the papers by Boenkost and Schmidt (2005) and Henrard (2007), which are followed
and extended by, e.g., Kijima, Tanaka and Wong (2009) and Mercurio (2009). In particular,
Kijima, Tanaka and Wong (2009) assumeexogenouslythat there exists a risk-neutral measure
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under which any price process discounted by the risk-free savings account is a martingale and
other yield curves are given consistently in the market.

In this paper, we construct a no-arbitrage framework of financial market that is consistent to
the multi-curve setting, because using different yield curves at the same time requires a refor-
mulation of the basic assumptions made in the classic interest-rate models. Of our particular
interest are how to define a risk-neutral measure for agivenfinancial market and how to price
derivative securities in the market. However, as in Mercurio (2009) and many others, we do not
take into account the credit and liquidity issues. We rather start from the existence of multiple
yield curves and try to build a consistent framework with the actual market.

One of the promising approaches to explain the existence of multiple yield curves is to use
the collateralization in derivatives contracts.1 Namely, we assume that there exist not only the
underlying securities but also the collateral account, funding account, and repo account (defined
later) in the market. It is shown thatany derivative security can be duplicated by using these
securities appropriately. A risk-neutral measure is defined accordingly and the derivative price
is determined uniquely under the measure. This idea can be applied to the pricing of OIS and
LIBOR discount bonds and interest-rate derivatives as well, ending up with the simultaneous
existence of multiple yield curves in the market.

This idea is not new in the finance literature. For example, Piterbarg (2010) discusses the
price of a perfectly collateralized derivative by constructing a self-financing risk-free portfolio.
Using a no-arbitrage condition, he derives a partial differential equation (PDE) satisfied by
the price function and obtains the price of OIS discount bonds by applying the Feynman-Kac
theorem to the PDE. See also Piterbarg (2012) and Han, He and Zhang (2014, 2015) for similar
developments.

Application of this framework for the pricing of interest-rate derivatives has been also dis-
cussed in many papers. For example, Bianchetti (2013) and Henrard (2014) have discussed the
pricing of interest-rate derivatives in the multi-curve setting and derived useful formulas which
are widely used in practice for calculating OIS and LIBOR discount curves and for pricing
interest-rate derivatives.

The aim of this article is a reformulation of the no-arbitrage framework in financial markets
that is consistent to the multi-curve environment. Our discussion starts from the construction of
a self-financing duplication portfolio under the physical probability measure. The risk-neutral
measure is defined by the change of measure technique due to the Girsanov theorem. Any
derivative security including interest-rate derivatives can then be priced under the risk-neutral
measure.

This paper is organized as follows. In the next section, we set up the security market model
and show that any derivative security can be duplicated by using the underlying securities, col-
lateral account, and funding account in the market appropriately. The risk-neutral measureQ
is defined and derivative securities are priced underQ accordingly. A remarkable result is that,
while the instantaneous rate of return of the derivatives underQ depends on the definition of
collateraization, that of each underlying security is given by its repo rate; hence they are not
identical in contrast to the classic single-curve case. This idea is then applied to the pricing
of OIS and LIBOR discount curves in Section 3, which explains the simultaneous existence of

1In the last decade, collateralization in the derivatives contracts has increased rapidly along with the CSA (Credit
Support Annex) to the ISDA (International Swaps and Derivatives Association) master agreement. It is quite
difficult now to make a contract without a collateral agreement among the major financial institutions.
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multiple yield curves in the market. In Section 4, we consider the pricing of forward rate agree-
ments (FRAs) and interest-rate swaps (IRSs). Section 5 is devoted to some specific models. In
particular, we develop a short rate model in which the prices of OIS and LIBOR discount bonds
as well as FRA and IRS rates are derived in closed form. Some numerical examples are given to
show the deviation of the two-curve setting from the classic single-curve setting. Through nu-
merical examples, we find that the discrepancy of derivative prices under the two-curve setting
from the classical ones becomes significant when the spread volatility between the collateral
and funding rates exceeds some level. Section 6 concludes this paper. Proofs are provided in
Appendix A for the reader’s convenience.

Throughout this paper,(Ω,F ,P, {Ft}0≤t≤T̄ ) denotes a filtered probability space whereT̄ is
finite and the filtration{Ft}0≤t≤T̄ satisfies the usual conditions. The probability measureP is
the physical measure and a martingale (pricing) measure will be denoted byQ. The expectation
operator underQ is denoted byE.

2. PRICING BY DUPLICATION

In this section, we consider a financial market in which there are availablen risky assets.2 Let
Si(t) denote the time-t price of risky asseti, i = 1, 2, . . . , n. It is assumed that the risky asset
priceSi(t) under the physical measureP follows the stochastic differential equation (SDE)

(2.1)
dSi(t)

Si(t)
= µi(t)dt+ σi(t)dWi(t), i = 1, 2, . . . , n,

where the instantaneous rates of returnµi(t) and the volatilitiesσi(t) satisfy the standard con-
ditions and whereWi(t) are correlated standard Brownian motions underP.

On the other hand, there are three kinds of non-risky savings accounts; collateral, funding,
and repo accounts. We denote the time-t price per one unit of the collateral account byBC(t),
whereasBj

F (t) denotes thejth funding account,j = 1, 2, . . . ,m. While the collateral account is
the savings account that is fully secured by collaterals, the funding accounts have no collaterals.
Different quality of the funding accounts are assumed to be available in the market. However,
in order to keep the description as simple as possible, this section considers the casem = 1
only. The next section treats the general case. Denoting byrC(t) andrF (t) the instantaneous
collateral rate and funding rate at timet, respectively, the associated collateral and funding
accounts are defined by

(2.2) dBC(t) = rC(t)BC(t)dt, dBF (t) = rF (t)BF (t)dt

with BC(0) = BF (0) = 1. Finally, when the funding is secured by assetSi(t), the short rate
riR(t) is applied that represents the credit quality of the assetSi(t). Here,R stands for ‘repo’
as in Piterbarg (2010). In the actual markets, we expect thatrC(t) ≤ riR(t) ≤ rF (t) for all i.
Note, however, that there is no arbitrage opportunity across those savings accounts, because of
the availability of collaterals or not.

Consider a European contingent claim written on(S1(t), . . . , Sn(t)) with payoff function
h(S1, . . . , Sn) and maturityT , 0 ≤ T ≤ T̄ . The time-t price of the claim is denoted byV (t).
Suppose that the contingent claimV (t) is duplicated through a self-financing strategy of trading
(θ1(t), . . . , θn(t), θC(t), θF (t)) units of the underlying risky assets and the two non-risky savings

2For the sake of simplicity, we assume that every asset pays no dividends. It is a straightforward extension to
include positive dividend rates.
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accounts. That is,

(2.3) V (t) =
n∑

i=1

θi(t)Si(t) + Γ(t), 0 ≤ t ≤ T,

with V (T ) = h(S1(T ), . . . , Sn(T )), whereΓ(t) denotes the cash amount held in the duplicated
portfolio, i.e.,

(2.4) Γ(t) = θC(t)BC(t) + θF (t)BF (t)−R(t), R(t) ≡
n∑

i=1

θi(t)Si(t).

It should be noted from (2.3) and (2.4) that the valueV (t) of the contingent claim is divided
into the collateral accountC(t) ≡ θC(t)BC(t) and the funding accountF (t) ≡ θF (t)BF (t)
according to a predetermined manner.3 That is, we have

(2.5) V (t) = C(t) + F (t), 0 ≤ t ≤ T.

Also, the repo rateriR(t) is applied for the funding that is secured by assetSi(t). In other words,
the growth of the cash amountR(t) is given by

(2.6) dR(t) =
n∑

i=1

riR(t) [θi(t)Si(t)] dt.

Now, under the self-financing strategy, (2.3) and (2.4) together imply

(2.7) dV (t) =
n∑

i=1

θi(t)dSi(t) + θC(t)dBC(t) + θF (t)dBF (t)− dR(t).

Substituting (2.1), (2.2) and (2.6) into (2.7), we obtain

dV (t) =

(
n∑

i=1

θi(t)(µi(t)− riR(t))Si(t) + θC(t)rC(t)BC(t) + θF (t)rF (t)BF (t)

)
dt

+
n∑

i=1

θi(t)σi(t)Si(t)dWi(t).(2.8)

Let us define the processesW ∗
i (t), i = 1, . . . , n, by

(2.9) dW ∗
i (t) = dWi(t) + λi(t)dt, λi(t) ≡

µi(t)− riR(t)

σi(t)
,

with W ∗
i (0) = 0. Following the tradition in the standard finance literature, we callλi(t) the

market price of riskassociated withWi(t).
Substituting (2.9) into (2.8), we then have

(2.10) dV (t) = (rC(t)C(t) + rF (t)F (t)) dt+
n∑

i=1

θi(t)σi(t)Si(t)dW
∗
i (t).

Defineγ(t) to be the ratio of the collateralC(t) to the total valueV (t), i.e.,γ(t) = C(t)/V (t).
Using the ratioγ(t), we define the weighted average of the short rates by

(2.11) rγ(t) ≡ rC(t)γ(t) + rF (t)(1− γ(t)).

3In this paper, we assume that the investor who holds the contingent claim can access the funding market at any
time and at any amount. Also, the asymmetric collateralization is not considered, i.e., the lending and borrowing
rates are the same.



REFORMULATION OF THE ARBITRAGE-FREE PRICING METHOD UNDER THE MULTI-CURVE ENVIRONMENT5

It follows from (2.5) thatrC(t)C(t) + rF (t)F (t) = rγ(t)V (t), and so we obtain from (2.10)
that

(2.12) dV (t) = rγ(t)V (t)dt+
n∑

i=1

θi(t)σi(t)Si(t)dW
∗
i (t).

Associated withrγ(t) defined in (2.11) is the new savings account

Bγ(t) ≡ exp

{∫ t

0

rγ(s)ds

}
, Bγ(0) = 1.

Consider the denominated priceV ∗
γ (t) ≡ V (t)/Bγ(t) with the nuḿeraireBγ(t). It follows from

(2.12) that

dV ∗
γ (t) =

n∑
i=1

θi(t)σi(t)S
∗
i (t)dW

∗
i (t).

Integrating it over[t, T ], we obtain

(2.13) V ∗
γ (T )− V ∗

γ (t) =
n∑

i=1

∫ T

t

θi(u)σi(u)S
∗
i (u)dW

∗
i (u).

Let us define a probability measureQ that makes the processes(W ∗
1 (t), . . . ,W

∗
n(t)) standard

Brownian motions. The existence of suchQ is guaranteed by the standard Girsanov’s theorem
under regularity conditions. Taking the conditional expectation of (2.13), we get

(2.14) V (t) = Et

[
exp

{
−
∫ T

t

rγ(u)du

}
V (T )

]
, 0 ≤ t ≤ T,

subject to regularity conditions, whereEt denotes the conditional expectation operator underQ
givenFt.

By substituting (2.9) into the SDE (2.1), we obtain

(2.15)
dSi(t)

Si(t)
= riR(t)dt+ σi(t)dW

∗
i (t), i = 1, 2, . . . , n,

under the martingale measureQ. Hence, underQ, the instantaneous rate of return of risky asset
Si(t) is given by its repo rateriR(t). Again, by adopting the standard terminology in the finance
literature, we callQ therisk-neutralprobability measure.

Since the denominated priceV ∗
γ (t) ≡ V (t)/Bγ(t) is aQ-martingale from (2.14), it follows

that
dV (t)

V (t)
= rγ(t)dt+ σγ(t)dW

∗
γ (t)

for some volatility processσγ(t), whereW ∗
γ (t) denotes a standard Brownian motion under the

risk-neutral measureQ. Hence, in contrast to the underlying assetsSi(t), the instantaneous rate
of return of the derivative security is given byrγ(t); cf. Equation (2.15). This is the remarkable
difference of the multi-curve setting from the standard single-curve world. In this paper, we call
Equation (2.14) thefundamental pricing formula.

Summarizing, we have the following result.

Proposition 2.1. Suppose that there are risky assetsSi(t) and non-risky savings accounts,
called collateral and funding accounts, whose short rates are given byrC(t) and rF (t), re-
spectively. Then, there exists a pricing measureQ, called the risk-neutral measure, such that
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the time-t priceV (t) of a derivative written on the risky assets is given by

V (t) = Et

[
exp

{
−
∫ T

t

rγ(u)du

}
V (T )

]
,

whererγ(t) = γ(t)rC(t)+ (1−γ(t))rF (t) for someγ(t), and whereEt denotes the conditional
expectation operator underQ. UnderQ, the derivative priceV (t) follows the SDE

dV (t)

V (t)
= rγ(t)dt+ σγ(t)dW

∗
γ (t)

for someσγ(t), whereW ∗
γ (t) is a standard Brownian motion underQ. On the other hand, the

price of risky assetSi(t) follows the SDE

dSi(t)

Si(t)
= riR(t)dt+ σi(t)dW

∗
i (t),

whereriR(t) denotes the short rate of funding that is secured by the assetSi(t) andW ∗
i (t) is

another standard Brownian motion underQ.

Remark 2.1. In the multi-curve setting, we note that (i) the instantaneous rate of return of the
underlying assetSi(t) is equal to its repo rateriR(t) under the risk-neutral measureQ, (ii) the
risk-neutral measureQ depends on the repo rates, but neither on the collateral raterC(t) nor the
funding raterF (t), (iii) the derivative priceV (t) depends on the measureQ andγ(t) (hence,
bothrC(t) andrF (t)), and (iv) the nuḿeraire which makes the denominated derivative price a
Q-martingale isBγ(t), which depends on the collateral raterC(t), the funding raterF (t), and
the ratioγ(t) = C(t)/V (t) of the collateral account to the derivative value.

Remark 2.2. Suppose thatriR(t) = rC(t), i.e., the repo rate of assetSi(t) is the same as the
collateral rate. Then, we defineθ′C(t)BC(t) = θC(t)BC(t)−R(t) in (2.4). In this case, we take
the collateral accountBC(t) as the nuḿeraire so that, from (2.3), we have

V ∗(t) =
n∑

i=1

θi(t)S
∗
i (t) + θ′C(t) + θF (t)B

∗
F (t),

whereV ∗(t) = V (t)/BC(t) and so on. Under the self-financing strategy, it follows that

dV ∗(t) = θF (t)(rF (t)− rC(t))B
∗
F (t)dt+

n∑
i=1

θi(t)σi(t)S
∗
i (t)dW

∗
i (t),

where we define the market price of risk in (2.9) byλi(t) = (µi(t) − rC(t))/σi(t) as in the
ordinary single-curve setting. But, sinceθF (t)BF (t) = (1 − γ(t))V (t) by the definition of the
ratioγ(t), we obtain from (2.11) that

dV ∗(t) = (rγ(t)− rC(t))V
∗(t)dt+

n∑
i=1

θi(t)σi(t)S
∗
i (t)dW

∗
i (t).

Hence, the denominated processV ∗(t) with numéraireBC(t) is not a martingale under the
risk-neutral measureQ, unlessγ(t) = 1, i.e., the perfect collateral case.

We now proceed to consider some special cases of the fundamental pricing formula (2.14).
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Example 2.1(Perfect Collateral). Suppose thatγ(u) = 1, i.e.,C(u) = V (u), t ≤ u ≤ T . This
case is known as theperfect collateral. In this case, from the pricing formula (2.14), we have

(2.16) V (t) = Et

[
exp

{
−
∫ T

t

rC(u)du

}
V (T )

]
= Et

[
BC(t)

BC(T )
V (T )

]
,

which has been obtained by many authors.4 BecauseV ∗(t) = V (t)/BC(t) is a martingale under
Q from (2.16), the value processV (t) follows the SDE

(2.17)
dV (t)

V (t)
= rC(t)dt+ σC(t)dW

∗
C(t)

for some volatility processσC(t). On the other hand, the price of risky assetSi(t) follows the
SDE (2.15), i.e.,

dSi(t)

Si(t)
= riR(t)dt+ σi(t)dW

∗
i (t),

whereriR(t) denotes the repo rate. Hence, only ifeveryunderlying assetSi(t) is perfectly
healthy so that its repo rateriR(t) is equal to the collateral raterC(t), then the instantaneous rate
of return ofSi(t) is given byrC(t) underQ. In this case, we can recover the classic risk-neutral
framework in the single-curve world.

Example 2.2(No Collateral). On the other hand, ifγ(u) = C(u) = 0, t ≤ u ≤ T , i.e., with no
collateral, then the pricing formula (2.14) becomes

(2.18) V (t) = Et

[
exp

{
−
∫ T

t

rF (u)du

}
V (T )

]
= Et

[
BF (t)

BF (T )
V (T )

]
,

and the value processV (t) follows the SDE

(2.19)
dV (t)

V (t)
= rF (t)dt+ σF (t)dW

∗
F (t)

for some volatility processσF (t). Moreover, only ifeveryunderlying assetSi(t) is unhealthy
so that its repo rateriR(t) is equal to the funding raterF (t), then the instantaneous rate of return
of Si(t) is given byrF (t) underQ. Again, this case is reduced to the classic risk-neutral world
under the single-curve setting.

3. INTEREST-RATE DERIVATIVES UNDER MULTIPLE CURVES

In this section, we consider the pricing of interest-rate derivatives under the multi-curve set-
ting. It is assumed throughout that the market considered in the previous section is rich enough
so as to take the same risk-neutral measureQ even in this section.

3.1. OIS Discount Bond. Suppose that, under the physical measureP, the price dynamics of
the collateralized discount bond maturing at timeTi follows the SDE

(3.1)
dD(t, Ti)

D(t, Ti)
= µD(t, Ti)dt+ σD(t, Ti)dWi(t),

whereD(Ti, Ti) = 1 for all i, and whereWi(t) denote correlated standard Brownian motions
underP. The collateralized discount bondD(t, T ) is usually called the OIS discount bond and
considered to be perfectly secured.

4See, e.g., Piterbarg (2010) who applies the Feynman-Kac formula to derive (2.16).
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Let rC(t) be the collateral rate, and suppose that the OIS discount bondD(t, T ) is duplicated
by the instrumentsBC(t) andD(t, Ti) with different (finitely many) maturitiesTi. That is, as in
the framework of Heath, Jarrow and Morton (1992), the OIS discount bondsD(t, Ti), Ti > T ,
are used as the underlying securities. BecauseD(T, T ) = 1, it then follows from (2.16) that

(3.2) D(t, T ) = Et

[
exp

{
−
∫ T

t

rC(u)du

}]
= Et

[
BC(t)

BC(T )

]
, t < T,

which is known as the “OIS discounting” in practice. Note that the denominated price process
D(t, T )/BC(t) is a martingale underQ, and so we have

dD(t, T )

D(t, T )
= rC(t)dt+ σD(t, T )dW

∗(t),

as thederivativesecurity; see (2.17)
It is plausible to assume that the repo rate for the OIS discount bonds is equal to the collateral

raterC(t), because they are perfectly secured. Hence, under the risk-neutral measureQ, we
have from (2.15) that

(3.3)
dD(t, Ti)

D(t, Ti)
= rC(t)dt+ σD(t, Ti)dW

∗
i (t)

for eachTi, as theunderlyingsecurities. The market price of risk that changes the SDE (3.1)
underP to the SDE (3.3) underQ is defined by (2.9) in an obvious manner. Hence, the OIS
discount bonds alone are treated as if they were in the single-curve world.

3.2. LIBOR Discount Bond. Consider the LIBOR rate with tenorτk, k = 1, 2, . . . ,m, and
denote the time-t price of the associated LIBOR discount bond maturing at timeTj byLk(t, Tj).
Suppose that its price dynamics follows the SDE

dLk(t, Tj)

Lk(t, Tj)
= µk

L(t, Tj)dt+ σk
L(t, Tj)dW

k
j (t),

whereLk(Tj, Tj) = 1 for all j, and whereW k
j (t) denote correlated standard Brownian motions

underP.
It is widely believed by practitioners that LIBOR discount bonds are unsecured. Suppose that

the funding rate and repo rate for the LIBOR discount bonds are the same and given byrkF (t).
If the LIBOR discount bondLk(t, T ) can be duplicated by other LIBOR discount bonds with
different (finitely many) maturities but with the same tenorτk, then we have from (2.18) that

(3.4) Lk(t, T ) = Et

[
exp

{
−
∫ T

t

rkF (u)du

}]
= Et

[
Bk

F (t)

Bk
F (T )

]
, t < T,

which is known as the “LIBOR discounting” in practice, whereBk
F (t) is the funding account

associated with the funding raterkF (t). Hence, the denominated price processLk(t, T )/B
k
F (t)

is a martingale underQ, and so we have

dLk(t, T )

Lk(t, T )
= rkF (t)dt+ σk

L(t, T )dW
k∗(t),

as thederivativesecurity; see (2.19).
Also, under the risk-neutral measureQ, we have from (2.15) that

(3.5)
dLk(t, Tj)

Lk(t, Tj)
= rkF (t)dt+ σk

L(t, Tj)dW
k∗
j (t)
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for eachTj, as theunderlyingsecurities, because the repo rate ofLk(t, Tj) is equal to the funding
raterkF (t). Hence, the LIBOR discount bonds with the same tenor alone are treated as if they
were in the single-curve world.

We have thus proved the following, which shows the simultaneous existence of multiple yield
curves in the market.

Proposition 3.1. Let D(t, Ti) and Lk(t, Tj) be the OIS and LIBOR discount bonds defined
above. Suppose that the collateral and repo rates of the OIS discount bondsD(t, Ti) are the
same and given byrC(t). Further, suppose that the funding and repo rates of the LIBOR dis-
count bondsLk(t, Tj) are the same and given byrkF (t) for each tenorτk. If the market is rich
enough, then there is a unique risk-neutral measureQ under which the denominated price pro-
cessesD(t, Ti)/BC(t) andLk(t, Tj)/B

k
F (t) are martingales simultaneously, whereBC(t) and

Bk
F (t) are associated savings accounts defined above.

Remark 3.1. While the processLk(t, T )/B
k
F (t) is a martingale underQ for eachk, the process

Lk(t, T )/B(t) denominated by theotheraccountB(t) is no longer a martingale under the risk-
neutral measureQ in the multi-curve setting.

In the rest of this paper, for the sake of notational simplicity, we treat only the casem = 1
and simply callL(t, T ) the LIBOR discount bond maturing at timeT . Extension to the general
case is straightforward.

3.3. Forward-Neutral Method. We have already seen that the derivative price process follows
the SDE

(3.6)
dV (t)

V (t)
= rγ(t)dt+ σγ(t, T )dW

∗
γ (t)

for some volatilityσγ(t, T ) under the risk-neutral measureQ. Similarly, from (3.3) and (3.5),
the price processes of OIS and LIBOR discount bonds can be written by

(3.7)
dD(t, T )

D(t, T )
= rC(t)dt+ σD(t, T )dW

∗
D(t), t ≤ T,

and

(3.8)
dL(t, T )

L(t, T )
= rF (t)dt+ σL(t, T )dW

∗
L(t), t ≤ T,

for someσD(t, T ) andσL(t, T ), respectively, whereW ∗
D(t) andW ∗

L(t) are standard Brownian
motions underQ with correlationsdW ∗

γ (t)dW
∗
M(t) = ργ,M(t)dt for M = D,L.

Let us denote the OIS and LIBOR forward prices byV D
T (t) = V (t)/D(t, T ) andV L

T (t) =
V (t)/L(t, T ), respectively. By applying Ito’s division rule to (3.6) and (3.7), the OIS forward
price is given by

dV D
T (t)

V D
T (t)

= [rγ(t)− rC(t)− σD(t, T ) (ργ,D(t)σγ(t, T )− σD(t, T ))] dt

+σγ(t, T )dW
∗
γ (t)− σD(t, T )dW

∗
D(t).(3.9)

Now, define the processesW T
γ,D(t) andW T

D(t) by

(3.10) dW T
γ,D(t) = dW ∗

γ (t)− ργ,D(t)σD(t, T )dt, dW T
D(t) = dW ∗

D(t)− σD(t, T )dt,
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respectively. By substituting (3.10) into (3.9), we obtain

(3.11)
dV D

T (t)

V D
T (t)

= (rγ(t)− rC(t)) dt+ σγ(t, T )dW
T
γ,D(t)− σD(t, T )dW

T
D(t).

LetQT
γ,D be a probability measure that makes the processesW T

γ,D(t) andW T
D(t) standard Brow-

nian motions. The existence of suchQT
γ,D is guaranteed by Girsanov’s theorem; however, the

OIS-forward priceV D
T (t) cannot be aQT

γ,D-martingale, since the drift term in (3.11) is not
eliminated except the case thatγ(t) = 1. This is a remarkable difference from the ordinary
forward-neutral method under the single-curve setting. Note also that the measureQT

γ,D de-
pends onγ(t), in contrast to the risk-neutral measureQ.

Next, we define the spread by

(3.12) yγ(t) ≡ rγ(t)− rC(t) = (1− γ(t))(rF (t)− rC(t))

and the associated savings account by

dBY,γ(t)

BY,γ(t)
= yγ(t)dt, BY,γ(0) = 1.

Note that we havey1(t) = 0 andBY,γ(t) = 1 for the perfect collateral case (γ(t) = 1). It
follows from (3.11) that

(3.13)
d
(
V D
T (t)/BY,γ(t)

)
V D
T (t)/BY,γ(t)

= σγ(t, T )dW
T
γ,D(t)− σD(t, T )dW

T
D(t).

Since the processV D
T (t)/BY,γ(t) is aQT

γ,D-martingale from (3.13), we can get the following
expression:

V D
T (t) = Eγ,DT

t

[
BY,γ(t)

BY,γ(T )
V D
T (T )

]
= Eγ,DT

t

[
BY,γ(t)

BY,γ(T )
V (T )

]
,

whereEγ,DT

t is the conditional expectation operator underQT
γ,D given the informationFt.

Therefore, we obtain

(3.14) V (t) = D(t, T )Eγ,DT

t

[
exp

{
−
∫ T

t

(1− γ(s))(rF (s)− rC(s))ds

}
V (T )

]
.

Although not exactly the same, we call the measureQT
γ,D theT -OIS-forward measure because

of the resemblance (see (3.15) and (3.16) below) to the ordinary forward measure (see, e.g.,
Kijima, 2013).

In the case of perfect collateral (γ(t) = 1), the OIS-forward priceV D
T (t) = V (t)/D(t, T ) is a

martingale under theT -OIS-forward measureQT
1,D. It follows from the pricing formula (3.14)

that

(3.15) V (t) = D(t, T )E1,DT

t [V (T )] ,

which is equivalent to the forward-neutral pricing formula in the single-curve setting. On the
other hand, in the non-collateral case (γ(u) = 0), the pricing formula (3.14) becomes

(3.16) V (t) = D(t, T )E0,DT

t

[
exp

{
−
∫ T

t

(rF (s)− rC(s)) ds

}
V (T )

]
,

which is different from the ordinary pricing formula derived in the previous literature unless
rF (t) = rC(t).
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Similarly, the LIBOR-forward price is given by

dV L
T (t)

V L
T (t)

= [rγ(t)− rF (t)− σL(t, T ) (ργ,L(t)σγ(t, T )− σL(t, T ))] dt

+σγ(t, T )dW
∗
γ (t)− σL(t, T )dW

∗
L(t).(3.17)

Define the processesW T
γ,L(t) andW T

L (t) by

(3.18) dW T
γ,L(t) = dW ∗

γ (t)− ργ,L(t)σL(t, T )dt, dW T
L (t) = dW ∗

L(t)− σL(t, T )dt,

respectively. By substituting (3.18) into (3.17), we obtain

(3.19)
dV L

T (t)

V L
T (t)

= (rγ(t)− rF (t)) dt+ σγ(t, T )dW
T
γ,L(t)− σL(t, T )dW

T
L (t).

LetQT
γ,L be a probability measure that makes the processesW T

γ,L(t) andW T
L (t) standard Brow-

nian motions. We callQT
γ,L theT -LIBOR-forward measure. Again,V L

T (t) cannot be aQT
γ,L-

martingale, since the drift term in (3.19) is not eliminated except the case thatγ(t) = 0.
Under theT -LIBOR-forward measureQT

γ,L, similar to (3.14), we obtain

(3.20) V (t) = L(t, T )Eγ,LT

t

[
exp

{∫ T

t

γ(s)(rF (s)− rC(s))ds

}
V (T )

]
.

In the no-collateral case, the pricing formula (3.20) becomes

(3.21) V (t) = L(t, T )E0,LT

t [V (T )] ,

and the LIBOR-forward priceV L
T (t) = V (t)/L(t, T ) is a martingale under theT -LIBOR-

forward measureQT
0,L, which is equivalent to the forward-neutral pricing formula in the single-

curve setting. However, the forward measure used in (3.21) is different from that in (3.15). The
perfect collateral case can be obtained similarly and is given by

(3.22) V (t) = L(t, T )E1,LT

t

[
exp

{∫ T

t

(rF (s)− rC(s)) ds

}
V (T )

]
.

Again, note the difference of the measures used in (3.16) and (3.22).

4. FORWARD-RATE AGREEMENT AND INTEREST-RATE SWAP

In this section, we discuss the pricing of forward-rate agreements and interest-rate swaps
based on our pricing formulas obtained in the previous section.

Suppose that the OIS and LIBOR discount bonds, denoted byD(t, T ) andL(t, T ) respec-
tively, are traded in the market, and consider the payment date0 ≤ T0 < T1 < · · · < TN with
δi = Ti+1 − Ti.

TheTi-forward LIBOR rate at timet is defined by

(4.1) Li(t) ≡
L(t, Ti)− L(t, Ti+1)

δiL(t, Ti+1)
, 0 ≤ t ≤ Ti.

The LIBOR rate at timeTi is thus equal toLi(Ti) with L(Ti, Ti) = 1.
Similarly, theTi-forward OIS rate at timet is defined by

(4.2) Di(t) ≡
D(t, Ti)−D(t, Ti+1)

δiD(t, Ti+1)
, 0 ≤ t ≤ Ti.

The OIS rate at timeTi is given byDi(Ti) with D(Ti, Ti) = 1.
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4.1. Forward-Rate Agreement. We begin by the definitions of forward-rate agreement (FRA)
and FRA rate.

Definition 4.1 (FRA). A forward-rate agreement (FRA) is a contract which allows the holder to
lock in att < Ti the interest rate between[Ti, Ti+1] at a fixed valueK. At the maturityTi+1, one
pays the cash based on the rateK, and another pays the cash based on the LIBOR rateLi(Ti).

Definition 4.2 (FRA rate). The FRA rate is defined as the rate where the present value of the
FRA is equal to zero.

4.1.1. Perfect collateral case.In the perfect collateral case (γ(t) = 1), it follows from (2.16)
that the no-arbitrage price of the FRA with maturityTi+1 and exercise rateK is given by

VFRA(t;Ti, Ti+1, K) = δiEt

[
exp

{
−
∫ Ti+1

t

rC(u)du

}
(Li(Ti)−K)

]
.

SettingVFRA(t;Ti, Ti+1, K) = 0 and then solving it with respect toK yields the FRA rate at
time t as

(4.3) FRA(t;Ti, Ti+1) =
Et

[
exp

{
−
∫ Ti+1

t
rC(u)du

}
Li(Ti)

]
D(t, Ti+1)

,

where we have used the result (3.2) for the denominator.
On the other hand, under theTi+1-OIS-forward measureQTi+1

1,D , we have from (3.15) that

VFRA(t;Ti, Ti+1, K) = δiD(t, Ti+1)E1,DTi+1

t [Li(Ti)−K] .

The FRA rate is thus obtained as

(4.4) FRA(t;Ti, Ti+1) = E1,DTi+1

t [Li(Ti)] ,

which has been treated as a definition or an assumption of the FRA rate by many authors
such as Bianchetti (2013). Note thatLi(t) is not aQTi+1

1,D -martingale so that the equation
FRA(t;Ti, Ti+1) = Li(t) fails.

Similarly, under theTi+1-LIBOR-forward measureQTi+1

1,L , we have from (3.22) that

VFRA(t;Ti, Ti+1, K) = δiL(t, Ti+1)E1,LTi+1

t

[
exp

{∫ Ti+1

t

y0(s)ds

}
(Li(Ti)−K)

]
,

wherey0(t) = rF (t)− rC(t) denotes the spread defined in (3.12) withγ(t) = 0. The FRA rate
is thus obtained as

(4.5) FRA(t;Ti, Ti+1) =
E1,LTi+1

t

[
exp

{∫ Ti+1

t
y0(s)ds

}
Li(Ti)

]
E1,LTi+1

t

[
exp

{∫ Ti+1

t
y0(s)ds

}] .

Note the difference of the measures used in (4.4) and (4.5).

4.1.2. No-collateral case.In the no-collateral case (γ(t) = 0), it follows from (2.18) that the
no-arbitrage price of the FRA with maturityTi+1 and exercise rateK is given by

VFRA(t;Ti, Ti+1, K) = δiEt

[
exp

{
−
∫ Ti+1

t

rF (u)du

}
(Li(Ti)−K)

]
.
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SolvingVFRA(t;Ti, Ti+1, K) = 0 with respect toK yields the FRA rate at timet as

(4.6) FRA(t;Ti, Ti+1) =
Et

[
exp

{
−
∫ Ti+1

t
rF (u)du

}
Li(Ti)

]
L(t, Ti+1)

,

where we have used the result (3.4).
On the other hand, under theTi+1-LIBOR-forward measureQTi+1

0,L , we have from (3.21) that

VFRA(t;Ti, Ti+1, K) = δiL(t, Ti+1)E0,LTi+1

t [Li(Ti)−K]

and the FRA rate is obtained as

(4.7) FRA(t;Ti, Ti+1) = E0,LTi+1

t [Li(Ti)] = Li(t).

Recall thatLi(t) is a martingale underQTi+1

0,L .

Similarly, under theTi+1-OIS-forward measureQTi+1

0,D , we have from (3.16) that

VFRA(t;Ti, Ti+1, K) = δiD(t, Ti+1)E0,DTi+1

t

[
exp

{
−
∫ Ti+1

t

y0(s)ds

}
(Li(Ti)−K)

]
,

and the FRA rate is obtained as

(4.8) FRA(t;Ti, Ti+1) =
E0,DTi+1

t

[
exp

{
−
∫ Ti+1

t
y0(s)ds

}
Li(Ti)

]
E0,DTi+1

t

[
exp

{
−
∫ Ti+1

t
y0(s)ds

}] .

Note the difference of the measures used in (4.7) and (4.8).

4.2. Interest-Rate Swap. Consider a plain-vanilla, interest-rate swap (IRS) which starts at
time T0 ≥ 0. For simplicity, suppose that the notional amount is unity and cash flows are
exchanged at dateTi, i = 1, · · · , N .

Definition 4.3 (Swap Contract). In the LIBOR swap, party A pays to party B the interestδi−1K
with fixed rateK at datesTi, whereas party B pays to party A the interestδi−1Li−1(Ti−1) with
LIBOR rateLi−1(Ti−1). The OIS swap is the same when the interest is based on the OIS rate
Di−1(Ti−1).

Definition 4.4 (Swap Rate). The swap rate is defined as the rate where the present value of the
swap contract is equal to zero.

4.2.1. Perfect collateral case.In the perfect collateral case (γ(t) = 1), it follows from (2.16)
that the no-arbitrage price of the OIS swap contract with maturityTN and fixed rateK is given
by

V O
SWP(t, TN , K) =

N∑
i=1

δi−1Et

[
exp

{
−
∫ Ti

t

rC(u)du

}
Di−1(Ti−1)

]

−K

N∑
i=1

δi−1Et

[
exp

{
−
∫ Ti

t

rC(u)du

}]

=
N∑
i=1

δi−1D(t, Ti)E1,DTi

t [Di−1(Ti−1)]−K

N∑
i=1

δi−1D(t, Ti),(4.9)
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where we have used the results (3.2) and (3.15). But, theTi-OIS forward rateDi−1(t) defined
in (4.2) is aQTi

1,D-martingale, so that we have

δi−1D(t, Ti)E1,DTi

t [Di−1(Ti−1)] = δi−1D(t, Ti)Di−1(t) = D(t, Ti−1)−D(t, Ti).

It follows from (4.9) that

V O
SWP(t, TN , K) = D(t, T0)−D(t, TN)−K

N∑
i=1

δi−1D(t, Ti),

and the OIS swap rate,SO(t, TN), at timet is obtained as

(4.10) SO(t, TN) =
D(t, T0)−D(t, TN)∑N

i=1 δi−1D(t, Ti)
,

which is the well-knowntelescopeformula for the OIS swap rate.
On the other hand, from (2.16) again, the no-arbitrage price of the LIBOR swap contract with

maturityTN and fixed rateK is given by

V L
SWP(t, TN , K) =

N∑
i=1

δi−1Et

[
exp

{
−
∫ Ti

t

rC(u)du

}
Li−1(Ti−1)

]

−K

N∑
i=1

δi−1Et

[
exp

{
−
∫ Ti

t

rC(u)du

}]
.

SettingV L
SWP(t, TN , K) = 0 and then solving it with respect toK yields the LIBOR swap rate

at timet as

(4.11) SL(t, TN) =

∑N
i=1 δi−1FRA(t;Ti−1, Ti)D(t, Ti)∑N

i=1 δi−1D(t, Ti)
,

where we have used the results (3.2) and (4.3). The formula (4.11) has been obtained by many
authors including Bianchetti (2013). Note that the swap rate given in (4.11) cannot be reduced
to the telescope formula other than the case that FRA(t;Ti−1, Ti) = Di−1(t).

4.2.2. No-collateral case.In the no-collateral case (γ(t) = 0), we consider LIBOR swap con-
tracts only. It then follows from (2.18) that

V L
SWP(t, TN , K) =

N∑
i=1

δi−1Et

[
exp

{
−
∫ Ti

t

rF (u)du

}
Li−1(Ti−1)

]

−K

N∑
i=1

δi−1Et

[
exp

{
−
∫ Ti

t

rF (u)du

}]
,

and thus the LIBOR swap rate is given by

SL(t, TN) =

∑N
i=1 δi−1FRA(t;Ti−1, Ti)L(t, Ti)∑N

i=1 δi−1L(t, Ti)
,

where we have used the results (3.4) and (4.6). However, in this case, we have from (4.7) and
(4.1) that

δi−1L(t, Ti)FRA(t;Ti−1, Ti) = δi−1L(t, Ti)
L(t, Ti−1)− L(t, Ti)

δi−1L(t, Ti)
= L(t, Ti−1)− L(t, Ti).
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It follows that

(4.12) SL(t, TN) =
L(t, T0)− L(t, TN)∑N

i=1 δi−1L(t, Ti)
,

which is again the classic telescope formula under the single-curve setting.

4.2.3. Telescope property.We have seen that, in the multi-curve setting, the LIBOR swap-
rate (4.11) does not display the so-called telescope formula in the perfect collateral case. In
this subsection, we show that the telescope property can be recovered by using some adjusted
discount curves. See Ogawa (2015) for a different derivation of the same result.

Let us define the swap spreadBn(t) and annuityAn(t) by

(4.13) Bn(t) = SL(t, Tn)− SO(t, Tn), An(t) =
n∑

i=1

δi−1D(t, Ti),

respectively, where0 ≤ t ≤ T0 andB0(t) = 0. Furthermore, we define theadjusteddiscount
curve by

(4.14) D∗(t, Tn) ≡ D(t, Tn)−Bn(t)An(t), 0 ≤ t ≤ T0.

It is readily seen that

D∗(t, T0)−D∗(t, Tn) = D(t, T0)−D(t, Tn) +Bn(t)An(t)

= SO(t, Tn)An(t) + (SL(t, Tn)− SO(t, Tn))An(t)

= SL(t, Tn)An(t).

It follows that

(4.15) SL(t, Tn) =
D∗(t, T0)−D∗(t, Tn)∑n

i=1 δi−1D(t, Ti)
, 0 ≤ t ≤ T0.

Hence, the LIBOR swap rateSL(t, Tn) displays the telescope property in terms of the adjusted
discount curves.

We note that (4.15) suggests the identity

(4.16) δn−1FRA(t;Tn−1, Tn)D(t, Tn) = D∗(t, Tn−1)−D∗(t, Tn).

Hence, in the perfect collateral case, the FRA rate is given by

(4.17) FRA(t;Tn−1, Tn) =
D∗(t, Tn−1)−D∗(t, Tn)

δn−1D(t, Tn)
,

which should be compared with (4.11) and (4.12). The quantities involved in (4.17) are all
observed in the market; hence, the formula (4.17) is extremely useful in practice.

To see that (4.16) indeed holds true, we first note that

SO(t, Tn+1)An+1(t)− SO(t, Tn)An(t) = D(t, Tn)−D(t, Tn+1),

where we have used (4.10). Also, for the LIBOR swap, we have from (4.11) that

SL(t, Tn+1)An+1(t)− SL(t, Tn)An(t) = δnD(t, Tn+1)FRA(t;Tn, Tn+1).
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It follows that

D∗(t, Tn)−D∗(t, Tn+1)

= D(t, Tn)−D(t, Tn+1)−Bn(t)An(t) +Bn+1(t)An+1(t)

= D(t, Tn)−D(t, Tn+1)− (SO(t, Tn+1)An+1(t)− SO(t, Tn)An(t))

+ (SL(t, Tn+1)An+1(t)− SL(t, Tn)An(t))

= D(t, Tn)−D(t, Tn+1)−D(t, Tn) +D(t, Tn+1) + δnD(t, Tn+1)FRA(t;Tn, Tn+1),

which proves (4.16).

5. SOME SPECIFICMODELS

This section provides some specific models under the multi-curve setting. In order to keep our
presentation as simple as possible, we consider theperfectcollateral case only. More general
cases including the no-collateral case follow similarly. In this section, we start with a simple
extension of the Black–Scholes model (1973) and then move to spot rate models. Forward rate
models such as HJM and BGM models are treated in a separate paper.

5.1. Equity Options. In the framework of Section 2, consider a European derivative written
on a risky assetS(t) whose repo rate is given byrR(t). Then, from (2.14), the time-t price of
the derivative is obtained as

V (t) = Et

[
exp

{
−
∫ T

t

rC(u)du

}
h(S(T ))

]
, 0 ≤ t ≤ T,

where the underlying risky asset follows the SDE

dS(t)

S(t)
= rR(t)dt+ σ(t)dW ∗(t)

under the risk-neutral measureQ. Here,h(S) denotes the payoff function of the derivative and
W ∗(t) is a standard Brownian motion underQ.

Suppose that the interest rates are positive constants withrC ≤ rR. Then, for example, a call
option price at time0 with strikeK and maturityT is given by

V (0) = e−rCTEt [(S(T )−K)+] ,

where(X)+ = max(X, 0), S(T ) = SeνT+σW ∗(T ) with S = S(0), andν = rR − σ2/2. It
follows that

(5.1) V (0) = e(rR−rC)TBS(S,K, T ; rR, σ),

whereBS(S,K, T ; r, σ) stands for the Black–Scholes call option price with risk-free spot rate
r and volatilityσ.

We note that the call option price (5.1) can be very different from the classic Black–Scholes
priceBS(S,K, T ; rC , σ) when∆r = rR − rC is large. Figure 1 shows the discrepancy of the
two prices

∆V = e(rR−rC)TBS(S,K, T ; rR, σ)− BS(S,K, T ; rC , σ)

with respect to∆r, where we setS = 100 andrC = 1%. The difference∆V increases as∆r

(and also the maturityT ) increases. Also, the discrepancy becomes more significant for the
ITM options than the OTM options. However, the impact of volatilityσ on option prices seems
negligible.
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Figure 1: Difference∆V of call option price from the classic Black–Scholes price with respect torR−rC :
The parameters are chosen asS = 100 andrC = 1%.

5.2. Spot Rate Models. In the multi-curve setting, several spot rate models have been pro-
posed in the finance literature, Among them, Kijima, Tanaka and Wong (2009) consider a spot
rate model in which the collateral raterC(t) is modeled by the quadratic Gaussian (QG) model
of Pelsser (1997) and the spreads(t) = rF (t) − rC(t) follows a Vasicek model (1977). On
the other hand, Morino and Runggaldier (2014) consider an (independent) affine factor model
Φi(t) in which the collateral rate and the spread are given byrC(t) = Φ2(t) − Φ1(t) and
s(t) = κΦ1(t)+Φ3(t), respectively. While Kijima, Tanaka and Wong (2009) assume thatrC(t)
ands(t) are mutually independent, Morino and Runggaldier (2014) introduce a possible (neg-
ative) correlation between them through the parameterκ > 0. This section introduces another
spot rate model in the framework of Section 2.

Suppose that the two latent factorsx(t) andy(t) follow mean-reverting processes

(5.2) dx(t) = −cxx(t)dt+ σxdW
∗
1 (t), dy(t) = cy(my − y(t))dt+ σydW

∗
2 (t),

respectively, whereW ∗
1 (t) andW ∗

2 (t) are independent standard Brownian motions underQ. We
define the spot ratesrF (t) andrC(t) as follows. Lets(t) be the spread betweenrC(t) andrF (t),
and suppose that

(5.3) rC(t) = y(t) + κx(t), s(t) = (ℓ+ x(t))2.

Hence, while the OIS spot raterC(t) can be negative with positive probability, the spreads(t)
is always kept to be non-negative andrF (t) = rC(t) + s(t) ≥ rC(t) as desired.5 Note that the

5While negative interest rates are often observed in the recent interest-rate market, the spread should be non-
negative by the definition.
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parameterκ represents the dependency betweenrC(t) ands(t). In fact, from (5.2) and (5.3),
we have

(5.4) drC(t)ds(t) = (dy(t) + κdx(t))ds(t) = 2κσ2
x(ℓ+ x(t))dt.

Hence, ifκ < 0, the OIS rate and the spread are negatively correlated as long asℓ + x(t) > 0.
Also, denoting the volatility of variablez(t) by σ[z], we have

(5.5) σ[rC ] =
√
σ2
y + κ2σ2

x, σ[s] = 2(ℓ+x(t))σx, σ[rF ] =
√

σ2
y + (κ+ 2(ℓ+ x(t)))2σ2

x,

respectively.

5.2.1. Discount Bond Prices.First, from (3.2), (5.3) and the independence ofW ∗
1 (t) andW ∗

2 (t),
the time-t price of OIS discount bond maturing at timeT is given by

D(t, T ) = Et

[
exp

{
−
∫ T

t

y(u)du

}]
Et

[
exp

{
−ρ

∫ T

t

x(u)du

}]
.

Since bothx(t) andy(t) follow the Vasicek model (1977), we obtain

(5.6) D(t, T ) = Hx
1 (T − t, ρ)Hy

1 (T − t)e−ρHx
2 (T−t)x(t)−Hy

2 (T−t)y(t),

where

Hx
1 (t, ρ) = exp

{
−ρ2σ2

x

4cx
(Hx

2 (t))
2 − ρ2σ2

x

2c2x
(Hx

2 (t)− t)

}
,

Hy
1 (t) = exp

{
−

σ2
y

4cy
(Hy

2 (t))
2 +

(
my −

σ2
y

2c2y

)
(Hy

2 (t)− t)

}
,

Hx
2 (t) =

1− e−cxt

cx
, Hy

2 (t) =
1− e−cyt

cy
.

Next, from (5.3), we have

rF (t) = y(t) + (x(t) + αx)
2 − d, t ≥ 0,

where

αx = ℓ+
κ

2
, d = α2

x − ℓ2 = κℓ+
κ2

4
.

SinceW ∗
1 (t) andW ∗

2 (t) are independent, we obtain

(5.7) L(t, T ) = ed(T−t)Et

[
exp

{
−
∫ T

t

y(u)du

}]
Et

[
exp

{
−
∫ T

t

(x(u) + αx)
2 du

}]
.

The first expectation in the right hand side of (5.7) is given by

(5.8) Et

[
exp

{
−
∫ T

t

y(u)du

}]
= Hy

1 (T − t)e−Hy
2 (T−t)y(t),

whereHy
1 (t) andHy

2 (t) are defined above. On the other hand, the second expectation in the
right hand side of (5.7) is the quadratic Gaussian (QG) model of Pelsser (1997). The closed
form solution of the expectation is obtained in Kijima, Tanaka and Wong (2009) as

Et

[
exp

{
−
∫ T

t

(x(u) + αx)
2 du

}]
= exp

{
A(t, T )−B(t, T )x(t)− C(t, T )x2(t)

}
,(5.9)
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whereγ =
√

c2x + 2σ2
x, Γa = γ − cx, Γb = γ + cx, and

A(t, T ) = −σ2
x

(
A4(t, T )

γ5A5(t, T )
+ A6(t, T )

)
− α2

x(T − t),

B(t, T ) =
2B1(t, T )

γ2A5(t, T )
,

C(t, T ) =
e2γ(T−t) − 1

Γbe2γ(T−t) + Γa

,

A1a(t, T ) = −eγ(T−t) + 4− e−γ(T−t)(3 + 2γ(T − t)),

A1b(t, T ) = e−γ(T−t) − 4 + eγ(T−t)(3− 2γ(T − t)),

A4(t, T ) = α2
xγ

2(ΓaA1a(t, T ) + ΓbA1b(t, T )),

A5(t, T ) = Γae
−γ(T−t) + Γbe

γ(T−t),

A6(t, T ) = −(T − t)(Γ−1
a − Γ−1

b )

2
+

1

2γ
(Γ−1

a + Γ−1
b ) log

A5(t, T )

2γ
,

B1(t, T ) = −αxγ(e
−γT − e−γt)(Γae

γt + Γbe
γT ).

Substituting (5.8) and (5.9) into (5.7), the LIBOR discount bond priceL(t, T ) is obtained.

5.2.2. Interest-Rate Derivatives.A significant advantage of this spot-rate model is that we can
obtain the prices of various interest-rate derivatives in closed form. For example, the FRA rate
is given by the next theorem. The proof is given in Appendix A.1.

Theorem 5.1.Under the spot rate model (5.3), the FRA rate is given by

FRA(t;Ti, Ti+1) =
1

δi

(
eK(t,Ti,Ti+1)

Hy
1 (δi)

√
1− 2C(Ti, Ti+1)σ2

X(t, Ti)
− 1

)
,

where

K(t, Ti, Ti+1) = −κδi

(
ℓ+

κ

4

)
− A(Ti, Ti+1) +

(Hy
2 (δi))

2

2
σ2
y(t, Ti)−

B2(Ti, Ti+1)

4C(Ti, Ti+1)

+Hy
2 (δi)µy(t, Ti) +

C(Ti, Ti+1)

1− 2C(Ti, Ti+1)σ2
X(t, Ti)

µ2
X(t, Ti, Ti+1).

Here, we define

µy(t, T ) = my + (y(t)−my)e
−cy(T−t) −

σ2
y

c2y

(
1− e−cy(T−t) − e−cyδi

1− e−2cy(T−t)

2

)
,

σ2
y(t, T ) =

σ2
y

2cy

(
1− e−2cy(T−t)

)
,

µX(t, Ti, Ti+1) = x(t)e−cx(Ti−t) − κσ2
x

c2x

(
1− e−cx(Ti−t) − e−cxδi

1− e−2cx(Ti−t)

2

)
+

B(Ti, Ti+1)

2C(Ti, Ti+1)
,

σ2
X(t, T ) =

σ2
x

2cx

(
1− e−2cx(T−t)

)
,

and the functionsHy
1 (t), H

y
2 (t), A(t, T ), B(t, T ) andC(t, T ) are given above.
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Recall that the LIBOR swap rate is given by (4.11) using the FRA rates in Theorem 5.1 and
the OIS swap rate is given by (4.10).

Next, from (3.15), the price of a LIBOR caplet is given by

Cplt(Ti+1, K) = D(0, Ti+1)E1,DTi+1

t [(Li(Ti)−K)+] .

The next theorem provides the analytical solution of the caplet price. The proof is given in
Appendix A.2.

Theorem 5.2.The price of a LIBOR caplet is given by

Cplt(Ti+1, K) =

∫ ∞

−∞
Cplt(Ti+1, K|x(Ti) = x)

1√
2πσ2

x(Ti)
e
− (x−µx(Ti))

2

2σ2
x(Ti) dx,

where

Cplt(Ti+1, K|x(Ti) = x)

=
D(0, Ti+1)

δi

[
S(x)e−σ2

Z(Ti)(2µZ(Ti)+σ2
Z(Ti))Φ

(
log S(x)

1+Kδi
+ µZ(Ti)

σZ(Ti)
+ σZ(Ti)

)

−(1 +Kδi)Φ

(
log S(x)

1+Kδi
+ µZ(Ti)

σZ(Ti)

)]
.

Here, we defineµx(Ti) = µX(0, Ti, Ti+1)− B(Ti,Ti+1)
2C(Ti,Ti+1)

, σ2
x(Ti) = σ2

X(0, Ti),µZ(Ti) = Hy
2 (δi)µy(0, Ti),

σ2
Z(Ti) = [Hy

2 (δi)σy(0, Ti)]
2, and

S(x) =
e−dδi−A(Ti,Ti+1)+B(Ti,Ti+1)x+C(Ti,Ti+1)x

2

Hy
1 (δi)

.

The other functions such asµX(t, Ti, Ti+1) are defined in Theorem 5.1.

The caplet price given in Theorem 5.2 involves one-dimensional numerical integration which
can be easily evaluated by using, e.g., the Gaussian quadrature.

5.2.3. Numerical Example.In the following numerical examples, we set

t δi x(0) cx y(0) cy my ℓ2

0 0.5 0 0.1 0.01 0.1 0.03 0.001

as the base-case parameters, and consider the four cases; Case (1) to Case (4).
To this end, we fixσ[rC ] = 0.01 andσx = 0.01 for Case (1),σx = 0.02 for Case (2),

σx = 0.04 for Case (3), andσx = 0.08 for Case (4). The other parameters are determined from
(5.4) and (5.5) withx(0) = 0, i.e.,

ρ =
κσx

σ[rC ]
, σ[rC ] =

√
σ2
y + κ2σ2

x, σ[s] = 2ℓσx, σ[rF ] =
√

σ2
y + (κ+ 2ℓ)2σ2

x.

In each case, we consider the positively correlated case (ρ = 0.5) and negatively correlated case
(ρ = −0.5). Hence, for example, for Case (1) withρ = 0.5, we first determine the parameter
κ from the relationρ = κσx/σ[rC ], and thenσy from σ[rC ] =

√
σ2
y + κ2σ2

x = 0.01. The
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volatilitiesσ[s] andσ[rF ] are calculated by these parameter values. Summarizing, we have the
following set of volatilities (in terms of%).

Case 1:σx = 0.01 Case 2:σx = 0.02 Case 3:σx = 0.04 Case 4:σx = 0.08
ρ −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5

σ[rC ] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
σ[rF ] 0.970 1.033 0.943 1.069 0.901 1.148 0.866 1.327
σ[s] 0.063 0.063 0.126 0.126 0.253 0.253 0.506 0.506

Note that for the negatively correlated case (ρ = −0.5), the volatilityσ[rF ] of the funding rate
decreases asσx increases; however, for a range (σx > 0.08), σ[rF ] turns to be increasing inσx.
If σx = 0.16, the three volatilities become similar (about1%).

Figure 2 depicts the swap spread defined by (4.13), i.e.,

Bn ≡ SL(0, Tn)− SO(0, Tn), Tn =
n∑

i=1

δi,

with respect toTn. In the upper panel, we consider the negatively correlated case(ρ = −0.5),
whereas the lower panel considers the positively correlated case(ρ = 0.5). The swap spread
Bn becomes wider as the spread volatilityσ[s] gets large for the both cases. The increase of the
spread amplitude seems much faster than the increase of the volatilityσ[s], and the correlation
ρ has only little impact on the swap spread. Recall that, when the correlation is negative, the
volatility σ[rF ] of the funding rate decreases as the spread volatilityσ[s] increases in the range
of σx ≤ 0.08. Hence, the spread volatilityσ[s] between the collateral and funding rates seems
to play a significant role for the swap spread.

Recall that, in the multi-curve setting, the FRA rate can be different from the forward LIBOR
rateLi(t), becauseLi(t) is not aQTi+1

1,D -martingale; see (4.4).6 As a result, the modern pricing
formula for LIBOR swap rates does not display the telescope property; see (4.11). Motivated
by this stylized fact, let us define the discrepancy of the modern swap pricing from the classic
pricing by

∆S(Tn) = SL
m(0, Tn)− SL

c (0, Tn), Tn =
n∑

i=1

δi.

Here,m stands for ‘modern’ andSL
m(0, TN) is calculated according to (4.11), whereasc stands

for ‘classic’ andSL
c (0, TN) is given by (4.12). Figure 3 depicts the discrepancy∆S(Tn) with re-

spect toTn. In the upper panel, we consider the negatively correlated case(ρ = −0.5), whereas
the lower panel considers the positively correlated case(ρ = 0.5). Again, the swap discrep-
ancy∆S(Tn) becomes wider as the volatilityσ[s] gets large for the both cases. Surprisingly,
the spread∆S(Tn) is negligible when the maturity is short (say, shorter than 1 year) and the
spread volatilityσ[s] is small. However, the spread suddenly becomes significant whenσ[s] ex-
ceeds some level. This suggests the importance of considering the regime-switching model for
the volatility σ[s], i.e., high volatility regime such as the credit crisis period and low volatility
regime for the calm period.

6When the spread volatilityσ[s] is small, the swap spread becomes nearly constant, i.e.,Bn ≈ ℓ2 for all n; see
Figure 2. In this case, it follows from (4.14) and (4.17) that FRA(0;T, T + δn) ≈ Dn(0) + ℓ2 for all n.
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Figure 2: Swap spreadBn(Tn) between the LIBOR and the OIS swap rates (upper panel for the nega-
tively correlated case withρ = −0.5, lower panel for the positively correlated case withρ = 0.5)

6. CONCLUDING REMARKS

In this paper, we construct a no-arbitrage framework of financial market that is consistent to
the multi-curve setting. It is shown thatanyderivative security can be duplicated by using the
underlying assets and collateral and funding accounts appropriately. A risk-neutral measure is
defined accordingly and the derivative price is determined uniquely under the measure. This
idea is extended to the pricing of OIS and LIBOR discount bonds, which shows the simultane-
ous existence of multiple yield curves in the market.
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Figure 3: Discrepancy∆S(Tn) of the modern swap rate from the classic swap rate (upper panel for the
negatively correlated case withρ = −0.5, lower panel for the positively correlated case withρ = 0.5)

Some specific spot rate model is provided to derive the formulas of interest-rate derivatives
such as forward rate agreement and LIBOR swap rates in closed form under the multi-curve
setting. Numerical examples are given to demonstrate the discrepancy of the derivative prices
under the multi-curve setting from the classic ones. Our important finding is that the discrepancy
suddenly becomes significant when the spread volatilityσ[s] between the collateral and funding
rates exceeds some level. This suggests the importance of considering the regime-switching
model for the volatilityσ[s], i.e. high volatility regime such as the credit crisis period and low
volatility regime for the calm period. This theme is left for future research.
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APPENDIX A. PROOFS

From (5.6), we have

d logD(t, T ) = ( . . . )dt− κσxH
x
2 (T − t)dW ∗

1 (t)− σyH
y
2 (T − t)dW ∗

2 (t).

It follows from (3.7) that the OIS discount bond price follows the SDE

dD(t, T )

D(t, T )
= rC(t)dt+ σD(t, T )dW

∗
D(t),

where
σD(t, T ) =

√
κ2σ2

x(H
x
2 (T − t))2 + σ2

y(H
y
2 (T − t))2

and

(A.1) dW ∗
D(t) = −κσxH

x
2 (T − t)dW ∗

1 (t) + σyH
y
2 (T − t)dW ∗

2 (t)

σD(t, T )
.

Similarly, from (5.7), we have

d logL(t, T ) = ( . . . )dt− σx[B(t, T ) + 2C(t, T )x(t)]dW ∗
1 (t)− σyH

y
2 (T − t)dW ∗

2 (t).

Hence, from (3.8), the LIBOR discount bond price follows the SDE

dL(t, T )

L(t, T )
= rF (t)dt+ σL(t, T )dW

∗
L(t),

where
σL(t, T ) =

√
σ2
x[B(t, T ) + 2C(t, T )x(t)]2 + σ2

y(H
y
2 (T − t))2

and

(A.2) dW ∗
L(t) = −σx[B(t, T ) + 2C(t, T )x(t)]dW ∗

1 (t) + σyH
y
2 (T − t)dW ∗

2 (t)

σL(t, T )
.

It follows from (A.1) and (A.2) that

(A.3) dW ∗
D(t)dW

∗
L(t) =

κσ2
xH

x
2 (T − t)[B(t, T ) + 2C(t, T )x(t)] + σ2

y(H
y
2 (T − t))2

σD(t, T )σL(t, T )
dt.

Recall thatW ∗
D(t) andW ∗

L(t) are standard Brownian motions under the risk-neutral measureQ
with the correlation given in (A.3).

A.1. Pricing of FRA Rate. From (4.4) and (4.1), the FRA rate is given by

(A.4) FRA(t;Ti, Ti+1) = E1,DTi+1

t [Li(Ti)] =
1

δi
E1,DTi+1

t

[
1

L(Ti, Ti+1)
− 1

]
under theTi+1-OIS-forward measureQTi+1

1,D , where the LIBOR discount bond priceL(Ti, Ti+1)
is given by (5.7). Let us denote the correlations byρ1,D(t)dt = dW ∗

1 (t)dW
∗
D(t) andρ2,D(t)dt =

dW ∗
2 (t)dW

∗
D(t). It is readily seen that

ρ1,D(t) = −κσxH
x
2 (T − t)

σD(t, T )
, ρ2,D(t) = −σyH

y
2 (T − t)

σD(t, T )
.

Now, define the processesW Ti+1

1,D (t) andW Ti+1

2,D (t) as

(A.5)

{
dW

Ti+1

1,D (t) = dW ∗
1 (t)− ρ1,D(t)σD(t, Ti+1)dt,

dW
Ti+1

2,D (t) = dW ∗
2 (t)− ρ2,D(t)σD(t, Ti+1)dt,
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respectively. It is well known that(W Ti+1

1,D (t),W
Ti+1

2,D (t)) are independent standard Brownian

motions underQTi+1

1,D .7 Substituting (A.5) into (5.2), we obtain

(A.6)

{
dx(t) = [−cxx(t)− κσ2

xH
x
2 (Ti+1 − t)]dt+ σxdW

Ti+1

1,D (t),

dy(t) = [cy(my − y(t))− σ2
yH

y
2 (Ti+1 − t)]dt+ σydW

Ti+1

2,D (t),

under theTi+1-OIS-forward measureQTi+1

1,D . It follows from (5.7) that

E1,DTi+1

t

[
1

L(Ti, Ti+1)

]
=

e−dδi−A(Ti,Ti+1)

Hy
1 (δi)

E1,DTi+1

t

[
eH

y
2 (δi)y(Ti)

]
E1,DTi+1

t

[
eB(Ti,Ti+1)x(Ti)+C(Ti,Ti+1)x

2(Ti)
]
,

becausex(t) andy(t) are independent.
Note that the processy(t) given in (A.6) follows a mean-reverting process which can be

solved as

y(s) = y(t)e−cy(s−t) +

∫ s

t

(
cymy − σ2

yH
y
2 (Ti+1 − u)

)
e−cy(s−u)du

+σy

∫ s

t

e−cy(s−u)dW
Ti+1

2,D (u).

Hence,y(Ti) is normally distributed with mean

µy(t, Ti) ≡ my + (y(t)−my)e
−cy(Ti−t) −

σ2
y

c2y

(
1− e−cy(Ti−t) − e−cyδi

1− e−2cy(Ti−t)

2

)
and variance

σ2
y(t, Ti) ≡

σ2
y

2cy

(
1− e−2cy(Ti−t)

)
.

It follows that

E1,DTi+1

t

[
eH

y
2 (δi)y(Ti)

]
= exp

{
Hy

2 (δi)µy(t, Ti) +
(Hy

2 (δi))
2

2
σ2
y(t, Ti)

}
.

Similarly, from (A.6), we obtain

x(s) = x(t)e−cx(s−t) − ρσ2
x

∫ s

t

Hx
2 (Ti+1 − u)e−cx(s−u)du+ σx

∫ s

t

e−cx(s−u)dW
Ti+1

1,D (u).

Hence,x(Ti) is normally distributed with mean

µx(t, Ti) ≡ x(t)e−cx(Ti−t) − κσ2
x

c2x

(
1− e−cx(Ti−t) − e−cxδi

1− e−2cx(Ti−t)

2

)
and variance

σ2
x(t, Ti) ≡

σ2
x

2cx

(
1− e−2cx(Ti−t)

)
.

Defining

X(Ti) = x(Ti) +
B(Ti, Ti+1)

2C(Ti, Ti+1)
,

7A concrete derivation is available from the authors upon request.
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we have

E1,DTi+1

t

[
eB(Ti,Ti+1)x(Ti)+C(Ti,Ti+1)x

2(Ti)
]
= e

−B2(Ti,Ti+1)

4C(Ti,Ti+1)E1,DTi+1

t

[
eC(Ti,Ti+1)X

2(Ti)
]
.

Note thatX(Ti) is normally distributed with mean

µX(t, Ti, Ti+1) ≡ x(t)e−cx(Ti−t)−κσ2
x

c2x

(
1− e−cx(Ti−t) − e−cxδi

1− e−2cx(Ti−t)

2

)
+

B(Ti, Ti+1)

2C(Ti, Ti+1)

and varianceσ2
X(t, Ti) = σ2

x(t, Ti). Hence,X2(Ti)/σ
2
X(x, Ti) follows a non-centralχ2-distribution

with 1 degree of freedom and non-centralityµ2
X(t, Ti)/σ

2
X(t, Ti). It follows that8

E1,DTi+1

t

[
eC(Ti,Ti+1)X

2(Ti)
]
=

1√
1− 2C(Ti, Ti+1)σ2

X(t, Ti)
e

C(Ti,Ti+1)µ
2
X (t,Ti,Ti+1)

1−2C(Ti,Ti+1)σ
2
X

(t,Ti) .

Putting these results into (A.4), we obtain the FRA rate given in Theorem 5.1.

A.2. Pricing of Caplet. From (4.1) and (3.15), we have

Cplt(Ti+1, K) =
D(0, Ti+1)

δi
E1,DTi+1

t

[(
1

L(Ti, Ti+1)
− (1 +Kδi)

)
+

]
.

Givenx(Ti) = x, it follows that

E1,DTi+1

t

[(
1

L(Ti, Ti+1)
− (1 +Kδi)

)
+

∣∣∣∣x(Ti) = x

]
= E1,DTi+1

t

[(
e−dδi−A(Ti,Ti+1)+B(Ti,Ti+1)x+C(Ti,Ti+1)x

2

Hy
1 (δi)

eH
y
2 (δi)y(Ti) − (1 +Kδi)

)
+

]
.

Now, definingZ(Ti) = Hy
2 (δi)y(Ti), we have

E1,DTi+1

t

[(
1

L(Ti, Ti+1)
− (1 +Kδi)

)
+

∣∣∣∣x(Ti) = x

]
= E1,DTi+1

t

[(
S(x)eZ(Ti) − (1 +Kδi)

)
+

]
= S(x)E1,DTi+1

t

[
eZ(Ti)1{S(x)eZ(Ti)>1+Kδi}

]
− (1 +Kδi)E1,DTi+1

t

[
1{S(x)eZ(Ti)>1+Kδi}

]
,

where

S(x) =
e−dδi−A(Ti,Ti+1)+B(Ti,Ti+1)x+C(Ti,Ti+1)x

2

Hy
1 (δi)

.

Note thatZ(Ti) is normally distributed with meanµZ(Ti) ≡ Hy
2 (δi)µy(0, Ti) and variance

σ2
Z(Ti) ≡ [Hy

2 (δi)σy(0, Ti)]
2. It follows that

E1,DTi+1

t

[
1{S(x)eZ(Ti)>1+Kδi}

]
= Φ

(
log S(x)

1+Kδi
+ µZ(Ti)

σZ(Ti)

)
,

8If Y follows a non-centralχ2-distribution withν degree of freedom and non-centralityδ, its moment generating
function is given by

E
[
etY
]
= (1− 2t)−

ν
2 exp

{
δt

1− 2t

}
, t <

1

2
.
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whereΦ(x) denotes the cumulative distribution function of the standard normal distribution.
Also, recall that

ex
1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
= e−σ2(2µ+σ2) 1√

2πσ2
exp

{
−(x− µ− σ2)2

2σ2

}
.

DefiningZ ′(Ti) = Z(Ti) + σ2
Z(Ti) and using the above relation, we obtain

E1,DTi+1

t

[
eZ(Ti)1{S(x)eZ(Ti)>1+Kδi}

]
= e−σ2

Z(Ti)(2µZ(Ti)+σ2
Z(Ti))E1,DTi+1

t

[
1{S(x)eZ′(Ti)>1+Kδi}

]
= e−σ2

Z(Ti)(2µZ(Ti)+σ2
Z(Ti))QTi+1

1,D

{
Z ′(Ti) > log

1 +Kδi
S(x)

}
= e−σ2

Z(Ti)(2µZ(Ti)+σ2
Z(Ti))Φ

(
log S(x)

1+Kδi
+ µZ(Ti) + σ2

Z(Ti)

σZ(Ti)

)
.

Putting these results together, we obtain the caplet price given in Theorem 5.2.

REFERENCES

[1] Bianchetti, M. (2013), “Modern pricing of interest rate derivatives including funding and collateral,”Interest
Rate Modeling after the Financial Crisis, Risk Books, 113–152.

[2] Black, F. and M. Scholes (1973), “The pricing of options and corporate liabilities,”Journal of Political
Economy, 81, 637–654.

[3] Boenkost, W. and W.M. Schmidt (2005), “Cross currency swap valuation,” HfB-Business School of Finance
& Management, working paper.

[4] Han, M, Y. He and H. Zhang (2015), “A note on evaluation of derivatives with collaterals,” working paper,
SSRN-id2575633.pdf.

[5] Han, M., Y. He and H. Zhang (2014), “A note on discounting and funding value adjustments for derivatives,”
Journal of Financial Engineering, 1, 1450008.1―-1450008.34.

[6] Heath D., R. Jarrow, and A. Morton (1992), “Bond pricing and the term structure of interest rates: A new
methodology for contingent claims valuation,”Econometrica, 60, 77–105.

[7] Henrard, M. (2007), “The irony in the derivatives discounting,”Wilmott Magazine, 30, 92–98.
[8] Henrard, M. (2014),Interest Rate Modelling in the Multi-curve Framework, Palgrave Macmillan.
[9] Kijima, M. (2013), Stochastic Processes with Applications to Finance, 2nd Edition, Chapman & Hall, Lon-

don.
[10] Kijima, M., K. Tanaka and T. Wong (2009), “A multi-quality model of interest rates,”Quantitative Finance,

9, 133–145.
[11] Mercurio, F. (2009) “Interest rates and the credit crunch: New formulas and market models,” working paper.
[12] Morino, L. and W. J. Runggaldier (2014), “On multicurve models for the term structure,”Nonlinear Economic

Dynamics and Financial Modeling(eds. R. Dieci et al.), .275–290.
[13] Ogawa, K. (2015), “Pricing basic instruments with telescopic property in a two-curve environment,” working

paper.
[14] Pelsser, A. (1997), “A tractable yield-curve model that guarantees positive interest rates,”Review of Deriva-

tives Research, 1, 269–284.
[15] Piterbarg, V. (2010), “Funding beyond discounting,”RISK, February, 97–102.
[16] Piterbarg, V. (2012), “Cooking with collateral,”RISK, August, 58–63.
[17] Vasicek, O.A. (1977), “An equilibrium characterization of the term structure,”Journal of Financial Econom-

ics, 5, 177–188.




