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Abstract

We show that a two-person finite game is solved by the iterated elimination of never

best responses (IENBR) if and only if it is best response acyclic and strongly solvable in

the sense of Nash (1951). Thus the rationalizable strategies (Bernheim (1984), Pearce

(1984)) are equivalent to the Nash equilibrium strategies in two-person finite games if

and only if the two conditions are met. We prove this for both mixed strategy games

and pure strategy games.

JEL Classification: C72 (Noncooperative game)

1 Introduction

Nash (1951) defined the solution of a noncooperative game as the set of mixed strategy

equilibria satisfying the interchangeability condition. This condition stipulates that if there

are multiple equilibria then any combination of the strategies therein is also an equilibrium.

Thus, for a solvable game that has the solution, the equilibrium strategies are determined,

and the set of equilibria is a Cartesian product of the sets of equilibrium strategies. The

strong solution is a solution that has an additional property that any strategy profile reached

by a unilateral deviation from an equilibrium and having the same payoff as the equilibrium

payoff for the deviant is also an equilibrium. Since deviations to a pure strategy in the

support of mixed strategy do not change the deviant’s payoff, any strongly solvable game,

which is a game having the strong solution, has a pure strategy equilibrium (Nash, 1951,

page 290).

The notion of solvable game in the sense of Nash was later generalized by Friedman

(1983), and then by Kats and Thisse (1992), to mean any finite or infinite game whose set

∗This work is supported by JSPS Grant-in-Aid for Scientific Research (C) (KAKENHI) 25380233.
†School of Business Administration, Tokyo Metropolitan University, Tokyo 192-0397, Japan, E-mail:

t.iimura@tmu.ac.jp (T. Iimura).
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of equilibria, pure or mixed, satisfies the interchangeability condition (the existence of an

appropriate equilibrium is needed then). In this paper, we focus on two-person finite games

and their mixed extensions, and call a game amixed strategy game when we consider the game

in mixed strategy; a pure strategy game when we do it in pure strategy. In these settings,

we show a relationships between the solvability in the sense of Nash and the solvability by

the iterated elimination of never best responses (IENBR). We show that a two-person finite

game is solved by the IENBR if and only if it is best response acyclic and strongly solvable

in the sense of Nash. We prove this for both mixed strategy games and pure strategy games.

A game is solved by IENBR, or IENBR-solvable, if the outcome of IENBR coincides

with the set of equilibria. Since the outcome of IENBR is known as the set of profiles

of rationalizable strategies (Bernheim (1984) and Pearce (1984); to be more precise point

rationalizable strategies in the sense of Bernheim (1984)), our results show the necessary

and sufficient conditions for the rationalizable strategies to be equivalent to the equilibrium

strategies in two-person finite games. To see the necessity of these two conditions, consider

the following best response graphs of two 2× 2 pure strategy games.

1, 0 −−−−→ 0, 1x y
0, 1 ←−−−− 1, 0

1, 1 ←−−−− 0, 0x y
0, 0 −−−−→ 1, 1

In both games, every strategy is a best response to some strategy and cannot be eliminated

by the IENBR. Thus these are the outcomes of IENBR. Now, in the first (left) game, there

exists a best response cycle and no equilibrium exists. The second (right) game is best

response acyclic and has two equilibria, but they do not constitute a Cartesian product.

These two are not IENBR-solvable, as expected. However, if we assume that a game is

best response acyclic and strongly solvable in the sense of Nash, both are impossible as the

outcomes of IENBR. The IENBR of a best response acyclic and strongly solvable two-person

finite game will lead to an outcome that coincides with the set of equilibria. The core of this

paper will be a formal proof of this sufficiency.

The rest of the paper is organized as follows. The definitions and known facts are provided

in Section 2. In Section 3, we report our results. Some concluding remarks are given in

Section 4.
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2 Preliminaries

2.1 Games

Let Gp = (Sp
1 , S

p
2 ;u1, u2) be a two-person finite normal form game and G = (S1, S2;u1, u2) its

mixed extension, where Sp
i is a finite set of pure strategies, Si is the set of mixed strategies,

and ui is the payoff function, for each player i = 1, 2. Letting mi = |Sp
i | for i = 1, 2, we

identify Sp
i with the standard basis of Euclidean mi-space and Si with its convex hull. That

is, Si is spanned by Sp
i , and Sp

i is the set of vertices of the (mi − 1)-dimensional simplex Si,

i = 1, 2. A face of Si is a set spanned by a nonempty subset of Sp
i . The payoff function ui

is a bilinear function defined on the set of mixed strategy profiles S = S1 × S2 (Cartesian

product) by

ui(s1, s2) =

m1∑
k1=1

m2∑
k2=1

θk11 θk22 upi (t
k1
1 , tk22 ),

with a payoff function upi on the set of pure strategy profiles Sp = Sp
1 × Sp

2 , and θ
kj
j ∈ R,

t
kj
j ∈ Sp

j such that

sj =

mj∑
kj=1

θ
kj
j t

kj
j , 0 ≤ θ

kj
j ∀kj = 1, . . . ,mj ,

mj∑
kj=1

θ
kj
j = 1, j = 1, 2.

We call G a mixed strategy game (or a game in mixed strategy) and Gp a pure strategy game

(or a game in pure strategy). For convenience, we use the restriction of ui to Sp in the same

notation for Gp instead of upi .

2.2 Best responses

In a mixed strategy game G, the player one’s strategy s1 ∈ S1 is a best response to the

player two’s strategy s2 ∈ S2 if u1(s1, s2) ≥ u1(s
′
1, s2) for all s′1 ∈ S1. The player two’s

best response to the player one’s strategy is analogously defined. A Nash equilibrium, or an

equilibrium for short, is a strategy profile s ∈ S such that s1 is a best response to s2 and s2

is a best response to s1. Let i, j = 1, 2, i 6= j, and denote by βi(sj) the set of best responses

of player i to the player j’s strategy sj . Since ui is linear in si, for any sj ∈ Sj , βi(sj)

is a face of Si, which is compact and convex. For any si in the relative interior of βi(sj)

(si ∈ ri(βi(sj)) in notation), the set of vertices of βi(sj) is said to be the support of si, which

is a set of pure strategies that are used in si with positive probability. Deviations from si to

any strategy in its support do not change the payoff of the deviant. Since ui is continuous

on S, the best response correspondence sj 7→→ βi(sj) is upper hemicontinuous by Berge’s

maximum theorem. Define β : S →→ S by β(s) = β1(s2) × β2(s1). Since βi are compact-

3



and convex-valued upper hemicontinuous correspondences on a compact and convex set S,

so is β. Then there exists an s ∈ S such that s ∈ β(s) by Kakutani’s fixed point theorem,

which is an equilibrium of G. The best response and the best response correspondence in

the pure strategy game Gp are similarly defined, by restricting the strategy sets Si to Sp
i ,

i = 1, 2. However, the existence of an equilibrium of Gp is not always guaranteed.

2.3 Best response acyclic games

A best response path in G is a finite or infinite sequence of strategy profiles s0, s1, s2, . . . in

S such that if sk1 and sk2 are not best responses to each other then for some i such that ski is

not a best response to skj , we have that sk+1
i is a best response to skj and sk+1

j = skj , where

i, j = 1, 2 and i 6= j. Hence, for sk and sk+1 such that sk+1
i 6= ski ,

sk+1
i ∈ βi(s

k
j ) and ui(s

k+1) > ui(s
k).

A best response path terminates at sk if sk1 and sk2 are best responses to each other. A

best response cycle is an infinite best response path that repeats a finite best response path

infinitely. We call G best response acyclic if G contains no best response cycle. The best

response cycle and the best response acyclicity in a pure strategy game Gp are similarly

defined, by restricting the strategy sets Si to Sp
i , i = 1, 2. In both mixed and pure strategy

games, an equilibrium exists in its domain of strategies if the game is best response acyclic,

because any best response path terminates at some sk, which is an equilibrium. Note that

if G is best response acyclic, so is Gp.

2.4 Solvable games

Let E(G) be the set of equilibria of a mixed strategy game G. E(G) is called the solution of

G (Nash, 1951) if

s ∈ E(G) and s′ ∈ E(G) =⇒ s′′ ∈ E(G) ∀s′′ ∈ {s1, s′1} × {s2, s′2}.

That is, E(G) is the solution of G if E(G) = π1(E(G))×π2(E(G)), where πi(·) is the operator

taking the projection to Si, i = 1, 2. Let Ei(G) = πi(E(G)), i = 1, 2. Ei(G) is called the set

of equilibrium strategies of i, i = 1, 2. Ei(G) are closed and convex (Nash, 1951, Theorem

4). The solution E(G) is a strong solution if for any i, j = 1, 2 such that i 6= j and for any

s ∈ E(G) and s′ ∈ S such that s′i 6= si and s′j = sj

ui(s
′) = ui(s) =⇒ s′ ∈ E(G).

A game having the (strong) solution is called (strongly) solvable. Suppose that G is strongly

solvable and (s1, s2) ∈ E(G). Then since deviations to a pure strategy in the support of mixed
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strategy do not change the payoff of the deviant, s′1 ∈ β1(s2) ∩ Sp
1 satisfies (s′1, s2) ∈ E(G),

and s′2 ∈ β2(s
′
1)∩S

p
2 satisfies (s′1, s

′
2) ∈ E(G). Hence G has a pure strategy equilibrium. For

a strongly solvable game, the set of equilibrium strategies is the convex hull of the set of

equilibrium pure strategies. The (strong) solvability of Gp in the sense of Nash is similarly

defined, by restricting the strategy sets Si to Sp
i , i = 1, 2. Note that if G is strongly solvable,

so is Gp, and the set of equilibrium strategies Ei(G) is the convex hull of the set of pure

equilibrium strategies Ei(G
p), i = 1, 2.

2.5 IENBR and the rationalizable strategies

In a mixed strategy game G, the player one’s strategy s1 ∈ S1 is a never best response if

for any s2 ∈ S2 there exists an s′1 ∈ S1 such that u1(s1, s2) < u1(s
′
1, s2). The player two’s

never best response is analogously defined. The iterated elimination of never best responses

(IENBR) is a procedure that successively eliminates the never best responses of the players.

Formally, letting λ : 2S → 2S be the elimination of never best responses defined by λ(B) =

(
∪

s∈B β1(s2))× (
∪

s∈B β2(s1)) for B ⊆ S, IENBR reduces S to P (G) ⊆ S such that P (G) =∩∞
k=0 λ

k(S), where λk = λ ◦ λk−1 for k ≥ 2 (Bernheim, 1984). If Si are compact and ui are

continuous, then P (G) is nonempty and coincides with the maximal set B ⊆ S satisfying

B = λ(B) (Bernheim, 1984, Proposition 3.1). Clearly P (G) = π1(P (G)) × π2(P (G)). Let

Pi(G) = πi(P (G)), i = 1, 2. We call P (G) (and its components) the outcome of IENBR.

A strategy si ∈ Pi(G) is said to be rationalizable (Bernheim (1984) and Pearce (1984); to

be precise point rationalzable in Bernheim (1984)). For any si ∈ Pi(G), there exists some

sj ∈ Pj(G) such that si ∈ βi(sj), where i, j = 1, 2 and i 6= j. Note that for any sj ∈ Pj(G),

we have βi(sj) ⊆ Pi(G). Since βi(sj) is a face of Si, the outcome of IENBR is a finite union

of faces of Si, i = 1, 2. The never best response and the IENBR are similarly defined for

pure strategy games.

2.6 IENBR-solvable games

Let G = (S1, S2;u1, u2) be a mixed strategy game. G is solved by IENBR (or IENBR-

solvable) if the outcome P (G) ⊆ S of the IENBR of G coincides with the set of equilibria of

G, i.e., if P (G) = E(G). The IENBR-solvability of a pure strategy game is similarly defined:

Letting P (Gp) ⊆ Sp be the outcome of the IENBR of Gp, E(Gp) ⊆ Sp the set of equilibria

of Gp, Gp is said to be IENBR-solvable if P (Gp) = E(Gp).
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3 The results

We first consider the mixed strategy games. Let G = (S1, S2;u1, u2) be a two-person finite

game in mixed strategy.

Lemma 3.1. If G is solved by IENBR then it is best response acyclic.

Proof. If there exists a best response cycle in G, which is two-person, then any strategy of

player one in the cycle is a best response to some strategy of player two in the cycle, which

in turn is a best response to some strategy of player one in the cycle. Thus every strategy in

the cycle is not a never best response, and the IENBR cannot remove the cycle. Since there

exists a non-equilibrium profile in the cycle (indeed every profile is a non-equilibrium in the

cycle), this says that G cannot be solved by IENBR if it has a best response cycle. Hence,

if G is solved by IENBR, it has to be best response acyclic.

Lemma 3.2. If G is solved by IENBR then G is strongly solvable in the sense of Nash.

Proof. Since the outcome of IENBR is a Cartesian product, the set of equilibria is a Cartesian

product E = E1 ×E2 if G is solved by IENBR. This shows the solvability of G in the sense

of Nash. To see that G is strongly solvable in the sense of Nash, let s ∈ E and s′ ∈ S be such

that s′i 6= si, s
′
j = sj , and ui(s

′) = ui(s), where i, j = 1, 2 and i 6= j. Then since s′i is also a

best response to sj , it cannot be removed by IENBR. Hence, if G is solved by IENBR, it has

to be that s′i ∈ Ei, and s′ ∈ E, i.e., G has to be strongly solvable in the sense of Nash.

Theorem 3.1. G is solved by IENBR if and only if it is best response acyclic and strongly

solvable in the sense of Nash.

Proof. The necessity part is by Lemmas 3.1 and 3.2. To see the sufficiency part, let Pi ⊆ Si

be the outcome of IENBR for player i and Ei ⊆ Si the set of equilibrium strategies of player

i, which is determined by the solvability in the sense of Nash, i = 1, 2. We have Ei ⊆ Pi

since si ∈ Ei is not a never best response. We want to show that Pi \ Ei = ∅ for i = 1, 2.

Let Di = Pi \ Ei, i = 1, 2. First, observe that if s1 ∈ D1, then s1 is a best response only

to some s2 ∈ D2, since if it is a best response to some s′2 ∈ E2, then u1(s1, s
′
2) = u1(s

′
1, s

′
2)

for some s′1 ∈ E1, contradicting the strong solvability in the sense of Nash. Thus D1 6= ∅

implies D2 6= ∅. Similarly D2 6= ∅ implies D1 6= ∅. Suppose D1 6= ∅ and D2 6= ∅ by way of

contradiction. For each i = 1, 2, Pi is a finite union of faces of Si that survived IENBR. Let

Fi be the set of faces of Si that survived IENBR. Since Ei ∈ Fi, let F ′
i = Fi \ {Ei}. Then

Pi =
∪
Fi and Di = (

∪
F ′
i) \Ei. From the observation above, for every Fi ∈ F ′

i , there exists

a Fj ∈ F ′
j such that Fi = βi(sj) for some sj ∈ ri(Fj) (note that ri(Fj) ∩ Ej = ∅). Let us
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denote this relation by Fj Ci Fi. We have shown that for every F1 ∈ F ′
1 there exists F2 ∈ F ′

2

such that F2 C1 F1, and for every F2 ∈ F ′
2 there exists F1 ∈ F ′

1 such that F1 C2 F2. Then,

since F ′
i are finite, there must exist a cycle F 0

1 C2 F 1
2 C1 F 2

1 C2 · · · C2 F t−1
2 C1 F t

1, where t

is even and F t
1 = F 0

1 . For each k = 0, . . . , t− 1, choose skj ∈ ri(F k
j ) such that βi(s

k
j ) = F k+1

i .

(We let k + 1 be zero if k = t− 1.) Then for sk and sk+1 such that sk+1
i 6= ski ,

sk+1
i ∈ βi(s

k
j ) and ui(s

k+1) ≥ ui(s
k).

We have three cases.

i) Case t = 2: In this case s12 ∈ β2(s
0
1) and s01 ∈ β1(s

1
2), i.e., (s

0
1, s

1
2) ∈ D1 × D2 is an

equilibrium, contradicting the solvability of G in the sense of Nash.

ii) Case t > 2 and ui(s
k+1) = ui(s

k) for some i such that sk+1
i ∈ βi(s

k
j ) for some k: In

this case sk ∈ D1 ×D2 is an equilibrium, contradicting the solvability of G in the sense of

Nash.

iii) Case t > 2 and ui(s
k+1) > ui(s

k) for i such that sk+1
i ∈ βi(s

k
j ) for every k: In this

case there exists a best response cycle s01 → s12 → s21 → · · · → st−1
2 → st1 such that st1 = s01,

contradicting the best response acyclicity of G.

Before proceeding to the case of pure strategy games, note that if a finite game is strongly

solvable in mixed strategy then it is strongly solvable in pure strategy; but not vice versa as

the two-person game in Figure 1 shows. As a pure strategy game, this game has a unique

strict equilibrium (marked by an asterisk), and as such, this is strongly solvable in pure

strategy. As a mixed strategy game, however, this game has equilibria ((1, 0, 0), (1, 0, 0)) and

((0, 12 ,
1
2), (0,

1
2 ,

1
2)), so this is not even solvable in the sense of Nash. This suggests that the

solvability in mixed strategy and in pure strategy are generally different.

1, 1∗ 0, 0 0, 0

0, 0 0, 1 1, 0

0, 0 1, 0 0, 1

Figure 1: A game strongly solvable in pure strategy but not in mixed strategy

Let Gp = (Sp
1 , S

p
2 ;u1, u2) be a finite two-person pure strategy game. We have results

similar to mixed strategy games as follows.

Lemma 3.3. If Gp is solved by IENBR then it is best response acyclic.

Proof. Identical to the proof of Lemma 3.1.

Lemma 3.4. If Gp is solved by IENBR then Gp is strongly solvable in the sense of Nash.
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Proof. Identical to the proof of Lemma 3.2.

Theorem 3.2. Gp is solved by IENBR if and only if it is best response acyclic and strongly

solvable in the sense of Nash.

Proof. Almost identical to the proof of Theorem 3.1. Note that the set of equilibria Ep is

nonempty by the best response acyclicity and Ep = π1(E
p)×π2(E

p) by the solvability in the

sense of Nash. Let Ep
i = πi(E

p), where Ep
i ⊆ Sp

i , i = 1, 2. Let P p
i ⊆ Sp

i be the outcome of

IENBR, i = 1, 2. Letting Dp
i = P p

i \E
p
i , i = 1, 2, we have Dp

1 6= ∅ ⇐⇒ Dp
2 6= ∅ by the strong

solvability in the sense of Nash. Assuming D1 6= ∅ and D2 6= ∅ by way of contradiction, we

can choose a cyclic sequence of profiles s0, s1, s2, . . . , st−1, st in Dp = Dp
1 ×Dp

2 satisfying for

sk and sk+1 such that sk+1
i 6= ski ,

sk+1
i ∈ βi(s

k
j ) and ui(s

k+1) ≥ ui(s
k).

We then have three contradictory cases identical to those in the proof of Theorem 3.1.

4 Concluding remarks

An example of a two-person game that is best response acyclic and strongly solvable in the

sense of Nash is a game with weak payoff externalities by Ania (2008). LetG = (S1, S2;u1, u2)

be a mixed strategy game having the weak payoff externalities (WPE) such that for any

s, s′ ∈ S such that s′i 6= si and s′j = sj , where i, j = 1, 2 and i 6= j,

|ui(s′)− ui(s)| > |uj(s′)− uj(s)|.

For instance,

1, 1 0, 3

3, 0 2, 2∗

has WPE both in pure and mixed strategy. (Letting si = (θi, 1− θi), 0 ≤ θi ≤ 1, i = 1, 2, we

have u1(s) = −2θ1+ θ2+2 and u2(s) = θ1− 2θ2+2.) To see that G is best response acyclic,

note that the sum of payoffs u1 + u2 is a generalized ordinal potential function (Monderer

and Shapley, 1996) of G satisfying for any s, s′ ∈ S such that s′i 6= si and s′j = sj

ui(s
′) > ui(s) =⇒ (u1 + u2)(s

′) > (u1 + u2)(s).

G is thus a generalized ordinal potential game, which is contained in the class of best response

acyclic games. To see that G is strongly solvable, let s ∈ E(G). Then since ui(s
′) 6= ui(s) for
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any s′ ∈ S such that s′i 6= si and s′j = sj , the strong solvability condition ui(s
′) = ui(s) =⇒

s′ ∈ E(G) is vacuously satisfied.

We have shown the necessary and sufficient conditions of IENBR-solvability in two-person

finite games. The two conditions are independent. To see that acyclicity does not imply the

strong solvability, it suffices to recall the second example in the introduction, which is of a

coordination type. To see that strong solvability does not imply the acyclicity, consider the

two-person 3× 3 game in Figure 2. This game is strongly solvable (both in pure and mixed)

but not best response acyclic (hence not solved by IENBR).

2, 2∗ 1, 0 1, 0

0, 1 2,−2 −2, 2

0, 1 −2, 2 2,−2

Figure 2: A strongly solvable game that is not best response acyclic

Concerning the extension of our results to more-than-two-person games, we note that

Lemmas 3.2 and 3.4, namely, the necessity of the strong solvability in the sense of Nash, are

easily extended to n-person case. The best response acyclicity is not necessary in n-person

game if n > 2, as the three-person 2×2×2 game in Figure 3 shows. Also, as the three-person

2×2×2 game in Figure 4 shows, the best response acyclicity and the strong solvability in the

sense of Nash are not sufficient for the IENBR-solvability of more-than-two-person games.

3, 3, 3∗ 2, 2, 3

2, 3, 3 2, 2, 3

3, 3, 2 3, 2, 2

4, 1, 2 2, 2, 2

Figure 3: A three-person game that is solved by IENBR but not acyclic

1, 0, 1 0, 1, 1

0, 0, 1 1, 1, 0

0, 1, 0 0, 0, 0

1, 0, 0 1, 1, 1∗

Figure 4: A three-person game that is acyclic and strongly solvable but not solved by IENBR

As a final remark, we note on the computational aspect of our games. LetG = (S1, S2;u1, u2),

a mixed strategy game. If si ∈ Si is a never best response and Fi is a face of Si such that

si ∈ ri(Fi), then any s′i ∈ ri(Fi) is a never best response. Thus the elimination of never best

responses λ eliminates the relative interiors of the faces in one call, and since the number of

faces is finite, we have indeed P (G) =
∩T

k=0 λ
k(S) for some finite T . Still, the number of
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faces of Si is 2
mi − 1 (mi = |Sp

i |), so T can be exponential in the number of pure strategies.

Also deciding whether or not a mixed strategy is a never best response may be hard. Recall

that if G is strongly solvable then the set of equilibrium strategies Ei(G) is the convex hull

of Ei(G
p). Thus, if G is strongly solvable and best response acyclic, we can solve it by the

IENBR in pure strategy, because Gp is also strongly solvable and best response acyclic: the

convex hull of the outcome is E(G). It is known that the outcome of IENBR in pure strategy

is independent of the order of elimination (Apt (2005)). Given this order independence, if

both players have m pure strategies, then deciding whether or not a pure strategy is a never

best response consumes at most m(m − 1) times of payoff evaluations, so m2(m − 1) per

player, and 2m2(m− 1) per game, which is of the order O(m3). Thus the strongly solvable

best response acyclic two-person finite game is solved by the IENBR, in pure strategy with

complete set of mixed strategy equilibria, in polynomial time.
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