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Abstract

We consider a finite symmetric game where the set of strategies for each player is

a one-dimensional integer interval. We show that a pure strategy equilibrium exists

if the payoff function is concave with respect to the own strategy and satisfies a pair

of symmetrical conditions near the symmetric strategy profiles. As an application, we

consider a symmetric Cournot game in which each firm chooses an integer quantity of

product. If the inverse demand function is a nonincreasing concave function and the cost

function for each firm is an identical convex function, then the payoff function of the firm

satisfies the conditions and this symmetric game has a pure strategy equilibrium.

1 Introduction

Many problems in economics can be modeled as games where the sets of strategies for

players are one-dimensional compact intervals of real numbers (hereafter referred to as

games with real intervals). The strategies correspond to various economic variables, for

example selling prices in Bertrand games, quantities of product in Cournot games, and

locations of firms in spatial competition games. Moreover, for simplicity, many appli-

cations postulate identical players in addition to one-dimensional strategy sets, which

are described by symmetric games. If the payoff function is quasiconcave and continu-

ous, then symmetric games with compact real intervals have a symmetric pure strategy

equilibrium. A simple proof is established by Moulin (1986), although the existence

of a not necessarily symmetric pure strategy equilibrium is implied by a more classical

theorem in Rosen (1965). Results about the existence of pure strategy equilibria for
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symmetric games with compact and convex sets of strategies were extended to those

with discontinuous payoffs by Dasgupta and Maskin (1986) and Reny (1999).

This class of games is familiar to us and is useful for formulating problems, but

strategies for the games in the real world take discrete values. The prices and the

quantities of product are always integral, or perhaps rational numbers. Hence, it would

be desirable to examine the existence of a pure strategy equilibrium in finite symmetric

games where the sets of strategies are one-dimensional finite integer intervals (hereafter

referred to as games with integer intervals), but few studies have examined this.

We have shown previously that finite symmetric games with integer intervals have

pure strategy equilibria when the payoff functions are integrally concave Iimura and

Watanabe (2014). This result gives a condition for the existence of equilibria, but the

concept of integral concavity, defined in Favati and Tardella (1990), is rather technical. In

addition, it can be difficult to check whether the payoff functions are integrally concave.

In this paper, we extend this result and show that a finite symmetric game with integer

intervals has pure strategy equilibria if the payoff function for each player is concave with

respect to the own strategy, defined as a decreasing marginal payoff with respect to the

own strategy, and satisfies a pair of symmetrical conditions near the symmetric strategy

profiles. The pair of conditions is satisfied when the payoff function is integrally concave,

and checking them is easier than checking integral concavity.

We also apply the results to symmetric Cournot games where the quantity that each

player selects is an integer. We show that there exists an equilibrium when the inverse

demand function is a nonincreasing concave function and the cost function is a convex

function. There are many studies regarding the existence and stability of equilibria in

n-firm Cournot games for one homogeneous good, such as Okuguchi (1964, 1973) and

Novshek (1985). In particular, McManus (1964) and Roberts and Sonnenschein (1976)

treat Cournot games with n identical firms; that is, symmetric Cournot games. Many

studies assume that the quantity of product for each firm belongs to a real interval, but

there are few studies about Cournot games with integer quantities.

This paper is organized as follows. In Section 2, we give some definitions. In Section

3, we prove our existence theorem. In Section 4, we apply the existence theorem to a

discrete symmetric Cournot game. In Section 5, we give some concluding remarks.

2 Definitions

A game is a three-tuple (N, (Si)i∈N , (ui)i∈N ), where N = {1, . . . , n} (n ≥ 2) is a set of

players, Si is a set of strategies for i ∈ N , and ui is a real-valued payoff function for i ∈ N

defined on the set of strategy profiles S := S1 × · · ·×Sn. In this paper, we only consider

symmetric games where the set of strategies is a one-dimensional integer interval. The

set of strategies for each player i ∈ N is an identical integer interval Si = {0, . . . ,m}
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(m ≥ 1), and ui satisfies

ui(s) = uπ(i)(φπ(s)), ∀π ∈ Π, ∀s ∈ S, ∀i ∈ N,

where Π is the set of all permutations of N , and φπ is a permutation of s ∈ S associated

with π ∈ Π such that

φπ(s) = (sπ−1(1), . . . , sπ−1(n)).

A strategy profile s = (s1, . . . , sn) ∈ S is also denoted by s = (si, s−i), where si is

the strategy of player i ∈ N and s−i is the (n − 1)-tuple of the strategies of the other

players. Letting ei be the ith unit vector for each i ∈ N , a strategy profile (si + 1, s−i)

is also denoted by s+ ei. A strategy profile s ∈ S is a pure strategy equilibrium if

ui(s) ≥ ui(s
′
i, s−i) ∀s′i ∈ Si ∀i ∈ N.

A real-valued function f : Si → R is said to be concave if it satisfies

f(x)− f(x− 1) ≥ f(x+ 1)− f(x)

for any x such that 1 ≤ x ≤ m−1. For any function defined on a real interval [0,m], the

restriction of the function to the integer interval {0, . . . ,m} is concave if the function is

concave in the usual sense for continuous functions.

The payoff function ui is concave with respect to the own strategy if ui(·, s−i) is

concave for any s−i. In other words, ui is concave if, for any s−i and any integer si such

that 1 ≤ si ≤ m− 1,

ui(s)− ui(s− ei) ≥ ui(s+ ei)− ui(s).

Thus, the payoff function ui is concave with respect to the own strategy if and only if

the marginal payoff is decreasing with respect to the own strategy.

A finite game (N, (Si)i∈N , (ui)i∈N ) is said to be concave if the payoff ui is concave

with respect to the own strategy for every i ∈ N . Note that when m = 1—that is, when

every player has only two strategies—every finite symmetric game is concave.

As is the case with concavity on a real interval, any local maximum of a concave

function defined on an integer interval is a global maximum. Lemma 1 shows this fact

formally. In the following, we use the convention ui(x) = −∞ if x ̸∈ S.

Lemma 1. Suppose that ui is concave with respect to the own strategy. Then:

(i) for any s ∈ S, if ui(s) ≥ ui(s− ei), then ui(s) ≥ ui(s
′
i, s−i) for any s′i ∈ Si such that

s′i ≤ si, and

(ii) for any s ∈ S, if ui(s) ≥ ui(s + ei), then ui(s) ≥ ui(s
′
i, s−i) for any s′i ∈ Si such

that s′i ≥ si.
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Proof. We will show (i). For s′i ∈ Si such that s′i < si, let t = si − s′i. Then, because ui

is concave with respect to the own strategy, for any k ∈ {1, . . . , t} we have

ui(s− (k − 1)ei)− ui(s− kei) ≥ ui(s− (k − 2)ei)− ui(s− (k − 1)ei)

...

≥ ui(s)− ui(s− ei).

Therefore

ui(s)− ui(s
′
i, s−i) =

t∑
k=1

(
ui(s− (k − 1)ei)− ui(s− kei)

)
≥ t

(
ui(s)− ui(s− ei)

)
.

Thus, if ui(s) ≥ ui(s− ei), then ui(s) ≥ ui(s
′
i, s−i) and (i) is proved. The proof of (ii) is

similar.

3 Existence of a pure strategy equilibrium

Let Vz = {s ∈ S | si ∈ {z, z + 1}, i = 1, . . . , n} for each z ∈ {0, . . . ,m − 1}. Our main

result in the following theorem asserts that there exists an equilibrium in Vz for some

z ∈ {0, . . . ,m − 1} if the payoff function in a finite symmetric game is concave with

respect to the own strategy and satisfies a pair of conditions.

Theorem 1. Let (N, (Si)i∈N , (ui)i∈N ) be a finite symmetric game. If ui is concave with

respect to the own strategy and satisfies the conditions

ui(s− ei) > ui(s) =⇒ ui(s− ej) > ui(s− ej + ei) ∀s, s− ej + ei ∈ Vz, (1)

ui(s) < ui(s+ ei) =⇒ ui(s+ ej − ei) < ui(s+ ej) ∀s, s+ ej − ei ∈ Vz, (2)

then there exists an equilibrium s ∈ S in Vx for some x ∈ {0, . . . ,m− 1}.

Proof. Let ŝz = (z, . . . , z) for each z ∈ S1 = {0, . . . ,m}. If there exists a z such that

u1(ŝ
z) ≥ u1(ŝ

z − e1) and u1(ŝ
z) ≥ u1(ŝ

z + e1), then u1(ŝ
z) ≥ u1(s1, ŝ

z
−1) for any s1 ∈ S1

by Lemma 2.1. By symmetry, ui(ŝ
z) ≥ ui(si, ŝ

z
−i) for any si ∈ Si and i ∈ N , and so ŝz

is a symmetric equilibrium.

If there is no such z, then by concavity, we have either u1(ŝ
z − e1) < u1(ŝ

z) <

u1(ŝ
z + e1) or u1(ŝ

z − e1) > u1(ŝ
z) > u1(ŝ

z + e1) for each z. Because u1(ŝ
0) > u1(ŝ

0 −
e1) = −∞ and u1(ŝ

m) > u1(ŝ
m + e1) = −∞, there exists x ∈ S1, 0 ≤ x ≤ m − 1,

such that u1(ŝ
x) < u1(ŝ

x + e1) and u1(ŝ
x+1 − e1) > u1(ŝ

x+1). The latter implies that

un(ŝ
x+1− en) > un(ŝ

x+1) by symmetry. Let s0, . . . , sn be points in Vx such that s0 = ŝx

and sk+1 = sk + ek+1 for k = 0, . . . , n− 1. Note that sk is given by

ski =

 x+ 1 if i ≤ k,

x if i > k.
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Then u1(s
0) < u1(s

1) and un(s
n−1) > un(s

n). Therefore there exists a k ∈ {1, . . . , n−1}
such that

uk(s
k−1) < uk(s

k), (3)

uk+1(s
k) ≥ uk+1(s

k+1). (4)

We will show that

uk+1(s
k) ≥ uk+1(sk+1, s

k
−(k+1)) ∀sk+1 ∈ Sk+1

and

uk(s
k) ≥ uk(sk, s

k
−k) ∀sk ∈ Sk,

that is, players k and k+1 are playing an equilibrium strategy. Because ski = skk = x+1

for each player i ∈ {1, . . . , k} and ski = skk+1 = x for each player i ∈ {k + 1, . . . , n}, this
implies by symmetry that sk is a pure strategy equilibrium.

Now, uk+1(s
k) ≥ uk+1(s

k + ek+1) by (4). We also have uk+1(s
k − ek+1) ≤ uk+1(s

k).

To see this, suppose by way of contradiction that uk+1(s
k − ek+1) > uk+1(s

k). Then (1)

implies that uk+1(s
k−ek) > uk+1(s

k−ek+ek+1). We then have uk+1(s
k−ek) = uk(s

k−1)

and uk+1(s
k + ek+1 − ek) = uk(s

k) by symmetry, and so uk(s
k−1) > uk(s

k). However,

this contradicts (3). Hence uk+1(s
k) ≥ uk+1(s

k+ek+1) and uk+1(s
k−ek+1) ≤ uk+1(s

k).

Thus, by Lemma 1, uk+1(s
k) ≥ uk+1(sk+1, s

k
−(k+1)) for all sk+1 ∈ Sk+1.

Consider (3), that uk(s
k−1) < uk(s

k), again. This means that uk(s
k − ek) < uk(s

k).

We also have uk(s
k) ≥ uk(s

k + ek). To see this, suppose by way of contradiction that

uk(s
k) < uk(s

k + ek). Then (2) implies that uk(s
k + ek+1 − ek) < uk(s

k + ek+1). We

have uk(s
k + ek+1 − ek) = uk+1(s

k) and uk(s
k + ek+1) = uk+1(s

k+1) by symmetry, and

so uk+1(s
k) < uk+1(s

k+1). However, this contradicts (4). Hence uk(s
k − ek) < uk(s

k)

and uk(s
k) ≥ uk(s

k + ek). Therefore, by Lemma 1, uk(s
k) ≥ uk(sk, s

k
−k) for all sk ∈ Sk.

Hence sk ∈ Vx is a pure strategy equilibrium.

For n = 2, namely two-person symmetric games, (1) and (2) can be expressed more

compactly. For i = 1, both s and s − e2 + e1 belong to Vz if and only if s = (z, z + 1),

and both s and s+ e2 − e1 belong to Vz if and only if s = (z + 1, z). (1) is effective only

if z ≥ 1 because s−e1 ̸∈ S for z = 0. Similarly, (2) is effective only if z ≤ m−2, because

s+ e1 ̸∈ S for z = m− 1. If (1) and (2) hold for i = 1, then they also hold for any i ∈ N

by symmetry. Thus we obtain the following corollary.

Corollary 1. Let ({1, 2}, (Si)i∈N , (ui)i∈N ) be a two-person finite symmetric game. If

u1 is concave with respect to the own strategy and satisfies the conditions

u1(z − 1, z + 1) > u1(z, z + 1)

=⇒ u1(z, z) > u1(z + 1, z) ∀z ∈ {1, . . . ,m− 1},
(5)

u1(z + 1, z) < u1(z + 2, z)

=⇒ u1(z, z + 1) < u1(z + 1, z + 1) ∀z ∈ {0, . . . ,m− 2},
(6)
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then there exists an equilibrium s ∈ S in Vx for some x ∈ {0, . . . ,m− 1}.

None of (1), (2), and concavity are redundant for ensuring the existence of an equi-

librium. We show this using examples of two-person symmetric games with more than

two strategies.1 In Figure 1, the left symmetric game with three strategies satisfies (6)

and concavity, but not (5), while the right symmetric game satisfies (5) and concavity,

but not (6). Neither of these has a pure strategy equilibrium.

In Figure 2, the symmetric game with four strategies satisfies (5) and (6), but this

game is not concave: the payoff function for player 1 is not concave with respect to the

own strategy at s2 = 3. This game also has no pure strategy equilibrium.2

1\2 0 1 2

0 (−1,−1) (−1, 1) (1, 0)

1 (1,−1) (0, 0) (0, 1)

2 (0, 1) (1, 0) (−1,−1)

1\2 0 1 2

0 (−1,−1) (1, 0) (0, 1)

1 (0, 1) (0, 0) (1,−1)

2 (1, 0) (−1, 1) (−1,−1)

Figure 1: The left symmetric concave game violates (5) and the right symmetric concave

game violates (6).

1\2 0 1 2 3

0 (1, 1) (0, 2) (−1, 1) (2, 0)

1 (2, 0) (1, 1) (0, 2) (−1, 1)

2 (1,−1) (2, 0) (1, 1) (0, 2)

3 (0, 2) (1,−1) (2, 0) (1, 1)

Figure 2: A symmetric game that satisfies (5) and (6), but is not concave.

4 An application: discrete Cournot games

Let G = (N, (Si)i∈N , (ui)i∈N ) be a symmetric game such that for each i ∈ N , ui is

defined by

ui(s) = f(s1 + · · ·+ sn)si − c(si), s ∈ S,

where f is an inverse demand function and c is a cost function that is identical for all

players (firms). We call G a symmetric discrete Cournot game.

Recall that f is concave if, for any z, 1 ≤ z ≤ m− 1,

f(z)− f(z − 1) ≥ f(z + 1)− f(z).

1Every symmetric game with two strategies has a pure strategy equilibrium as shown in Cheng et al (2004).
2It can be shown that any two-person symmetric game with three strategies satisfying (5) and (6) has a

pure strategy equilibrium, even if it is not concave.
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We say that c is convex if, for any z, 1 ≤ z ≤ m− 1,

c(z)− c(z − 1) ≤ c(z + 1)− c(z).

We show the following.

Theorem 2. A symmetric discrete Cournot game has a pure strategy equilibrium if the

inverse demand function is a nonincreasing concave function and the cost function is a

convex function.

Proof. We show that the payoff function ui defined by ui(s) = f(s1+ · · ·+sn)si−c(si) is

concave with respect to the own strategy, and satisfies conditions (1) and (2) of Theorem

1.

For s = (si, s−i) ∈ S, let a =
∑

h̸=i sh and let x = si. Then x ≥ 0 implies that

ui(s)− ui(s− ei) = (f(a+ x)x− c(x))− (f(a+ x− 1)(x− 1)− c(x− 1))

= (f(a+ x)− f(a+ x− 1))x

+ f(a+ x− 1)− (c(x)− c(x− 1))

≥ (f(a+ x+ 1)− f(a+ x))x

+ f(a+ x+ 1)− (c(x+ 1)− c(x))

= (f(a+ x+ 1)(x+ 1)− c(x+ 1))− (f(a+ x)x− c(x))

= ui(s+ ei)− ui(s),

where we use the three inequalities

f(a+ x+ 1)− f(a+ x) ≤ f(a+ x)− f(a+ x− 1),

f(a+ x+ 1) ≤ f(a+ x− 1), and

c(x)− c(x− 1) ≤ c(x+ 1)− c(x), (7)

given by the concavity of f , the nonincreasing property of f , and the convexity of c,

respectively. The inequality ui(s)− ui(s− ei) ≥ ui(s+ ei)− ui(s) for all s ∈ S says that

ui is concave with respect to the own strategy.

To see that ui satisfies (1) of Theorem 1, suppose by way of contradiction that

ui(s− ei) > ui(s) and ui(s− ej) ≤ ui(s− ej + ei). Then

f(a+ x)x− c(x) < f(a+ (x− 1))(x− 1)− c(x− 1) and

f((a− 1) + (x+ 1))(x+ 1)− c(x+ 1) ≥ f((a− 1) + x)x− c(x).

Then, by subtracting and rearranging,

f(a+ x− 1) + [c(x+ 1)− c(x)] < f(a+ x) + [c(x)− c(x− 1)].

This is impossible because f is nonincreasing and because of (7). Hence (1) follows.

Condition (2) can be shown similarly.
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A simple algorithm for locating an equilibrium is the following. First, search through

the symmetric profiles to find a symmetric equilibrium by checking whether

u1(ŝ
z − e1) ≤ u1(ŝ

z) and u1(ŝ
z) ≥ u1(ŝ

z − e1)

(see the proof of Theorem 1). Second, if this fails, find two adjacent symmetric profiles

ŝx and ŝx+1 such that

u1(ŝ
x) < u1(ŝ

x + e1) and u1(ŝ
x+1 − e1) > u1(ŝ

x+1),

and then search through s1, s2, . . . sn−1 as defined in the proof of Theorem 1 to find an

asymmetric equilibrium. Our result is also applicable to the restriction of a symmetric

continuous Cournot game to the integer lattice. For example, if the inverse demand

function and the cost function are given by

f(y) = 2000− 0.5y1.6 and c(x) = 10 + 0.01x1.2,

then letting Si = {0, . . . , 180}, our algorithm locates an equilibrium for the three-firm

symmetric discrete Cournot game at (46, 46, 45).

5 Concluding remarks

As mentioned in the introduction, there are numerous studies on the existence and

stability of equilibria in n-firm Cournot games for one homogeneous good when the

quantity of product for each firm comes from a real interval. In contrast, few studies have

examined the case where each firm selects an integer quantity of product. Monderer and

Shapley (1996) showed that some Cournot games are exact potential games. Typically,

such games have pure strategy equilibria irrespective of whether the set of strategies are

infinite. However, a Cournot game can be an exact potential game only if the inverse

demand function is linear. Thus, a discrete Cournot game satisfying the conditions of

Theorem 2 is not an exact potential game when the inverse demand function is strictly

concave.

We can also apply our results to symmetric discrete games whose payoff functions

are of the form

ui(s) = f(si) + g(
∑
j∈N

sj)

for two increasing concave functions f and g. This is the case, in particular, for games

of private provision of pure public goods.
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