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Abstract

The stochastic volatility model of Heston (1993) has found difficulty in describing some of the important
features of implied volatility dynamics, leading to a quest for multifactor extensions as well as the incoporation
of time-dependent model parameters. In this paper, we develop an asymptotic expansion approach to multifactor
Heston model with time-dependent parameter. We extend the result in Benhamou, Gobet and Miri (2010) and
show that the extension to multifactor model involves an extra expansion term that captures the interaction
between variance factors. The expansion formula under constant parameter can be explicitly computed, while
the incorporation of time-dependent parameters is straight-forward under the framework. We show that the
error bound of the approximation formula for the multifactor case can be formulated as the sum of error in
the one-factor case. The approximation formula allows one to study the effect of multifactor extension and
time-dependent parameters in a simple and unified framework. Moreover, the fast and efficient approximation
formula is useful when one has to compute a large number of option prices, such as econometrics estimation
using option data and evaluation of large-scale portfolio risk. As illustration, we calibrate a two-factor model
to index option and variance swap data and find that it is possible to distinguish a short-term and long-term
variance factors from the implied volatility surface and variance swap rates. Moreover, the two-factor model is
able to reproduce the shapes of the implied volatility surface during various market scenarios.

1 Introduction

1.1 Background

For the last two decades, the stochastic volatility model of Heston (1993) has been one of the most popular choices
in the modeling of price dynamics of various asset classes, including equity price, foreign exchange rate and interest
rate. In the Heston model, one assumes the asset price to follow a lognormal process, with the stochastic variance
driven by a Cox-Ingersoll-Ross (CIR) process which can be correlated with the asset price itself. The Heston model
provides a succinct description to a number of important empirical features in the dynamics of asset price, such as
the leverage effect, the mean-reversion nature and the clustering of volatility. In terms of derivatives pricing, the
model has gained popularity on trading desks given its ability to manage the implied volatility smile along with its
nice analytical tractability in the pricing of standard European-type options. Nevertheless, the one-factor dynamics
and solution approach in Heston (1993) have a number of drawbacks. Firstly, it does not provide enough flexibility
to model simultaneously the short-term and long-term implied volatility smile, given the fact that the level and
slope of the smile generated by the model cannot be independently determined. This often forces analysts to adapt
two different sets of model parameters to price and risk-manage short-term and long-term options separately. Such
remedy, however, could misprice exotic derivatives that are sensitive to the realized path of volatility. On the other
hand, the assumption of constant model parameters implies certain restrictions on the shape of the model-implied
volatility surface. For example, when the correlation between the asset price and stochastic volatility is constant,
the term structure of the volatility skew is governed by the speed of mean-reversion of the volatility process. Such
restriction implies that the implied volatility surface has to be flattened-out in the long-run, making it difficult to
capture the market scenario in which the long-term skewness is persistent. Some hedge funds have reportedly taken
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advantage of such mispricing in long-term options and generated significant alpha during the recent financial crisis.
These shortcomings of the Heston model have raise the questions on whether increasing the number of factors of the
variance process, or relaxing the assumption of constant model parameters, would yield a more realistic description
of the volatility dynamics.

It is well-known that the Heston model fall within the general affine diffusion (AD) framework in Duffie et
al. (2000), in which the characteristic function can be obtained in closed-form when model parameters are constant.
In order to price European-type options, one then has to numerically invert a Fourier transform with respect to
the characteristic function. As discussed in a number of studies, one often encounters the following numerical
challenges when implementing the Heston model: i.) the choice of the integration region and grid size (Carr and
Madan, 1999), ii.) the contour of inverting the Fourier transform (Lee, 2004, Lord and Kahl, 2007), and iii.) the
choice of the branch cut on the complex plane for the logarithm function (Kahl and Lord, 2010). This requires
analysts to make judious choices for these numerical parameters in the model implementation. Furthermore, the
extension to time-dependent model parameters is not straight-forward using the characteristic function approach.
In particular, the nice analytical tractability of the characteristic function for Heston model will be destroyed when
model parameter are time-dependent. While it is still feasible to derive a recursive closed-form formula when model
parameters are piecewise-constant, for general time-dependent parameters, one has to solve numerically a system
of ordinary differential equation (known as the Riccati equation). In this case, although the computation time for
a single option price is still within a second, the numerical burden becomes significant when one attempts to use
the option pricing formula for the purpose of calibration or statistical inference. Indeed, the lack of an accurate
and easy-to-use approximation formula for the Heston model has somewhat hindered its popularity in the financial
market, in comparison to some other stochastic volatility models such as the one proposed by Hagan et al. (2002),
which has a simple and intuitive approximation formula. In reality, a closed-form approximation formula brings
the necessary transparency of a derivative pricing model for market participants to use it for trading and risk
management purpose.

In this paper, we develop an asymptotic expansion approach to multifactor Heston model with time-dependent
parameter. Asymptotic expansion has been found to be very efficient in various area of derivatives pricing. For
stochastic volatility models, a number of papers have developed the asymptotic formula of the implied volatility
smile near expiry under various dynamical assumptions. For example, see Hagan et al. (2002), Labordere (2005),
Alos et al. (2007), Osajima (2007), Antonelli and Scarlatti (2009), Fukasawa (2011) and Takahashi and Yamada
(2012). Nevertheless, the extension to time-dependent parameters are not trivial in some of these approaches.
For long-term maturity, Fouque et al. (2000) suggest the asymptotic expansion of the mean reversion parameter
based on singular perturbation. Fouque et al. (2004) further extend the approach to general stochastic volatility
models with homogeneous parameters when the variance follows an Ornstein-Uhlenbeck process. Apart from option
pricings, Tanaka et al. (2010) use the Gram-Charlier expansion to derives asymptotic approximation for interest
rate derivatives, Papageorgiou and Sircar (2009) use singular perturbation technique to price single-name and
multi-name credit derivatives under stochastic volatility, and Bayraktar and Yang (2011) use similar technique for
equity-credit hybrid modeling.

Using Malliavin calculus, Benhamou et al. (2010) develop a fast and accurate approximation formula of option
prices under the Heston model with time dependent parameters. By the asymptotic expansion with respect to the
volatility of volatility, they show that the put option price can be approximated by the Black-Scholes formula, with
a number of correction terms related to the Greeks of the option. In this paper, we extend their results and develop
the approximation formula under the general multifactor Heston model with time-dependent parameters. We find
that the expansion terms can be expressed as a sum of the expansion terms as obtained in Benhamou et al. (2010),
plus a new term that captures the interaction between different variance factors. We show that the error bound of
the approximation formula for the multifactor case can be formulated as the sum of error in the one-factor case.
We perform numerical analysis and study the accuracy of the formula under different parameter settings.

1.2 Literature Review

Recently, there is a growing number of papers that consider the multifactor extension of the Heston model in
derivatives pricing. Fonseca et al. (2008) propose a multifactor Heston model based on the Wishart process and
consider the option pricing in the foreign exchange market. Christoffersen et al. (2009) shows that a two-factor
Heston model performs much better than a one-factor model in capturing the dynamics of the implied volatility
of the S&P 500 index options. The two-factor model allows a flexible modeling of the volatility surface such that
the level and slope of the volatility smile can be independently determined given the additional degree of freedom.
Moreover, they find that the estimated variance factors can be identified as a strongly mean-reverting short-term
variance factor, and a long-term factor that is slowly mean-reverting. Zhang and Chu (2010) use a non-parametric
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approach to analysis the index option dataset and verify the conclusion in Christoffersen et al. (2009). They find
that one needs to use at least two factors in order to sufficiently capture the dynamics of implied volatility in both
the time-series and cross-sectional dimensions. These observations are consistent with the series of works by Froque
et al. (2000, 2003 and 2004) that conjecture the multiscale nature of stochastic volatility. Froque and Lorig (2011)
propose an extension to the one-factor Heston model by adding an extra fast mean-reverting component and find
that such extension allows a significant improvement in the fitting of volatility smile for index options.

Besides the application in European option pricing, multifactor stochastic volatility models have also been used
heavily in the pricing of exotic derivatives that are sensitive to volatility, such as various forward-starting options
and variance swap. Variance swap is a financial instrument actively traded in the over-the-counter market since
last decade. At maturity, the buyer of a variance swap receives the difference between the realized variance over the
contractual period and a fixed strike rate, which is known as the variance swap rate. Heston-type stochastic volatility
model is popular in the modeling of volatility derivatives given its closed-form solution in pricing continuously-
monitored variance swap. Nevertheless, Bengomi (2009) highlights that the one-factor Heston model could lead to
the mispricing of pricing of exotic derivatives, such as forward-starting options, cliquets and variance swaps. He
suggests that a properly designed volatility smile model for the pricing and risk management of exotic derivatives
should have the separate controls on i.) the term structure of volatility, ii.) short-term volatility skew, and iii.)
the correlation between the spot price and volatility. This indicates the need to pursue a multifactor stochastic
volatility model. For the pricing of variance swaps, Bushler (2006) proposes a class of no-arbitrage variance curve
models with multiple stochastic volatility factors, in which the Heston model is a special case. He mentions that it
is common in the market place to use a two-factor model in order to capture the term structure of variance swaps
written on major stock market indices. In short, one needs a multifactor stochastic volatility model in order to
consistently price standard European options and volatility derivatives.

In parallel to the literature of derivatives pricing, there are a number of recent papers in financial economics
that estimate stochastic volatility models using the time-series of spot price and cross-sectional option prices. Ait-
Sahalia and Kimmel (2007) use Edgeworth expansion to derive an approximate closed-form likelihood function
for the one-factor Heston model, and estimate the model jointly with the time-series of spot price and cross-
sectional option prices using the maximum-likelihood method. In a similar fashion, Yu et al. (2010) adopt a
Bayesian econometrics approach and use Monte-Carlo Markov Chain (MCMC) to estimate stochastic volatility
model. In these econometrics estimation, one has to compute the model-implied option prices during each iteration
in optimizing the likelihood function, or when generating the sampling draw for the MCMC estimation. When the
characteristic function approach is employed to compute the option prices, one has to perform a very large number
of numerical Fourier inversion during the estimation process, which could be extremely time-consuming. In view of
this, we need a fast and accurate approximation formula for the pricing of standard European options.

1.3 Outline

The outline of the paper is as follows. In Section 2, we present the mathematical formulation of the multifactor
Heston model and highlight its property in derivatives pricing. In Section 3, we develop the asymptotic expansion
formula under the multifactor Heston model and presents the error estimate of the approximation. Section 4
contains the numerical illustration and study the accuracy of the approximation formula under various parameter
setting. Section 5 discusses the calibration procedure to index option and variance swap data for a two-factor model
using the approximation formula. Section 6 concludes.

2 Multifactor Heston Model

2.1 Mathematical Formulation

We fix a filtered probability space (Ω,F , (Ft)0≤t≤T ,P), where P denotes the forward measure, Xt is the log-forward
price and the variance factors υit, i = 1, 2, ..., n, satisfy the following system of stochastic differential equations

Xt = x0 +

n∑
i=1

[∫ t

0

√
υisdW

i
s −

1

2

∫ t

0

υisds

]
,

υit = υi0 +

∫ t

0

κi(θis − υis)ds+

∫ t

0

ξis
√
υisdB

i
s, (1)
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where κi is the mean-reversion speed, θis is the mean-reversion level and ξis is the volatility-of-volatility (Vol-of-Vol)
for the ith variance factor. The correlation structure for the variance factors υit is given by

d〈W i,W j〉 = d〈Bi, Bj〉 = 0,

d〈W i, Bj〉t = δijρitdt, i, j ∈ {1, 2, ..., n},

such that there are n-pairs of correlated Brownian motions
{(
W 1
t , B

1
t

)
,
(
W 2
t , B

2
t

)
, ..., (Wn

t , B
n
t )
}

, and δij is the
Kronecker delta. For each variance factor υit, we assume the parameters (κi, υi0) are positive constants, while we
allow the parameters (θit, ξit, ρit) to be time-dependent (deterministic). In order to guarantee the positivity of the
variance factors and the nondegeneracy of Xt, we set out the following assumptions that are made on the model
parameters throughout the derivation in Section 2 and 3.

Assumption I

inf
t∈[0,T ]

ξit > 0, sup
t∈[0,T ]

|ρit| < 1, inf
t∈[0,T ]

(
2κiθit
ξ2
it

)
≥ 1,

for all i = 1, 2, ..., n. In particular, the last assumption can be considered as the generalization of the Feller condition
in the case of time-dependent parameters.

Christoffersen et al. (2009) consider a two-factor Heston model in (1) with n = 2 and constant model parameters.
As noted by Christoffersen et al. (2009), the multifactor Heston model describes an independence between the level
and the slope of volatility smile curves (moneyness effect) and stochastic correlation (term structure effect), by
regarding a first factor υ1t as a short-term variance factor and the second factor υ2t as the long term one. As the
result, the model is able to provide a rich structure of volatility surfaces that can be observed in the index option
market. We then present some basic property of the model below.

2.2 Stochastic Correlation and the Term Structure of Volatility

In the multifactor Heston model, the instantaneous variance of dXt and the instantaneous covariance between dXt

and dυt are given by

V ar[dXt] =

n∑
i=1

υitdt , υtdt, Cov[dXt, dυt] =

n∑
i=1

[ξiρiυit] dt. (2)

Consider a fixed maturity, it is not difficult to observe that the level of implied volatility is primarily determined by
V ar[dXt], while the volatility skew (i.e., the slope of the implied volatility smile) is determined by Cov[dXt, dυt].
On the other hand, the time-variation of the implied volatility skew can be generated by the stochastic correlation

Corr[dXt, dυt] =
Cov[dXt, dυt]√

V ar[dXt]
√
V ar[dυt]

=

n∑
i=1

ξiρiυit√
n∑
i=1

υit

√
n∑
i=1

ξ2
i υit

. (3)

Under the multifactor Heston model, it is also straight-foward to compute the expected variance in the case of
constant model parameter:

E [υs| Ft] =

n∑
i=1

[
θi

(
1− e−κi(T−t)

)
+ υi,0e

−κi(T−t)
]
. (4)

Hence, the fair strike of a continuously-monitoring variance swap for the contractural period [t, T ] can be readily
obtained as

V S (t, T ) = E

[
1

T − t

∫ T

t

υsds

∣∣∣∣∣Ft
]

=

n∑
i=1

[
θi + (υi,0 − θi)

(
1− e−κi(T−t)

)
κi (T − t)

]
. (5)

For the pricing of variance swap under discrete monitoring, we refer to readers to Zhang and Kwok (2013) and
the references therein. As shown in Christoffersen et al. (2009), the multifactor Heston model can generate a rich
flexibility for the term stucture of implied volatility. Similar multifactor volatility models have been considered in
the pricing of volatility derivatives, see for example, Bengomi (2009) and Bushler (2006). It is worth to note that
given the model parameters (θi, κi) for i = 1, 2, ..., n, one can explicitly back out the instanteneous variance υi,0 for
i = 1, 2, ..., n from n observed market quotes of variance swaps.
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2.3 Option Pricing under Multifactor Heston Model

It is well-known that the multifactor Heston model falls within the class of affine diffusion (AD) model in Duffie
et al. (2000). In particular, given the independence of the variance factors, it is straight-forward to derive the
characteristic function for Xt (in closed-form) as

φ(Xt, υit; t, T ; i0ω) , E [ exp (i0ωXT )| Ft] = exp

[
i0ωXt +A (T − t) +

n∑
i=1

Di (T − t, ω) υit

]
, (6)

where we denote i0 =
√
−1 to be the imaginery number, and

A (τ) =

n∑
i=1

κiθi

{
ri,−τ −

2

ξ2
i

ln

[
1− gi exp [−diτ ]

1− gi

]}
, Di (τ) = ri,−

1− exp [−diτ ]

1− gi exp [−diτ ]
,

with τ = T − t and

ri,± =
1

2ci,2
[−ci,1 ± di] , g =

ri,−
ri,+

, di =
√
c2i,1 − 4ci,0ci,2,

ci,0 =
1

2
i0ω (i0ω − 1) , ci,1 = ρiξi (i0ω)− κi, ci,2 =

1

2
ξ2
i .

See Appendix A for the derivation.
In what follows, we consider a put option with strike price K, time-to-maturity T , and denote B (t, T ) to be the

risk-free discount factor. It is then possible to derive an integral representation of the put option price as

P (Xt, t) =
B (t, T )

2π

∫ i0ε+∞

i0ε−∞
φ (−ω)

[
−Ke

i0ω lnK

ω2 − iω

]
dω

=
KB (t, T )

π

∫ ∞
0

<

{
ei0(ζ+i0ε) lnKφ (− (ζ + i0ε))

i0 (ζ + i0ε)− (ζ + i0ε)
2

}
dζ. (7)

where we have made use of the generalized Fourier transform of the payoff function (K − ex)
+

as

P̃ (ω, T ) =

∫ ∞
−∞

ei0ωx (K − ex)+ dx = −Ke
i0ω lnK

ω2 − i0ω
,

for ε = = (ω) ∈ (−εmax, 0) which denotes the contour on the complex plane. As discussed in Chung and Kwok
(2012), it is straight-forward to compute the put option price of a particular strike price using standard numerical
quadrature to invert the integral; alternatively, one may adopt the Fast Fourier transformation (FFT) technique in
Carr and Madan (1999) to obtain option prices across a number of strikes.

3 Asymptotic Expansion with Malliavin Calculus

3.1 The Perturbed Multifactor Heston Model

In this section, we develop an asymptotic expansion for the put option price under the multifactor Heston model. We
consider the following perturbed processes Xε

t , υ
εi
it of (1) as parametrized by ε = {εi : epsiloni ∈ [0, 1], i = 1, 2, ..., n}

as

Xε
t = x0 +

n∑
i=1

[∫ t

0

√
υεiisdW

i
s −

1

2

∫ t

0

υεiisds

]
,

υεiit = υi0 +

∫ t

0

κi(θis − υεiis)ds+ εi

∫ t

0

ξis

√
υεiisdB

i
t. (8)

It is not difficult to show that when εi = 0, the variance process is deterministic and we have

υi0,t , υ0
it = e−κit

(
υi0 +

∫ t

0

eκisκiθisds

)
; (9)
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On the other hand, when εi = 1, υεiit coincides with υit, the original variance process. It is noted that under
Assumption I, each variance factor υεiit is guaranteed to be positive. Our aim is to obtain an asymptotic expansion
of the discounted expectation g(ε) related to the put option pricing formula:

g(ε) = e−
∫ T
0
rtdtE

[(
K − e

∫ T
0

(rt−qt)dt+XεT
)

+

]
, (10)

where K is the strike price, T is the time-to-maturity, rt is the risk-free rate and qt is the dividend yield. When we
set ε = 1n, i.e., εi = 1 for all i = 1, 2, ..., n, the discounted expectation gives the put option pricing formula under
the multifactor Heston model.

As the Brownian motions Bit are independent to each other, i.e., d
〈
Bit, B

j
t

〉
= δijdt, we can rewrite (8) as

Xε
T = x0 +

n∑
i=1

[∫ T

0

√
υεiitρitdB

i
t +

∫ T

0

√
υεiit

√
1− ρ2

itdZ
i
t

]
− 1

2

n∑
i=1

∫ T

0

υεiitdt,

where Zit are independent Brownian motions such that d
〈
Bit, Z

j
t

〉
= 0 for all i and j. Suppose we denote FBiT =

σ
(
Bit : 0 ≤ t ≤ T

)
to be the σ-algebra generated by the Brownian motion Bit up to time T , and FBT = FB1

T ∨F
B2

T ∨
· · · ∨ FBnT as the σ-algebra generated by

{
Bit : i = 1, 2, ..., n

}
up to time T . It is easy to see that Xε

T conditional
on FBT is Gaussian distributed. Therefore, we can express the discounted expectation as

g(ε) = E
[
e−
∫ T
0
rtdtE

[(
K − e

∫ T
0

(rt−qt)dt+XεT
)

+

∣∣∣∣FBT ]]
= E [P (x (ε) , y (ε))] , (11)

where

x (ε) , x0 +

n∑
i=1

[∫ T

0

ρit

√
υεiitdB

i
t −

1

2
ρ2
itυ

εi
itdt

]
, y (ε) ,

n∑
i=1

∫ T

0

(
1− ρ2

it

)
υεiitdt, (12)

and P (x, y) is the Black-Scholes formula for put option:

P (x, y) , Ke−reqTN (d)− exe−qeqTN (d−√y), (13)

d =
1
√
y

ln

[
Ke−reqT

exe−qeqT

]
+

1

2

√
y,

where req = 1
T

∫ T
0
rtdt and qeq = 1

T

∫ T
0
qtdt are the equivalent interest rate and dividend rate when they are

time-dependent, and N (·) is the standard culmulative normal distribution.

3.2 Asymptotic Expansion for Multifactor Heston Model

To expand g(ε) around ε = 0n asymptotically, let us rewrite (11) as

g(ε) = E[P (x′ + ∆x (ε) , y′ + ∆y (ε))]

by decomposing (12) as x (ε) = x′ + ∆x (ε) and y (ε) = y′ + ∆y (ε), in which the two terms

x′ , x(0) = x0 +

n∑
i=1

[∫ T

0

ρit
√
υi0,tdB

i
t −

1

2
ρ2
itυi0,tdt

]
,

y′ , y(0) =

n∑
i=1

∫ T

0

(
1− ρ2

it

)
υi0,tdt

correspond to the values of XT and V ar(XT ), respectively, at the origin of the expansion, ε = 0n, and the rests

∆x (ε) =

n∑
i=1

ΓεiiT , with ΓεiiT ,
∫ T

0

ρit(
√
υεiit −

√
υi0,t)dBit −

∫ T

0

1

2
ρ2
it(υ

εi
it − υi0,t)dt,

∆y (ε) =

n∑
i=1

ΞεiiT , with ΞεiiT ,
∫ T

0

(1− ρ2
it)(υ

εi
it − υi0,t)dt,
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capture the perturbed change of XT and V ar(XT ), respectively, with respect to ε. To proceed, we introduce the
multivariate Taylor expansion residual with respect to ε for a process Y εt as

RY
ε

`,t = R`,t [Y ε] , Y εt −
∑̀
m=0

1

m!

(
n∑
i=1

hi
∂

∂εi

)m
Y εt

∣∣∣∣∣
ε=0n,{hi}={εi}

.

When ε is a single variate ε = εi1i, the above definition for a process Y εit is equivalent to the case of one-factor in
Benhamou et al. (2010)

RY
εi

`,t = Y εit −
∑̀
m=0

εmi
m!
Y εim,t , Ym,t ,

∂mY εit
∂εmi

∣∣∣∣
εi=0

.

First we see that the second-order expansion of the variance factors are given by

υεiit = υi0,t + εiυi1,t +
1

2!
ε2i υi2,t +R

υ
εi
i

2,T ,√
υεiit =

√
υi0,t + εi

υi1,t
2(υi0,t)1/2

+
1

2!
ε2i

(
υi2,t

2(υi0,t)1/2
− (υi1,t)

2

4(υi0,t)3/2

)
+R

√
υ
εi
i

2,T ,

with

υi0,t = e−κit
(
υi0 +

∫ t

0

eκisκiθisds

)
, (14)

υi1,t = e−κit
∫ t

0

eκisξis
√
υi0,sdB

i
s, (15)

υi2,t = e−κit
∫ t

0

eκisξis
υi1,s

(υi0,s)1/2
dBis. (16)

As a result, the second order expansion for ΓεiiT and ΞεiiT with respect to in εi are given by

ΓεiiT = Γi0,T + εiΓi1,T +
1

2
ε2iΓi2,T +R

Γ
εi
i

2,T

with

Γi0,T = Γ0
iT = 0, Γi1,T =

∫ T

0

ρit
υi1,t

2(υi0,t)1/2
dBit −

∫ T

0

ρ2
it

2
υi1,tdt,

Γi2,T =

∫ T

0

ρit

[
υi2,t

2(υi0,t)1/2
− (υi1,t)

2

4(υi0,t)3/2

]
dBit −

∫ T

0

ρ2
it

2
υi2,tdt, (17)

and

ΞεiiT = Ξi0,T + εiΞi1,T +
1

2
ε2iΞi2,T +R

Ξ
εi
i

2,T

with

Ξi0,T = Ξ0
iT = 0, Ξi1,T =

∫ T

0

(1− ρ2
it)υi1,tdt, Ξi2,T =

∫ T

0

(1− ρ2
it)υi2,tdt. (18)

These expansion terms will be used in the following derivation.
As shown in the Appendix B, by the application of chain rules for the formal derivatives on ε = (εi)i to the

parameterized stochastic processes ΓεiiT and ΞεiiT , up to the second order, we arrive the following expansion formula

g(ε) = E [P (x′, y′)] + E

[
∂P (x′, y′)

∂x

n∑
i=1

∆Γ1
i

]
+ E

[
∂P (x′, y′)

∂y

n∑
i=1

∆Ξ1
i

]

+
1

2
E

∂2P (x′, y′)

∂x2

(
n∑
i=1

∆Γ2
i

)2
+

1

2
E

∂2P (x′, y′)

∂y2

(
n∑
i=1

∆Ξ2
i

)2


+E

[
∂2P (x′, y′)

∂x∂y

(
n∑
i=1

∆Ξ2
i

)(
n∑
i=1

∆Γ2
i

)]
+ ε̃n, (19)
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where ε̃n is the expansion error, and the expansion terms are explicitly given by

∆Γ1
i , εiΓi1,T +

ε2i
2

Γi2,T =

∫ T

0

ρit

[
εi

υi1,t
2(υi0,t)1/2

+
1

2!
ε2i

(
υi2,t

2(υi0,t)1/2
− (υi1,t)

2

4(υi0,t)3/2

)]
dBit

−
∫ T

0

1

2
ρ2
it

(
εiυi1,t +

1

2
ε2i υi2,t

)
dt,

∆Γ2
i , εiΓi1,T =

∫ T

0

ρitεi
υi1,t

2(υi0,t)1/2
dBit −

∫ T

0

1

2
ρ2
itεiυi1,tdt, (20)

∆Ξ1
i , εiΞi1,T +

ε2i
2

Ξi2,T =

∫ T

0

(
1− ρ2

it

)(
εiυi1,t +

1

2
ε2i υi2,t

)
dt,

∆Ξ2
i , εiΞi1,T =

∫ T

0

(
1− ρ2

it

)
εiυi1,tdt,

for i = 1, 2, ..., n.
From the structure of the expansion formula in (19), we notice that there are cross terms of different indices

for the expansion terms in the last three expectations involving the second order derivatives. Hence, by using the
following identities: (

n∑
i=1

ζj

) n∑
j=1

ζ̃j

 =

n∑
i=1

ζiζ̃i +

n∑
i=2

i−1∑
j=1

(
ζiζ̃j + ζj ζ̃i

)
,

(
n∑
i=1

ζi

)2

=

n∑
i=1

ζiζi +

n∑
i=2

i−1∑
j=1

2ζiζj ,

(19) is rewritten as

g (ε) = E [P (x′, y′)]

+

n∑
i=1

{
E
[
∂P

∂x
∆Γ1

i

]
+ E

[
∂P

∂y
∆Ξ1

i

]
+

1

2
E
[
∂2P

∂x2

(
∆Γ2

i

)2]
+

1

2
E
[
∂2P

∂y2

(
∆Ξ2

i

)2]
+ E

[
∂2P

∂x∂y
∆Γ2

i∆Ξ2
i

]}

+

n∑
i=2

i−1∑
j=1

{
E
[
∂2P

∂x2
∆Γ2

i∆Γ2
j

]
+ E

[
∂2P

∂y2
∆Ξ2

i∆Ξ2
j

]
+ E

[
∂2P

∂x∂y
∆Γ2

i∆Ξ2
j

]
+ E

[
∂2P

∂x∂y
∆Γ2

j∆Ξ2
i

]}
+ε̃n, (21)

where the term ∂k+lP/∂xk∂yl in the expectation is evaluated at (x′, y′). The expectations regarding to the cross
terms ∆Γ2

i∆Γ2
j ,∆Ξ2

i∆Ξ2
j , ∆Γ2

i∆Ξ2
j and ∆Γ2

j∆Ξ2
i in (21) are new terms that appear in the case of multifactor

Heston model. Before we explicitly compute these expansion terms, we first present the following Proposition that
is a natural extension of Proposition 2.1 in Benhamou et al. (2010) to the case of multifactor model.

Proposition 1 When ε = 1n, the expansion in (21) can be formulated as

g (1n) = E [P (x′, y′)] + E

[
∂P

∂y
(x′, y′)

n∑
i=1

∫ T

0

(υi1,t + υi2,t) dt

]
+

1

2
E

∂2P

∂y2
(x′, y′)

(
n∑
i=1

∫ T

0

υi1,tdt

)2
+ ε̃n.

Proof.As we show in the Appendix C.1, by making use of the Malliavin calculus and the properties of the Black-
Scholes pricing formula, when ε = 1n, the summation of the cross terms in the third line of (21)

Φi,jT = E
[
∂2P

∂x2
∆Γ2

i∆Γ2
j

]
+ E

[
∂2P

∂y2
∆Ξ2

i∆Ξ2
j

]
+ E

[
∂2P

∂x∂y
∆Γ2

i∆Ξ2
j

]
+ E

[
∂2P

∂x∂y
∆Γ2

j∆Ξ2
i

]
can be expressed as

Φi,jT = E

[
∂2P

∂y2
(x′, y′)

∫ T

0

[∫ t

0

υi1,sds

]
υj1,tdt

]
+ E

[
∂2P

∂y2
(x′, y′)

∫ T

0

[∫ t

0

υj1,sds

]
υi1,tdt

]
(22)
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when ε = 1n. Then, by applying the identity(∫ T

0

f (t) dt

)(∫ T

0

g (t) dt

)
=

∫ T

0

[∫ t

0

f (s) ds

]
g (t) dt+

∫ T

0

[∫ t

0

g (s) ds

]
f (t) dt,

we have

Φi,jT = E

[
∂2P

∂y2
(x′, y′)

(∫ T

0

υi1,tdt

)(∫ T

0

υj1,tdt

)]
. (23)

It follows that

g (1n) = E [P (x′, y′)] +

n∑
i=1

E

[
∂P

∂y
(x′, y′)

∫ T

0

(υi1,t + υi2,t) dt

]
+

n∑
i=1

1

2
E

∂2P

∂y2
(x′, y′)

(∫ T

0

υi1,tdt

)2


+

n∑
i=2

i−1∑
j=1

E

[
∂2P

∂y2
(x′, y′)

(∫ T

0

υi1,tdt

)(∫ T

0

υj1,tdt

)]
+ ε̃n (24)

which is equivalent to the desired expression.
In the following Lemma for the case of one factor model, we keep the index i for the formula P i1 for later use in

the case of multifactor Heston model.

Lemma 2 (The One-factor Model, Benhamou et al. (2010) ) Suppose Assumption I holds and take n = 1,
i = 1, i.e., single-factor Heston model with time-dependent parameters, the put option pricing formula can be
approximated by

g (1) = P
(
x0, var

i
T

)
+ P i1

(
x0, var

i
T

)
+ ε̃1,

where

P i1
(
x0, var

i
T

)
=

2∑
k=1

aik,T
∂k+1

∂xk∂y
P
(
x0, var

i
T

)
+

1∑
k=0

bi2k,T
∂2k+2

∂x2k∂y2
P
(
x0, var

i
T

)
is the expansion term of the one-factor Heston model, with variT =

∫ T
0
υi0,sdt is the total variance, and the expansion

coefficients aik,T and bi2k,T are given by

ai1,T =

∫ T

0

φi0 (s)φi1 (s) ds

∫ T

s

φ−1
i0 (u) du

ai2,T =

∫ T

0

φi0 (s)φi1 (s) ds

∫ T

s

φi3 (t) dt

∫ T

t

φ−1
i0 (u) du

bi0,T =

∫ T

0

φ2
i0 (s)φi2 (s) ds

∫ T

s

φ−1
i0 (t) dt

∫ T

t

φ−1
i0 (u) du

bi2,T =
1

2

(
ai1,T

)2
(25)

with
φi0(s) = eκis, φi1(s) = ρisξisυi0,s, φi2(s) = ξ2

isυi0,s, φi3(s) = ρisξis.

Proof.See Benhamou et al. (2010) .
Notice that in the above result

P
(
x0, var

i
T

)
= E [P (x′, y′)] , P i1

(
x0, var

i
T

)
= E

[
∂P

∂y
(x′, y′)

∫ T

0

(υi1,t + υi2,t) dt

]
+

1

2
E

∂2P

∂y2
(x′, y′)

(∫ T

0

υi1,tdt

)2
 .

In our multifactor setting, there are interacted terms between different variance factors in (24)

n∑
i=2

i−1∑
j=1

E

[
∂2P

∂y2
(x′, y′)

(∫ T

0

υi1,tdt

)(∫ T

0

υj1,tdt

)]
,

which leads to additional terms P i,j2 (x0, varT ) in the approximation formula as indicated in the following Theorem.
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Theorem 3 (The Multifactor Model) Suppose Assumption I holds and the expansion in (19) is valid, the put
option pricing formula under the multifactor Heston model can be approximated by

g (1n) = P (x0, varT ) +

n∑
i=1

P i1 (x0, varT ) +

n∑
i=2

i−1∑
j=1

P i,j2 (x0, varT ) + ε̃n,

where varT =
n∑
i=1

∫ T
0
υi0,tdt =

∫ T
0
υsdt is the total variance, and

P i,j2 (x0, varT ) = ci,jT
∂4P

∂x2y2
(x0, varT )

in which ci,jT is the expansion coefficient due to the cross terms, which is given by

ci,jT = C (i, j) + C (j, i) ,

where

C (i, j) =

∫ T

0

φi0(s)φi1(s)ds

∫ T

s

φj0(t)φj1(t)dt

[∫ T

t

φ−1
i0 (u)du

∫ T

u

φ−1
j0 (w)dw +

∫ T

t

φ−1
j0 (u)du

∫ T

u

φ−1
i0 (w)dw

]

+

∫ T

0

φi0(s)φi1(s)ds

∫ T

s

φ−1
i0 (t)dt

∫ T

t

φj0(u)φj1(u)du

∫ T

u

φ−1
j0 (w)dw, (26)

with
φi0(s) = eκis, φi1(s) = ρisξisυi0,s.

Proof.It is straightforward to check that it holds that

E [P (x′, y′)] = P (x0, varT ) , E

[
∂P

∂y
(x′, y′)

∫ T

0

(υi1,t + υi2,t) dt

]
+

1

2
E

∂2P

∂y2
(x′, y′)

(∫ T

0

υi1,tdt

)2
 = P i1 (x0, varT ) ,

which corresponds to the first line on the right-hand side of (24). Therefore, it remains to calculate the terms (23)
or (22) when ε = 1n. Due to the functional form of the Black-Scholes formula P (x, y), we observe that

E
[
∂`+m

∂x`∂ym
P (x′, y′)

]
=

∂`+m

∂x`∂ym
P

(
x0,

n∑
i=1

∫ T

0

υi0,tdt

)
.

Then, as shown in Appendix C.2, by applying the Malliavin calculus and the Fubini Theorem, the stochastic
integrals within the two expectations in (22) can be transformed as

Φi,jT = ci,jT
∂4P

∂x2∂y2
(x0, varT ) , (27)

which is P i,j2 (x0, varT ).
When W i and Bi are independent, it is observed that ρit ≡ 0 yields ϕi1(t) ≡ 0 and C (i, j) = 0. Furthermore,

when C (i, j) = C (j, i) = 0, we see P i,j2 (x0, varT ) = 0.

Corollary 4 When all the model parameters are constant, the expansion coefficients aik,T and bi2k,T in Lemma 2
can be explicitly computed as

varT = mi0υi0 +m1θi,

ai1,T = ρiξi (pi0υi0 + pi1θi) ,

ai2,T = (ρiξi)
2

(qi0υi0 + qi1θi) ,

bi0,T = ξ2 (ri0υi0 + ri1θi) ,

with

mi0 = zmi
(
eκiT − 1

)
,

pi0 = zpi
(
−κiT + eκiT − 1

)
,

qi0 = zqi
(
−κiT (κiT + 2) + 2eκiT − 2

)
,

ri0 = zri
(
−4eκiTκiT + 2e2κiT − 2

)
,

mi1 = T − zmi
(
eκiT − 1

)
,

pi1 = zpi
(
κiT + eκiT (κiT − 2) + 2

)
,

qi1 = zqi
(
2eκiT (κiT − 3) + κiT (κiT + 4) + 6

)
,

ri1 = zri
(
4eκiT (κiT + 1) + e2κiT (2κiT − 5) + 1

)
,
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and

zmi =
e−κiT

κi
, zpi =

e−κiT

κ2
i

, zqi =
e−κiT

2κ3
i

, zri =
e−2κiT

4κ3
i

.

Corollary 5 When all the model parameters are constant, the expansion coefficients ci,jT in Theorem 3 can be
explicitly computed as

ci,jT = ρiρjξiξj (y0υi0υj0 + y1υi0θj + y2υj0θi + y3θiθj) ,

where

y0 = zy

[
e(κi+κj)T − eκiT (κjT + 1)− eκjT (κiT + 1) + (κiT + 1) (κjT + 1)

]
,

y1 = zy

[
e(κi+κj)T (κjT − 2) + eκiT (κjT + 2)− eκjT (κjT − 2) (κiT + 1)− (κjT + 2) (κiT + 1)

]
,

y2 = zy

[
e(κi+κj)T (κiT − 2) + eκjT (κjT + 2)− eκiT (κiT − 2) (κjT + 1)− (κiT + 2) (κjT + 1)

]
,

y3 = zy

[
e(κi+κj)T (κiT − 2) (κjT − 2) + eκiT (κiT − 2) (κjT + 2) + eκjT (κiT + 2) (κjT − 2) + (κiT + 2) (κjT + 2)

]
,

and

zy =
e−(κi+κj)T

(κiκj)2
.

The expansion coefficients for aik,T and bi2k,T are obtained in Corollary 4.

Remark 6 As shown in Theorem 3, the new expansion terms capture the interaction between different variance
factors when the driving Brownian motions W i and Bi are uncorrelated. In the case of constant paramters, the
interaction is related to the covariance as ρiρjξiξj. In other words, the interaction between two variance factors
i and j are induced from its correlation to the underlying process Xt, as given by ρi and ρj respectively. As the
expansion term is linked to the ∂4P (x0, varT ) /∂x2∂y2 of the Black-Scholes formula, the interaction term is most
important for at-the-money-option when the sensitivity in Delta and Vega are significant.

Theorem 7 The order of magnitude of approximation error for the multifactor expansion formula in Theorem 3
can be estimated as

|ε̃n| = O

(
n∑
i=1

(ξiSup)
3T 2

)
. (28)

Hence, it can be expressed as the sum of approximation error in the one-factor case in Benhamou et al. (2010).
Proof.The proof is presented in the Appendix D.

Remark 8 It is important to note the approximation formula is derived under the Assumption I. In particular, we
impose the Feller condition to be held for all the variance factors. Nevertheless, in practice, when the Heston-type
stochastic volatility model is calibrated to market option prices, it is usually found that the Feller condition does not
hold - and the model could give poor fit to the market implied volatility surface when the Feller condition is imposed
during the optimization procedure.

When the Feller condition does not hold, we are not able to guarantee the approximation formula to produce
option prices that are non-negative and satisfying the no-arbitrage bounds. Indeed, in our numerical experiment,
when we set the correlation to be highly negative, the approximation formula could produce negative option price for
short-term deep out-out-the-money call option (i.e., option price below the intrinsic value for the corresponding deep
in-the-money put option). In this case, one need to pay extra cautions when employing the approximation formula
for calibration purpose as the model-implied option price could bleach the no-arbitrage bounds. To resolve this issue,
we set the option value to be its intrinsic value when the approximation formula bleach those bounds.

4 Numerical Illustration

In this Section, we study the accuracy of the approximation formula for the multifactor Heston model. For illus-
tration purpose, we consider the case of n = 2, i.e., the case of two-factor Heston model as in Christoffersen et al.
(2009). We consider the scenario when the model parameters are constant as well as the case when the correlation
coefficients are allowed to be time-dependent.
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4.1 Constant Model Parameters

In the multifactor Heston model, the parameter κi controls the mean-reversion speed of the ith variance factor and
governs its impact to the term structure of implied volatility. Considering the expected variance given by

E

[∫ T

t

υisds

∣∣∣∣∣Ft
]

= θi

(
1− e−κi(T−t)

)
+ υi,0e

−κi(T−t), (29)

it can be observed that the ith variance factor decays to its long-run mean level θi at the mean-reversion speed of κi.
This means the ith variance factor could affect the term structure of implied volatility for the time-to-maturity range
that is characterised by the half-life (which is approximately 1/κi) of the mean-reversion process. The intuition is
that variance factors with different κi correspond to different time-scales of the stochastic volatility process that
drive the stock price process. In the following, we assume that κ2 > κ1, such that υ1t can be regarded as a long-
term variance factor with a slow mean-reversion, while υ2t can be regarded short-term variance factor with a fast
mean-reversion,.

4.1.1 Accuracy of the Approximation Formula

To study the accuracy of the approximation formula for two-factor Heston model, we compute the put option
prices using i.) the approximation formula derived in Section 3, ii.) the characteristic function approach discussed
in Section 2, and iii.) direct Monte-Carlo simulation. For the characteristic function approach, we employ the
adaptive integration routines in Matlab (with relative tolerance of 1e-08) to numerically invert the Fourier integral.
For the Monte Carlo simulation, we apply the Euler scheme on the simulation of the log-stock price and variance
factors, and adopt the full truncation scheme when the simulated variance path approaches zero. To achieve high
convergence, the simulation is repeated 1,000,000 times and the time-step is kept at 0.01. We take the spot price
to be 100, i.e., x0 = ln (100), and consider range of moneyness is from 80% to 120% with the time-to-maturity of
options for 1-month, 3-month, 6-month, 1-year and 2-year. This covers the range of options that are liquid for index
option market and are commonly used for model calibration in practice. For simplicity, we assume the interest rate
and dividend yield to be zero.

Example 9 (Zero Correlation) We assume the model parameters to be constant as follows:

ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20

0.0 0.5 0.10 0.25 0.10 0.0 5.0 0.05 0.5 0.05

in which there are no correlations between the stock price and the variance factors. For the model parameters, the
first variance factor has a half-life of around 2 years (i.e., κ1 = 0.5), while the second variance factor has a half-life
of 0.2 year (i.e., κ2 = 5.0). We set the mean levels of the long-term and short-term variance factors to be θ1 = 0.10
and θ2 = 0.05 respectively (i.e., 32% and 22% in terms of volatility points, where 1 volatility point = 1%). For
simplicity, we set the initial variance (υ10 and υ20) of each factor to its corresponding mean level. The Vol-of-Vol
for the two variance factors are ξ1 = 0.25 and ξ2 = 0.5. As such, the Feller conditions are given by 1.6 and 2.0
respectivetly for the two factors. The parameters setting here is considered to be a moderate market scenario.

In Example 9, we assume there are no correlations between stock price process and the two variance factors.
In this case, the approximation formula can be simplified given that ai1,T = ai2,T = bi2,T = ci,jT = 0, such that the
approximation formula includes only two correction terms involving the second order derivative with respect to the
total variance y. The estimation of the put option prices at various moneyness and time-to-maturity is shown in
Table 3. We also report the approximation error which is computed as the approximation price minus the exact
closed-form price, and apprehend the error estimate as obtained in Theorem 7. From Table 1, it is found that
the approximation formula is very accurate for short-tern options such as 3-month and 6-month options, in which
the approximation errors are between 0 to 13 bps (take 1 bp = 0.0001). Given that a typical over-the-counter
option quotes 4-5 decimal places, the approximation formula for short-term options are considered to be extremely
accurate. For 1-year and 2-year options, the approximation errors are in the order-of-magnitude of 100 bps, implying
the percentage error is less than 1% for long-term options. Indeed, the actual approximation error falls well below
the error estimate as given in Theorem 5.

Example 10 (Negative Correlation) We assume constant model parameters and negative correlations between
the stock price and the variance factors with ρ2 > ρ1.

ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20

−0.25 0.5 0.10 0.25 0.10 −0.5 5.0 0.05 0.5 0.05
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Table 1: Estimation of put option prices for two-factor Heston model in Example 9. The model parameters are:
ρ1 = 0.0, κ1 = 0.5, θ1 = 0.10, ξ1 = 0.5, υ10 = 0.10, ρ2 = 0.0, κ2 = 5.0, θ2 = 0.05, ξ2 = 1.0, υ20 = 0.05.

Moneyness 80 90 100 110 120 80 90 100 110 120

Time-to-Maturity = 3M Time-to-Maturity = 1Y
Exact Solution 1.0731 3.3592 7.6739 14.0291 21.9643 5.9343 9.9852 15.1998 21.4538 28.5809
Approximation 1.0731 3.3588 7.6735 14.0286 21.9640 5.9313 9.9822 15.1970 21.4506 28.5772

Approximation Error 0.0000 0.0004 0.0004 0.0005 0.0003 0.0030 0.0029 0.0028 0.0032 0.0037
Error Estimate 0.0195 0.3125
Monte-Carlo 1.0687 3.3521 7.6645 14.0169 21.9482 5.9326 9.9795 15.1906 21.4413 28.5662

MC Error 0.0035 0.0066 0.0101 0.0133 0.0158 0.0108 0.0145 0.0181 0.0216 0.0246

Time-to-Maturity =6M Time-to-Maturity = 2Y
Exact Solution 2.8353 6.0373 10.8106 17.0468 24.4779 10.7735 15.6212 21.3036 27.7153 34.7488
Approximation 2.8343 6.0363 10.8099 17.0458 24.4765 10.7629 15.6087 21.2901 27.7014 34.7352

Approximation Error 0.0010 0.0010 0.0007 0.0010 0.0013 0.0106 0.0125 0.0136 0.0139 0.0136
Error Estimate 0.0781 1.2500
Monte-Carlo 2.8302 6.0330 10.8088 17.0506 24.4835 10.7688 15.6198 21.3016 27.7118 34.7427

MC Error 0.0066 0.0101 0.0137 0.0170 0.0199 0.0160 0.0197 0.0234 0.0269 0.0301

Table 2: Estimation of put option prices for two-factor Heston model in Example 10. The model parameters are:
ρ1 = −0.25, κ1 = 0.5, θ1 = 0.10, ξ1 = 0.5, υ10 = 0.10, ρ2 = −0.5, κ2 = 5.0, θ2 = 0.05, ξ2 = 1.0, υ20 = 0.05.

Moneyness 80 90 100 110 120 80 90 100 110 120

Time-to-Maturity = 3M Time-to-Maturity = 1Y
Exact Solution 1.1831 3.4418 7.6476 13.8943 21.7878 6.0998 10.0250 15.0789 21.1755 28.1762
Approximation 1.1863 3.4422 7.6466 13.8922 21.7836 6.0960 10.0191 15.0744 21.1722 28.1714

Approximation Error 0.0032 0.0004 0.0009 0.0021 0.0042 0.0039 0.0060 0.0045 0.0033 0.0048
Error Estimate 0.0195 0.3125
Monte-Carlo 1.1778 3.4370 7.6449 13.8930 21.7864 6.0913 10.0142 15.0661 21.1626 28.1609

MC Error 0.0038 0.0069 0.0104 0.0136 0.0161 0.0114 0.0150 0.0187 0.0221 0.0252

Time-to-Maturity =6M Time-to-Maturity = 2Y
Exact Solution 2.9959 6.1177 10.7520 16.8510 24.1929 10.8630 15.5548 21.0656 27.3107 34.1972
Approximation 2.9977 6.1159 10.7500 16.8487 24.1878 10.8501 15.5381 21.0479 27.2926 34.1776

Approximation Error 0.0018 0.0018 0.0020 0.0023 0.0051 0.0129 0.0167 0.0177 0.0181 0.0196
Error Estimate 0.0781 1.2500
Monte-Carlo 2.9860 6.1086 10.7467 16.8493 24.1949 10.8464 15.5423 21.0567 27.3022 34.1877

MC Error 0.0071 0.0105 0.0141 0.0174 0.0203 0.0165 0.0203 0.0240 0.0275 0.0308

The negative correlation generates the implied volatility skew due to the leverage effect. Other model parameters are
the same as in Example 9.

In Example 10, we allow the correlations between stock price process and the two variance factors. It is expected
the approximation errors to be larger given that the underlying dynamics are more complex in the presence of the
leverage effect. As shown in Table 2, the approximation errors generally increase the stock price and the variance
factors are negatively correlated. Nevertheless, the approximation formula for 3-month and 6-month options remain
very accurate with the error of 4 to 51 bps. In the case of longer-term options, the approximation errors remain
well-control at the level of several hundred bps. This indicates the approximation formula is accurate up to the
second decimal place.

Example 11 (Approximation Accuracy and Error Estimate) We study the approximation errors at differ-
ent levels of the mean-reversion speed (0.5, 1.0, 2.0 and 5.0) and Vol-of-Vol parameter (from 0.1 to 1.0) for the
short-term variance factor υ2t. All other parameters are the same as in Example 10.

In Theorem 7, we show that the approximation error is proportional to the cubic of the Vol-of-Vol parameter
and the square of the time-to-maturity. It is therefore expected that the approximation accuracy could deteriorate
sharply in the case of high volatility and long time-to-maturity. To study the accuracy of the approximation
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Figure 1: The plot of the absolute approximation error in put option price and the error estimate at different
mean-reversion speed and Vol-of-Vol parameter for the short-term variance factor. Other parameters are the same
as in Example 10.

formula, we focus on the 1-year time-horizon, then gradually increase the Vol-of-Vol parameter (ξ2) for the short-
term variance factor (υ2t) at different mean-reversion speed (κ2), while keeping other parameters the same as in
Example 10. As a higher mean-reversion speed dampens the stochastic movements of the variance process, we
would expect the approximation error to be smaller when the mean-reversion speed is high.

Figure 1 plots the approximation errors for different values of the mean-reversion speed and Vol-of-Vol parameter.
We also plot the error estimate e =

∑2
i=1(ξiSup)

3T 2 as a reference. It is worth to note that the error estimate e
here only indicates the order of magnitude of the approximation error, instead of an upper bound. As can be seen,
the error estimate e is a good measure for the accuracy for at-the-money options when the mean-reversion speed
is slow, but it significantly overestimates the pricing errors for deep out-of-the-money put options. It is interesting
to note that the actual approximation error falls within the error estimate e, unless the mean-reversion speed is
small. Hence, the error estimate can be considered to be a conservative measure of the approximation error under
realistic parameter setting. Moreover, this means the approximation accuracy appears to be better than a second
order expansion in Vol-of-Vol when the mean-reversion parameter is not too small, and the Vol-of-Vol parameter is
not too large.

4.1.2 Implied Volatility Surface

Example 12 We show the implied volatility surfaces as generated by the following model parameter settings.

ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20

Scenario 1 −0.5 0.5 0.10 0.5 0.05 −0.8 5.0 0.04 1.0 0.02
Scenario 2 −0.5 0.5 0.10 0.5 0.05 −0.8 5.0 0.01 1.0 0.02
Scenario 3 0.0 0.5 0.10 0.5 0.05 −0.8 5.0 0.01 1.0 0.02
Scenario 4 0.5 0.5 0.10 0.5 0.05 −0.8 5.0 0.01 1.0 0.02
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From the baseline parameters in Scenario 1, we adjust the values of the mean-level for short-term variance factor
(θ2) and the correlation parameter of the long-term factor (ρ1) in Scenarios 2 to 4 in order to produce various
shapes of the implied volatility surface. The baseline parameter setting is motivated by the calibration results to the
S&P500 index data in Section 5.

• Scenario 1. As shown in top-left panel of Figure 2, the implied volatility surface exhibits an moderate
upward-sloping term structure given that θ1 > υ10 and θ2 > υ20. Given the negative correlations of the two
factors ρ1 and ρ2, the short-term skewness is prominent and decays gradually with the time-to-maturity. It
should be noted that this is the class of implied volatility surface that is commonly observed in the index
option market. This is also the case in which a one-factor Heston model is able to provide a good fit.

• Scenario 2. To study the impact of the mean levels on the term structure, we adjust the value of θ2 from
0.04 to 0.01. This generate a hump-shaped term structure as shown in the top-right panel of Figure 2. The
generation of the hump-shaped term structure can be explained based on the variance swap pricing formula
in (5): when τ = 0, the variance swap rate is given by V S (0) = υ10 +υ20; for τ > 0, τ ≈ 1/κ2 and τ << 1/κ1,
i.e., at the short-to-medieum term, we have V S (τ) ≈ υ10 + θ2. Hence, the slope of the term structure at
the short-end can be approximated by V S (τ)− V S (0) ≈ θ2 − υ20. In a similar fashion, consider τ ≈ 1/κ1

and τ >> 1/κ2, the term structure at medium-to-long term can be approximated as θ1 − υ10. As a result,
by tuning the parameters θ1 and θ2 relative to υ10 and υ20, one can generate a rich variation of the term
structure of implied volatility. Moreover, it is worth the note that the change in θ2 has minimal impact on the
1-month skewness because in this case the short-term variance factor takes roughly 3 months to mean-revert.

• Scenario 3. Then, we adjust the long-term correlation ρ1 from −0.5 to slightly positive at 0.25 while keeping
the short-term correlation the same. In that case, the long-term skew becomes flattened out much faster
given the positive leverage effect of the long-term variance factor. This indicates the flexibility to control the
long-term skew by adjusting the long-term factor. However, the change in ρ1 also reduces the short-term
skewness, indicating that its impact on the short-term smile is not entirely separable.

• Scenario 4. Finally, we combine Scenarios 2 and 3 in such a way that a hump-shaped implied volatility surface
with a positive skew in long time-to-maturity can be generated - such a shape of the implied volatility surface
is possible when market participants are expecting a medium-term recovery, while perceiving the possibility
of a sudden market crash in the near term. Alternatively, it is often observed in the foreign-exchange market
in which the implied volatility surface is usually more symmetric with its short-term and long-term smiles to
be separately driven by short-term market expectations and long-term macroeconomics factors respectively.

4.2 Time-dependent Correlation

In this section, we illustrate the modeling of time-dependent correlation under the multifactor Heston model. Given
the approximation formula, the put option price under the multifactor Heston model can be easily obtained by a
direct numerical integration of (25) and (26). To compute the iterated integral, we break it down into nested integrals
and apply the trapezoidal rule to convert them into multiple sums. For the characteristic function approach, we
numerically solve the system of ODE using fourth-order Runga-Kutta method and then invert the Fourier transform
accordingly. It is worth to note that in the characteristic function approach, for each strike price K, one needs to
solve the system of ODE repeatedly at different grid points during the numerical inversion of the Fourier integral.
In contrast, because the expansion coefficients of the approximation formula are independent of the strike price, one
only needs to compute the expansion coefficients once for a given time-to-maturity to price option at an arbitrary
strike.

In the following, we illustrate the computation of the put option prices under the time-dependent correlation
coefficient.

Example 13 We assume for the ith variance factor, the correlation with the log stock price has the following
formulation,

ρit = αie
−βit + χi,

where
ρi0 = αi + χi, |ρi0| < 1, βi ≥ 0, |χi| ≤ 1, |αi| ≤ 1 + |χi|.

The parameter βi governs the convergence speed of the time-dependent correlation to a long-term level of χi.
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Figure 2: Various shapes of the implied volatility surfaces in Example 12.

The formulation of the time-dependent correlation is motivated by the literature on interest rate modeling, such
as Piterberg (2005). Such functional form of the time-dependent correlation is simple and captures the salient fact
that the correlation between stock price and volatility decouples as the time-to-maturity gets longer. Alternatively,
the specification can be used to produce a persistent long-term skew by setting a high level of χi. The time-
dependent correlation function allows a greater flexibility to model the short-term and long-term implied volatility
smile separately.

Table 3 shows the accuracy of the approximation formula when correlation coefficients are time-dependent. We
set the parameters α1 = −0.15, β1 = 0.5, χ1 = −0.1 and α2 = −0.25, β2 = 5.0, χ2 = −0.25, such that the initial
correlation is consistent with Example 10 (i.e., ρ10 = −0.25 and ρ20 = −0.5). It is found that the approximation
formula remains very accurate in the case of time-dependent parameters. For short-term options, the approximation
formula is accurate up to the 2 decimal places, with the errors less than 50 bps, while the approximation error for
long-term options remain in the order-of-magnitude of 200 bp as in the case of constant correlation. This indicates
that the approximation formula is effective even in the extension to time-dependent model parameters.

5 Calibration

5.1 Data and the Calibration Procedure

To obtain the risk-neutral model parameters, we perform the daily calibration of the two-factor Heston model using
the approximation formula to the cross-sectional market data of index option prices and the term structure of
variance swap. We obtain from Bloomberg the interpolated data of implied volatilities of index options for the S&P
500 index (SPX) and Nikkei 225 index (NKY) with the fixed maturities of 1, 2, 3, 6, 12, 18 and 24 months and
across the moneyness of 80%, 90%, 95%, 97.5%, 100%, 102.5%, 105%, 110% and 120%. The moneyness is defined
by K/S, where K is the strike price and S is the current spot index level. While index options are exchange-traded
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Table 3: Estimation of put option prices under two-factor Heston model in Example 13 with the time-dependent
correlation to be set as: α1 = −0.15, β1 = 0.5, χ1 = −0.1, α2 = −0.25, β2 = 5.0, χ2 = −0.25.

Moneyness 80 90 100 110 120 80 90 100 110 120

Time-to-Maturity = 3M Time-to-Maturity = 1Y
Numerical ODE 1.1716 3.4341 7.6517 13.9097 21.8071 6.0672 10.0196 15.1082 21.2389 28.2670
Approximation 1.1743 3.4342 7.6510 13.9082 21.8036 6.0642 10.0147 15.1042 21.2354 28.2619

Approximation Error 0.0026 0.0001 0.0007 0.0016 0.0034 0.0030 0.0049 0.0039 0.0035 0.0051
Error Estimate 0.0195 0.3125
Monte-Carlo 1.1669 3.4284 7.6476 13.9065 21.8027 6.0606 10.0112 15.0976 21.2277 28.2531

MC Error 0.0038 0.0069 0.0104 0.0136 0.0161 0.0113 0.0149 0.0185 0.0220 0.0251

Time-to-Maturity =6M Time-to-Maturity = 2Y
Numerical ODE 2.9716 6.1072 10.7644 16.8856 24.2415 10.8410 15.5735 21.1297 27.4193 34.3453
Approximation 2.9727 6.1056 10.7630 16.8842 24.2377 10.8301 15.5581 21.1120 27.4000 34.3240

Approximation Error 0.0011 0.0017 0.0014 0.0014 0.0037 0.0109 0.0154 0.0177 0.0193 0.0212
Error Estimate 0.0781 1.2500
Monte-Carlo 2.9635 6.0992 10.7607 16.8863 24.2455 10.8292 15.5642 21.1229 27.4150 34.3394

MC Error 0.0070 0.0104 0.0140 0.0173 0.0202 0.0164 0.0202 0.0238 0.0273 0.0306

contracts such that their expiration dates are on fixed calendar days and the strike prices are on standardized
grids, the Bloomberg converts and interpolates the option implied volatilities into constant maturities and relative
moneyness to the spot index level on each trading day, taking care of the bid-ask spread and filtering of illiquid
options. In addition, we obtain the term structure of variance swap for the fixed maturities of 1, 2, 3, 6, 12 and
24 months on each trading day, which is calculated from the Bloomberg implied volatility using the CBOE VIX
index methodology. Hence, the variance swap rates are considered to be theoretical quotes. We obtain also the
overnight-index-swap interest rate for the maturities 1, 2, 3, 6, 12, 18 and 24 months, which is considered to be a
good proxy of the risk-free interest rate in the post-crisis scenario. The dividend yield is assumed to be zero. Given
the implied volatility data, we compute the corresponding put option price (we call it the Bloomberg quoted price)
using the Black-Scholes formula.

As noted in Christoffersen et al. (2009), the calibration of the multifactor Heston model involves the joint-
identification of the structural parameters (ρi, θi, κi, ξi) and the unobserved initial variance υi0. They adopt an
iterative two-step procedure that separately estimate the structural parameter and the initial variance. Gauthier
and Rivaille (2009) note that the initial variance and the mean-reverting level have similar impact on the implied
volatility smile, and suggest that one should avoid the joint-identification of the two parameters during the optimiza-
tion procedure. Moreover, they mention the mean-reversion speed parameter is not sensitive to the option prices,
and market participants commonly fix it at its long-term average during daily calibration. Cont and Tankov (2004)
discuss the challenges involve in the calibration of an option pricing model to a finite set of market prices as an
ill-posed problem, and suggest the use of a regularization function to improve the stability of the calibration across
different trading days. The slight loss in precision due to the regularization function is justified by the existence of
bid-ask spreads, discrete tick in price quote and measurement errors of illiquid options. Against this background,
we implement the following two-step procedure to calibrate the model parameters for the two-factor Heston model.

Step 1: Calibration to the Term Structure of Variance Swap
As shown in (5), the fair strike of variance swap depends only on the structural parameters {θ1, θ2, κ1, κ2} and

the two unobserved initial variances {υ10, υ20}. Hence, we first calibrate these 6 parameters using the term stucture
of variance swap by minimizing the sum-of-square (quadratic) pricing errors as

Θ̂t = arg min

[
1

m

m∑
k=1

(V Sk,t (Θt)− V Sk,t)2
+ g (Θt)

]
, (30)

where t denotes the trading day, V Sk,t (Θt) and V Sk,t are the model-implied and Bloomberg quote of variance swap
for the kth time-to-maturity respectively (in volatility, the fair strike of 20% is taken to be 0.2 in the calibraion),

Θt = {θ1, θ2, κ1, κ2, υ10, υ20} is the estimated parameters for step I. Here, g (Θt) = α
(
Θt −ΘInt

t

)2
is the penalty

function that is used to regularize the optimization, where ΘInt
t is the initial guess and α is the loading coefficient

of the penalty function (Cont and Tankov, 2004). It is worth to note that the penalty function is incorporated to
produce stable estimates for some parameters which are difficult to identify, such as the mean levels {θ1, θ2} and the
mean-reversion speed {κ1, κ2} . We take the initial guess: κ1 = 0.5, κ2 = 5.0, θ1 = υ10 = 0.10 and θ2 = υ20 = 0.05.
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These values are motivated by the average estimates from the trial calibrations that discard the penalty function.
From this calibration step we can identify 6 out of the 10 parameters in the two-factor Heston model.

Step 2: Calibration to Option Price and Term structure of variance swap
In Step 2, we include the Bloomberg quoted prices of put options and calibrate the two-factor Heston model by

minimizing the quadratic pricing error as

̂̃
Θt = arg min

 1

n

n∑
j=1

ωj

(
Pj,t

(
Θ̃t

)
− Pj,t

)2

+
1

m

m∑
k=1

(
V Sk,t

(
Θ̃t

)
− V Sk,t

)2

+ g
(

Θ̃t

) , (31)

where t denotes the trading day, Pj,t

(
Θ̃t

)
is the model-implied price for the jth put option, Pj,t is the Bloomberg

quoted price for the jth put option. Here, the option price is normalized by the spot price. For the calibration
of option price, we select the weighting ωj to be (1/V egaj)

2
, where V egaj is the Black-Scholes Vega normalized

by the spot price as computed using the Bloomberg implied volatility. To avoid giving too much weights to deep
in-the-money and out-of-the-money options with very small Vega, we impose a lower bound of V egaj by 0.01.
As noted in Cont and Tankov (2004) and Christoffersen et al. (2009), such weighting scheme using the inverse of
Black-Scholes Vega effectively converts the pricing error in option price into error in implied volatility. In our case,
this makes the pricing errors for option and variance swap to be the same order of magnitude.

Following the suggestion in Gauthier and Rivaille (2009), we exclude the initial variance υ10 and υ20 in the
calibration in Step 2 and fix them as the estimated values in Step I. As such, we only calibrate the remaining
8 structural parameters Θ̃t = {ρ1, θ1, κ1, ξ1; ρ2, θ2, κ2, ξ2} in Step 2. We do not iterative the two steps as in
Christoffersen et al. (2009) because we have included variance swaps as additional market instruments to identify
the initial variances υ10 and υ20. For the initial guess, we take: ρ1 = ρ2 = −0.5, ξ1 = 0.5 and ξ2 = 1.0, and use the
estimated parameter in Step I as the initial values for θ1, θ2, κ1 and κ2. For the optimization algorithm, we use the
Levenberg-Marquardt algorithm to minimize the quadratic pricing error as a non-linear least-square problem.

Remark 14 For the penalty function, one has to set a loading coefficient α that balances the stability and precision
of the parameter estimates. Cont and Tankov (2004) propose the use of the Morozov discrepancy principle, which
authorize the loss of precision in the optimization procedure that is of the same order of magnitude of the model
error when applied to a given data set. In particular, Cont and Tankov (2004) suggest that one can first estimate a
priori error level e0 of the optimization problem (31) with α = 0. Then, the value of α can be selected in a way such
that the calibration error eα ≈ e0 and eα > e0. Following such procedure, we perform a number of trial calibrations
by taking different values of α. We take α = 0.02 for SPX market and α = 0.04 for NKY market as reasonable
parameters that meet the criteria.

5.2 S&P 500 Index Option

5.2.1 Calibration Results

Table 4 reports the estimated model parameters from the monthly calibration of the implied volatility surface and
term structure of variance swap for the sampling period from Jan-2010 to Dec-2012. The instantaneous variance
and correlation based on (2) and (3 ) are also reported as reference. We choose calibrate the model at the last
Wednesday of a month to minimize the month-end liquidity effect that may influence the implied volatility surface.
We also report the corresponding calibration errors to the implied volatility surface. As we noted in Remark (8),
the approximation formula could give option value that bleach the no-arbitrage condition for some parameter range
and cannot be inverted to the corresponding a Black-Scholes implied volatility. Therefore, from the estimated
parameters using the approximation formula, we then compute the corresponding model-implied volatility surface
by plugging in the model parameters into the exact formula of multifactor Heston model using the characteristic
function approach.

1. Initial Variance Factors: The left panel in Figure 3 shows the time series of the two initial variance factors
υ10 and υ20 based on the month-end calibration. Given the two-step procedure, the identification of the initial
variance parameters is very robust with respect to different initial guess and the penalty’s loading coefficient α.
This suggests that the term structure of variance swap contains rich information about the variance process.
The two variance factors can be distinguished as a long-term variance factor which has a mean-reversion speed
of 0.3−0.6, implying a half-life of around 2 to 3 years, and a short-term variance factor, with a mean-reversion
speed of 5.0 (i.e., half-life of around 2 to 3 months). Moreover, the time-series dynamics of the two variance
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factors and the instantaneous volatility (which is calculated as the square-root of the sum of initial variances)
matches closely to the short-term volatility such as the 1-month variance swap rate.

2. Volatility-of-Volatility and Correlation: It is well-known that the Vol-of-Vol parameters ξ1 and ξ2 capture
the level and curvature of the implied volatility surface, while the correlation coefficients ρ1 and ρ2 control
the skew of the smile. Therefore, the magnitudes of these parameters are expected to be higher during
stressed market scenarios. The short-term Vol-of-Vol experiences a sharp increase during Apr-Jun 2010 and
Jul-Sep 2011, which correspond to the outbreak of the European debt crisis and the stock market crash amid
the US debt ceiling concerns. In contrast, the long-term Vol-of-Vol remains relatively stable, which reflects
the dynamics of a slower time-scale. Similar to the dynamics of the Vol-of-Vol parameters, the short-term
correlation ρ2 become highly negative at −0.8 and −0.9 during Apr-Jun 2010 and Jul-Sep 2011 respectively,
reflecting the steepening of the short-term implied volatility skew when market participants perceive a higher
downside risk during a distress market.

3. Mean Level and Mean-Reversion Speed: As shown in the right panel of Figure 3, the mean levels θ1

and θ2 move in tandem (with θ1 > θ2), reflecting the parallel shift of the implied volatility surface with an
upward sloping term structure. It is interesting to note that the two parameters move in opposite direction
during Apr-Jun 2010 and Jul-Aug 2011, in which the short-term mean level θ2 experiences a drop while the
long-term mean θ1 moves upward, indicating its freedom to separately control the short-end and long-end of
the level of implied volatility surface. Indeed, when we compare the estimated mean levels θ1 and θ2 with
the variance swap rates of different tenors, we notice that the mean level θ1 (the long-term factor) is closely
linked to the long-term variance swap rate (e.g., the 12-month rate), while the mean level θ2 appears to
control slope of the term structure (e.g., the 12-month rate minus the 1-month rate). On the other hand, the
mean-reversion speed parameters κ1 and κ2 are very stable across time and is very close to the initial values
when the penalty function is imposed. Actually, the estimates of other model parameters are robust with
respect to alternative choices of the initial guess of κ1 and κ2. This indicates the cross-sectional data of option
prices at a single trading day does not contain enough information to identify the value of mean-reversion
speed. In practice, the mean-reversion speed parameters should be estimated using historical data (e.g., using
econometrics technique) and fix them during the daily calibration exercise.

4. Calibration Errors: We compute the calibration error for option price by subtracting the model implied
volatility by the Bloomberg implied volatility. The average calibration error in terms of implied volatility
ranges from 1% to 2% on different trading days, with the maximum calibration errors ranges from 5% to
7%. It is worth to note that the calibration error is primarily contributed by the pricing error for options
in extreme strike, whereas the average calibration error for around at-the-money options are less than 0.5%,
indicating an excellent fit to the implied volatility surface. The poor fit to deep moneyness options can be
explained by the model restriction of stochastic volatility model and the approximation formula: i.) it is
known that the short-term skewness at extreme strikes can be best explained by a model with jumps in asset
price, such as a jump-diffusion or jump-to-default model; ii.) the approximation formula is less accurate for
extreme strikes (in percentage terms), making it difficult to fit the implied volatility for these options.

5.2.2 Implied Volatility Surface

We present the implied volatility surface of the two consecutive month-end calibration during April 2010 and May
2010, which corresponds to the outbreak of the European debt crisis.

1. The Leverage Effect: Figure 4 show the calibration result for 28-April-2010. The implied volatility surface
shows a steep short-term skewness, with the 1-month implied volatility going from 15% at 105% moneyness
to 30% at 80% moneyness. As can be seen, the two-factor Heston model is able to reproduce the short-
term skewness with the moderate leverage effect with the instantaneous correlation of -0.56. In terms of
the calibration quality, the pricing errors are overall within 1-2%, with the discrepancy more significant for
short-term and long-term deep in-the-money put options.

2. The Short-Term and Long-Term Smile: Figure 5 show the calibration result for 26–May-2011. In
comparison to the upward sloping term structure in Figure 4, the term structure of implied volatility shows
an inverted hump-shape which a significant short-term skewness. This indicates that market participants are
expecting a recede of the debt crisis in the medium-to-long term, while perceiving the possibility of a market
crash in the near term which can be caused by a sudden change in central bank policy. On the other hand,
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Table 4: Calibrated model parameters and absolute errors (in volatility points) for SPX market of the two-factor
Heston model. The numbers shown are the estimated parameters obtained from monthly calibration (the last
Wednesday of a month) to the Bloomberg implied volatility surface and term structure of variance swap. The
columns Vol. and Corr. are the instantaneous volatility (square-root of the variance) and instantaneous correlation.

Factor 1 Factor 2 Error
Date ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20 Vol. Corr. Mean Min Max

Year 2010
Jan -0.54 0.52 0.069 0.59 0.035 -0.61 5.00 0.025 1.11 0.015 22.3 -0.54 1.27 0.05 3.82
Feb -0.57 0.46 0.056 0.60 0.024 -0.52 5.00 0.034 0.98 0.010 18.3 -0.53 1.18 0.06 3.21
Mar -0.61 0.43 0.065 0.56 0.016 -0.52 5.01 0.031 0.86 0.007 15.5 -0.56 1.26 0.07 3.16
Apr -0.59 0.50 0.087 0.63 0.026 -0.56 5.00 0.029 1.02 0.011 19.1 -0.56 1.49 0.11 3.30
May -0.55 0.53 0.214 0.77 0.058 -0.80 4.99 0.015 1.45 0.059 34.2 -0.68 1.88 0.03 6.82
Jun -0.65 0.56 0.207 0.91 0.075 -0.72 4.99 0.020 1.27 0.035 33.3 -0.67 2.16 0.00 5.67
Jul -0.65 0.44 0.110 0.85 0.031 -0.56 5.00 0.056 1.12 0.012 20.8 -0.61 1.90 0.10 5.14
Aug -0.73 0.46 0.132 0.83 0.041 -0.61 4.99 0.061 1.09 0.016 23.9 -0.69 1.63 0.00 4.84
Sep -0.68 0.38 0.124 0.84 0.024 -0.52 5.01 0.062 1.00 0.010 18.4 -0.63 1.78 0.04 5.81
Oct -0.63 0.37 0.091 0.76 0.020 -0.47 5.01 0.051 0.94 0.008 16.9 -0.58 1.52 0.02 5.08
Nov -0.63 0.28 0.127 0.69 0.019 -0.51 4.99 0.043 0.94 0.008 16.2 -0.58 1.69 0.00 4.53
Dec -0.70 0.34 0.083 0.77 0.011 -0.52 5.04 0.053 0.83 0.005 12.6 -0.64 1.79 0.08 5.44

Year 2011
Jan -0.64 0.38 0.085 0.66 0.011 -0.50 5.02 0.035 0.81 0.005 12.7 -0.59 1.62 0.05 4.36
Feb -0.63 0.50 0.097 0.66 0.028 -0.59 5.00 0.020 1.04 0.012 20.1 -0.60 1.71 0.10 3.72
Mar -0.69 0.38 0.074 0.64 0.014 -0.55 5.02 0.036 0.85 0.006 14.1 -0.63 1.58 0.05 4.53
Apr -0.66 0.37 0.091 0.65 0.009 -0.49 5.03 0.034 0.74 0.004 11.4 -0.60 1.57 0.11 4.97
May -0.67 0.43 0.109 0.60 0.014 -0.52 5.01 0.025 0.84 0.007 14.5 -0.60 1.40 0.00 3.96
Jun -0.67 0.41 0.080 0.65 0.012 -0.53 5.01 0.039 0.82 0.005 13.4 -0.62 1.63 0.10 4.53
Jul -0.65 0.52 0.110 0.55 0.026 -0.62 5.01 0.011 0.99 0.021 21.6 -0.61 1.22 0.02 4.14
Aug -0.57 0.56 0.133 0.76 0.066 -0.79 4.99 0.010 1.32 0.038 32.2 -0.65 2.04 0.01 5.67
Sep -0.63 0.58 0.169 0.83 0.096 -0.93 4.99 0.006 1.47 0.065 40.1 -0.76 2.08 0.01 6.87
Oct -0.72 0.58 0.105 0.83 0.053 -0.73 4.99 0.042 1.22 0.021 27.2 -0.71 1.90 0.04 4.27
Nov -0.66 0.50 0.054 0.86 0.045 -0.59 5.00 0.073 1.15 0.017 24.9 -0.63 1.99 0.20 4.62
Dec -0.67 0.46 0.091 0.74 0.034 -0.57 5.00 0.049 1.05 0.013 21.6 -0.63 1.65 0.02 3.97

Year 2012
Jan -0.67 0.39 0.081 0.74 0.014 -0.54 5.02 0.048 0.93 0.006 14.1 -0.62 1.85 0.07 4.92
Feb -0.67 0.40 0.126 0.73 0.014 -0.50 5.01 0.039 0.90 0.006 14.4 -0.61 1.98 0.12 4.93
Mar -0.69 0.39 0.099 0.69 0.007 -0.51 5.04 0.038 0.73 0.004 10.3 -0.62 1.80 0.06 4.91
Apr -0.71 0.44 0.133 0.66 0.014 -0.55 5.01 0.027 0.86 0.007 14.4 -0.64 1.65 0.02 4.22
May -0.64 0.52 0.138 0.74 0.035 -0.61 4.99 0.025 1.11 0.015 22.4 -0.61 1.93 0.06 4.97
Jun -0.66 0.39 0.135 0.69 0.021 -0.51 5.00 0.035 0.92 0.009 17.2 -0.60 1.73 0.06 4.49
Jul -0.64 0.44 0.121 0.65 0.022 -0.51 5.00 0.029 0.93 0.009 17.6 -0.58 1.61 0.01 4.48
Aug -0.67 0.44 0.113 0.65 0.014 -0.53 5.01 0.036 0.87 0.006 14.0 -0.61 1.53 0.00 4.43
Sep -0.64 0.45 0.137 0.56 0.015 -0.51 5.01 0.015 0.83 0.007 14.8 -0.58 1.46 0.01 3.82
Oct -0.63 0.47 0.122 0.54 0.020 -0.52 5.00 0.009 0.88 0.010 17.3 -0.56 1.35 0.02 3.42
Nov -0.58 0.46 0.090 0.49 0.014 -0.48 5.01 0.016 0.80 0.007 14.6 -0.52 1.22 0.03 3.35
Dec -0.63 0.50 0.108 0.49 0.020 -0.56 5.01 0.008 0.90 0.014 18.4 -0.56 1.16 0.02 3.64

Summary ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20 Vol. Corr. Mean Min Max
Mean -0.64 0.45 0.110 0.690 0.028 -0.57 5.00 0.033 0.988 0.014 19.3 -0.61 1.645 0.049 4.556

Median -0.65 0.45 0.109 0.675 0.021 -0.53 5.00 0.034 0.935 0.010 17.5 -0.61 1.641 0.040 4.508
Min -0.73 0.28 0.054 0.490 0.007 -0.93 4.99 0.006 0.732 0.004 10.3 -0.76 1.162 0.003 3.163
Max -0.54 0.58 0.214 0.908 0.096 -0.47 5.04 0.073 1.467 0.065 40.1 -0.52 2.165 0.201 6.867
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Figure 3: The time-series dynamics of the estimated initial volatility and long-term mean level in volatility points
(computed as square-root of the estimates) from monthly calibration.

the short-term skewness decays much faster than in the case of Figure 4. This is because the short-term
variance factor υ2t reverts to a lower mean-level θ2 such that the short-term leverage effect is suppressed.
This market scenario corresponds to Figure 3 (right panel) when the mean levels of the two variance factors
move in opposite direction.

In terms of the model flexibility, the calibrated implied volatility surface shows that the two-factor model
ia able to separately control the short-term and long-term term structure and volatility smile during these
stress market scenarios. In particular, it should be noted that the two-factor model is able to generate the
hump-shaped term structure of variance swap, which is not fleasible in the case of one-factor model. This
indicates the necessity to adopt multifactor modeling in order to consistently price European options and
volatility derivatives such as variance swaps.

5.3 Nikkei 225 Index Option

We perform similar monthly calibration using the NKY market data as obtained from Bloomberg. In contrast to
the SPX option market, the NKY option market is less liquid in which deep out-of-the money and long-maturity
trades are rare (Fukasawa et al., 2011). As a result, we include only the options with moneyness 90%, 95%, 97.5%,
100%, 102.5%, 105%, and 110% in the calibration.The paramter settings and procedures are similar to the case of
SPX options.

5.3.1 Calibration Results

The monthly calibration result to the NKY data is presented in Table 5. As the implied volatility surface is more
flat, the esimate of the short-term mean level θ1 is found to be small, reflecting that the term structure at the
short-term is usually inverted or moderately upward. In comparison to the SPX market, the estimated correlations
are lower with the average instantaneous correlation of −0.48, suggesting the NKY implied volatility surface is more
flat. The time-series variations of other model parameters are similar to the SPX calibration.

Given the two-step calibration procedure, the identification of the initial variance factors are robust. Neverthe-
less, we find a number of occasions in the data set that the term structure of variance swap are inconsistent to the
implied volatility surface, in particular for long time-to-maturity options. Indeed, for the NKY options traded in
the Osaka Securities Exchange, most of the contracts are traded with a duration less than 1 year in which only
the June and December contracts are traded with time-to-maturity over 1 years.1 This is in contrast to the case
of SPX market in which the actively traded long-term options in the Long-term Equity Anticipation Securities
(LEAPS) market helps market participants to pin down the long-end of the implied volatility surface. The poor
liquidity of long-term options in the NKY market may renders the interpolation procedure by Bloomberg unreliable.

1See http://www.ose.or.jp/e/derivative/225options/.

21



Figure 4: SPX Index on 28-Apr-2010: the plot of the Bloomberg implied volatility surface, calibrated model-implied
volatility surface, calibration errors, and calibration result to the Bloomberg theoritical term structure of variance
swap. The calibrated model parameters are: ρ1 = −0.59, κ1 = 0.50, θ1 = 0.087, ξ1 = 0.63, υ10 = 0.026, ρ2 =
−0.56, κ2 = 5.00, θ2 = 0.029, ξ2 = 1.02, υ20 = 0.011.

Therefore, one should be cautious in interpreting the calibrated results in these cases. Fortunately, in the presence
of the regularization procedure, the calibrated estimates are not very sensitive to the outliers.

5.3.2 Implied Volatility Surface

Figure 6 shows the calibrated implied volatility surface for 30-March-2011, which captures the stress market after
the earthquake and concerns about the Fukushima nuclear disaster. The overall fit of the two-factor for around
at-the-money and medium time-to-maturity options are excellent, and is able to capture the inverted term structure
and some of the skew of implied volatility. Nevertheless, the model has difficulty to reproduce the short-term skew
of deep moneyness options which is better to be captured by a jump-diffusion model given its disaster nature.

5.4 Computational Time

In terms of computational time, the calibration using the approximation formula is very efficient. For example, when
we perform the calibration using the Matlab routine for Levenberg-Marquardt algorithm (running on a Laptop with
an Intel(R) Core(TM) i7-3520 CPU at 2.90 Ghz), and set the convergence tolerance of the objective function is set
to be 1e-05, the total computational time to calibrate the 36 snapshots of end-of-month implied volatility surface
is around 100-150 seconds. In contrast, when the characteristic function is used to compute the exact option price,
the corresponding computational time is 2000 to 2500 seconds. The computational speed improved signifcantly by
a factor of 20. Indeed, the calibration to a snapshot of the implied volatility surface is almost instantaneous when
the approximation formula is used. In addition, we found that the calibration using the approximation formula
gives more stable estimated parameters across time. This can be explained by that fact that the computation of
the exact option price using the characteristic function approach may encounter numerical instability during the
calibration process at different parameter ranges (e.g., the selected contour for Fourier inversion may not be suitable
for some extreme parameter ranges). In practice, it is difficult for the researcher to ensure the numerical stability
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Figure 5: SPX Index on 26-May-2010: the plot of the Bloomberg implied volatility surface, calibrated model-implied
volatility surface, calibration errors, and calibration result to the Bloomberg theoritical term structure of variance
swap. The calibrated model parameters are: ρ1 = −0.55, κ1 = 0.53, θ1 = 0.214, ξ1 = 0.77, υ10 = 0.058, ρ2 =
−0.80, κ2 = 4.99, θ2 = 0.015, ξ2 = 1.45, υ20 = 0.059.

of the Fourier inversion at every single iteration of the optimization procedure. The ease of implementation of
the approximation formula suggests that the calibration can be done and visualized even on an excel spreadsheet
environment. Moreover, given the gain in computation efficiency, the approximation formula is very useful for
econometrics estimation, back-testing of the model, as well as evaluation of portfolio risk (e.g., calculation of Value-
at-Risk or Counterparty Credit Exposure), in which one has to evaluate a large number of option prices while the
requirement on precision is of less concerns.

6 Conclusion

In this paper, we develop an asymptotic approach to the multifactor Heston option-pricing model under time-
dependent model parameters. The expansion terms under constant parameter are explicitly computed, while the
incorporation of time-dependent parameters can be achieved in straight-forward manner. We show that the error
bound of the approximation formula for the multifactor case can be formulated as the sum of error in the one-factor
case in Benhamou et al. (2010). For illustration, we calibrate a two-factor Heston model to the option price and
term structure of variance swap of the S&P 500 index. The calibration result shows that it is possible to distinguish
a short-term and a long-term variance factor with different mean-reversion speed and level. In particular, the
two-factor model provides the flexibility to separately control the short-end and long-end of the implied volatility in
order to fit various shapes of the implied volatility surface during stress market scenarios. In terms of computational
time, the approximation formula speed up the calibration procedure by at least a factor of 20 in comparison to the
case when the characteristic function approach is used to compute the model prices. As the approximation formula
allows one to compute option prices under Heston model with multifactor extension and time-dependent parameters
in an unified framework, it would be interesting to perform the empirical study that compares the parsimoniousness
of multifactor extension and time-dependent parameters extension. Finally, it is worth to note that the asymptotic
approach developed in this paper can be readily applied to other multifactor models, such as a jump-to-default
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Table 5: Calibrated model parameters and absolute errors (in volatility points) for NKY market of the two-factor
Heston model. The numbers shown are the estimated parameters obtained from monthly calibration (the last
Wednesday of a month) to the Bloomberg implied volatility surface and term structure of variance swap. The
columns Vol. and Corr. are the instantaneous volatility (square-root of the variance) and instantaneous correlation.

Factor 1 Factor 2 Error
Date ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20 Vol. Corr. Mean Min Max

Year 2011
Jan -0.48 0.51 0.054 0.48 0.016 -0.50 5.00 0.040 1.01 0.006 14.6 -0.45 0.93 0.02 4.07
Feb -0.46 0.52 0.066 0.49 0.030 -0.50 5.00 0.016 1.03 0.013 20.6 -0.45 1.18 0.02 4.58
Mar -0.52 0.54 0.100 0.47 0.041 -0.70 5.01 0.001 1.21 0.072 33.6 -0.62 1.96 0.14 6.86
Apr -0.56 0.53 0.093 0.56 0.038 -0.58 5.00 0.014 1.08 0.016 23.1 -0.54 1.33 0.00 4.24
May -0.57 0.55 0.105 0.52 0.038 -0.62 5.00 0.001 1.11 0.018 23.6 -0.55 1.61 0.00 5.15
Jun -0.48 0.53 0.104 0.58 0.040 -0.56 5.00 0.002 1.08 0.018 24.1 -0.49 1.76 0.10 4.17
Jul -0.40 0.50 0.060 0.53 0.030 -0.46 5.00 0.024 1.02 0.012 20.7 -0.41 1.59 0.00 4.73
Aug -0.72 0.57 0.141 0.81 0.063 -0.60 5.00 0.001 1.11 0.023 29.3 -0.67 2.57 0.44 9.74
Sep -0.60 0.49 0.116 0.80 0.079 -0.62 5.01 0.006 1.16 0.048 35.8 -0.60 3.40 0.10 6.89
Oct -0.57 0.48 0.135 0.75 0.049 -0.54 5.00 0.022 1.06 0.021 26.5 -0.55 1.89 0.27 4.53
Nov -0.59 0.53 0.154 0.71 0.063 -0.60 5.00 0.005 1.11 0.032 30.8 -0.58 2.26 0.13 5.72
Dec -0.47 0.55 0.036 0.45 0.030 -0.53 4.99 0.043 1.05 0.009 19.7 -0.46 1.84 0.08 7.94

Year 2012
Jan -0.43 0.51 0.058 0.50 0.029 -0.47 5.00 0.027 1.03 0.012 20.2 -0.42 1.17 0.13 3.45
Feb -0.44 0.43 0.180 0.85 0.027 -0.43 5.00 0.019 1.00 0.011 19.6 -0.44 2.28 0.28 5.63
Mar -0.44 0.46 0.069 0.64 0.023 -0.44 5.00 0.031 1.01 0.009 17.8 -0.43 1.50 0.01 4.31
Apr -0.48 0.47 0.057 0.63 0.025 -0.48 5.00 0.033 1.03 0.010 18.8 -0.47 1.30 0.14 2.92
May -0.35 0.41 0.227 0.99 0.037 -0.43 5.00 0.016 1.01 0.017 23.3 -0.38 3.30 0.16 8.26
Jun -0.55 0.44 0.100 0.80 0.025 -0.48 5.00 0.037 1.04 0.010 18.5 -0.52 2.14 0.17 4.43
Jul -0.51 0.48 0.101 0.72 0.031 -0.52 4.99 0.021 1.06 0.012 20.9 -0.51 2.01 0.07 4.49
Aug -0.37 0.48 0.108 0.65 0.021 -0.41 4.99 0.022 1.01 0.008 17.1 -0.38 1.67 0.04 4.05
Sep -0.37 0.45 0.133 0.76 0.019 -0.37 4.99 0.021 0.99 0.008 16.5 -0.37 2.32 0.31 6.41
Oct -0.40 0.44 0.134 0.67 0.020 -0.44 5.00 0.011 1.00 0.012 17.8 -0.41 1.70 0.00 4.77
Nov -0.32 0.48 0.058 0.50 0.021 -0.37 5.00 0.019 0.96 0.009 17.2 -0.32 1.67 0.05 3.99
Dec -0.48 0.48 0.101 0.63 0.029 -0.49 5.00 0.021 1.02 0.012 20.2 -0.47 1.34 0.02 4.18

Summary ρ1 κ1 θ1 ξ1 υ10 ρ2 κ2 θ2 ξ2 υ20 Vol. Corr. Mean Min Max
Mean -0.48 0.49 0.104 0.645 0.034 -0.51 5.00 0.019 1.051 0.017 22.1 -0.48 1.865 0.112 5.230

Median -0.48 0.48 0.101 0.638 0.030 -0.49 5.00 0.020 1.029 0.012 20.4 -0.46 1.728 0.089 4.558
Min -0.72 0.41 0.036 0.451 0.016 -0.70 4.99 0.001 0.963 0.006 14.6 -0.67 0.931 0.000 2.915
Max -0.32 0.57 0.227 0.991 0.079 -0.37 5.01 0.043 1.211 0.072 35.8 -0.32 3.396 0.439 9.739

model with stochastic default intensity, or a mixture stochastic volatility model in which one factor is driven by a
Brownian motion and another factor driven by a fractional Brownian motion. These extensions are left for further
research.
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A Multifactor Heston Model under AD framework

In this Appendix, we derive the closed-form solution of the characteristic function for the multifactor Heston
model under the AD framework in Duffie et al. (2000). Consider the filtered probability space (Ω, F, {Ft} , P ), the
multifactor Heston model is defined in some state space D ⊂ R2n:

dYt = µ (Yt) dt+ σ (Yt) dZt

with the 2n-dimensional Brownian motions Zt =
{
W 1
t , ...,W

n
t , B

1
t , ..., B

n
t

}
and the state variables Yt = (xt, υt)

where xt = (Xt, 0, ..., 0)
T

and υt = (υ1t, υ2t, ..., υnt)
T

, with Xt is the log-forward price in (1). The drift coefficient
is given by µ (Yt) = (µx (Yt) , µυ (Yt)) with

µx (Yt) =

(
−1

2

n∑
i=1

υit, 0, ..., 0

)T
, µυ (Yt) = (κ1 (θ1 − υ1t) , ..., κn (θn − υnt))T ,

and the volatility matrix is formulated as

σ (Yt) =



√
υ1t · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · √

υnt 0 · · · 0

ρ1ξ1
√
υ1t · · · 0 ξ1

√
1− ρ2

1

√
υ2t · · · 0

...
. . .

...
...

. . .
...

0 · · · ρnξn
√
υnt 0 · · · ξn

√
1− ρ2

n

√
υnt


.

Following Duffie et al. (2000), the marginal characteristic function with u = (u0, 0, ..., 0) is readily obtained as

φ(Yt; t, T ;u) = E [ exp (u0XT )| Ft] = Et [exp (u · YT )] = exp

[
A (T − t) +B (T − t)xt +

n∑
i=1

Di (T − t) υi0

]
, (A.1)

in which the coefficients A (τ) , B (τ) and D (τ) = (D1 (τ) , ..., Dn (τ))
T

solve the system of ODEs

∂A (τ)

∂τ
=

n∑
i=1

κiθiDi (τ) ,
∂B (τ)

∂τ
= 0,

∂Di (τ)

∂τ
=

1

2
ξ2
iD

2
i (τ) + ρiξiB (τ)Di (τ)− κiDi (τ) +

1

2
B2 (τ)− 1

2
B (τ) ,

for i = 1, 2, ..., n and τ ∈ [0, T − t] , with the initial conditions given by A (0) = 0, B (0) = u0 and Di (0) = 0. It is
noted that the ODEs governing Di (τ) can be recasted as a Riccati equation

∂Di (τ)

∂τ
= ci,0 + ci,1Di (τ) + ci,2D

2
i (τ) ,

for i = 1, 2, ..., n, by expressing the coefficients

ci,0 =
1

2
u0 (u0 − 1) , ci,1 = ρiξiu0 − κi, ci,2 =

1

2
ξ2
i ,

with the boundary condition Di (0) = 0. By direct integration, the system of ODEs has the explicit solution

A (τ) =

n∑
i=1

κiθi

{
ri,−τ −

2

ξ2
i

ln

[
1− gi exp [−diτ ]

1− gi

]}
,

B (τ) = u0, Di (τ) = ri,−
1− exp [−diτ ]

1− gi exp [−diτ ]
, (A.2)

where

ri,± =
1

2ci,2
[−ci,1 ± di] , gi =

ri,−
ri,+

, di =
√
c2i,1 − 4ci,0ci,2.

In the case when the model parameters are time-dependent, we do not have closed-form solution and one has to
resort numerical method such as the fourth-order Runga-Kutta method to solve the system of ODEs. By taking
u0 = i0ω gives (6) in Section 2.
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B Asymptotic Expansion Formula

Recall that the put option price under the perturbed Heston model is given by

g(ε) = E
[
e−
∫ T
0
rtdtE

[(
K − e

∫ T
0

(rt−qt)dt+XεT
)

+

∣∣∣∣FBT ]] = E[P (x′ + ∆x (ε) , y′ + ∆y (ε))]. (B.1)

Now, we expand P (x′ + ∆x (ε) , y′ + ∆y (ε)) with respect to ε around ε = 0n up to second order,

P (x′+∆x (ε) , y′+∆y (ε)) = P (x′, y′)+

n∑
i=1

εi
∂P

∂εi
(x (ε) , y (ε))

∣∣∣∣
ε=0n

+
1

2

n∑
i=1

n∑
j=1

εiεj
∂2P

∂εi∂εj
(x (ε) , y (ε))

∣∣∣∣
ε=0n

+ε (B.2)

where ε is the expansion error. The partial derivatives are given by chain rules as

∂P

∂εi
(x (ε) , y (ε)) = Px∂ix+ Py∂iy

∂2P

∂ε2i
(x (ε) , y (ε)) = Pxx(∂ix)2 + Px∂

2
i x+ Pyy(∂iy)2 + Py∂

2
i y + 2Pxy(∂ix)(∂iy)

∂2P

∂εi∂εj
(x (ε) , y (ε)) = Pxx (∂ix) (∂jx) + Pxy (∂ix) (∂jy) + Pyy (∂iy) (∂jy) + Pxy (∂jx) (∂iy)

with the notation Px = ∂P
∂x (x′, y′), ∂ix = ∂x(ε)

∂εi

∣∣∣
ε=0n

and ∂i∂jx = ∂2x(ε)
∂εi∂εj

∣∣∣
ε=0n

, where we have used the relationship

∂i∂jx (ε) = ∂i∂jy (ε) = 0.

Plugging in these derivatives to the expansion formula (B.2), we have

P (x′ + ∆x (ε) , y′ + ∆y (ε)) = P (x′, y′) +

n∑
i=1

[
Px

(
εi∂ix+

1

2
ε2i ∂

2
i x

)
+ Py

(
εi∂iy +

1

2
ε2i ∂

2
i y

)]

+
1

2

n∑
i=1

n∑
j=1

εiεj [Pxx(∂ix)(∂jx) + Pyy(∂iy)(∂jy) + 2Pxy(∂ix)(∂jy)] + ε.

By noting that

∂ix (ε) = ∂iΓ
εi
iT = Γi1,T , ∂2

i x (ε) = ∂2
i ΓεiiT = Γi2,T

∂iy (ε) = ∂iΞ
εi
iT = Ξi1,T , ∂2

i y (ε) = ∂2
i ΞεiiT = Ξi2,T ,

the expansion is written as

P (x′ + ∆x (ε) , y′ + ∆y (ε))

= P (x′, y′) +

n∑
i=1

[
Px

(
εiΓi1,T +

ε2i
2

Γi2,T

)
+ Py

(
εiΞi1,T +

ε2i
2

Ξi2,T

)]

+
1

2

n∑
i=1

n∑
j=1

εiεj [PxxΓi1,TΓj1,T + PyyΞi1,TΞj1,T + 2PxyΓi1,TΞj1,T ] + ε,

= P (x′, y′) + Px

n∑
i=1

(
εiΓi1,T +

ε2i
2

Γi2,T

)
+ Py

n∑
i=1

(
εiΞi1,T +

ε2i
2

Ξi2,T

)

+
1

2

Pxx( n∑
i=1

εiΓi1,T

)2

+ Pyy

(
n∑
i=1

εiΞi1,T

)2

+ 2Pxy

(
n∑
i=1

εiΓi1,T

)(
n∑
i=1

εiΞi1,T

)+ ε.
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Then, by taking the expectations on the both sides, the second-order expansion of g(ε) with respect to ε around
ε = 0n is given by

g(ε) = E [P (x′, y′)] + E

[
∂P (x′, y′)

∂x

n∑
i=1

(
εiΓi1,T +

ε2i
2

Γi2,T

)]

+E
[
∂P (x′, y′)

∂y

(
εiΞi1,T +

ε2i
2

Ξi2,T

)]

+
1

2
E

∂2P (x′, y′)

∂x2

(
n∑
i=1

εiΓi1,T

)2
+

1

2
E

∂2P (x′, y′)

∂y2

(
n∑
i=1

εiΞi1,T

)2


+E

[
∂2P (x′, y′)

∂x∂y

(
n∑
i=1

εiΓi1,T

)(
n∑
i=1

εiΞi1,T

)]
+ ε̃, (B.3)

where ε̃ = E[ε]. By plugging in the explicit expressions in (17) and (18), we obtain the expansion formula in Section
3.2. It is noted that the result (B.3) is obtained via the expansion with respect to ε while we consider an expansion
with respect to a different parameter λ with keeping ε fixed later in Appendix D.

C Expansion Coefficients with Malliavin Calculus

We set out the following definitions and lemmas by following Benhamou et al. (2010).

Definition 15 (Integral Operator)

1. For any real number k and any integrable function l = l (u), for u ∈ [0, T ] , we denote

ω
(k,l)
t,T ,

∫ T

t

ekul (u) du (C.1)

for ∀t ∈ [0, T ] .

2. For any real numbers (k1, k2, ..., kn) and any integrable functions (l1, l2, ..., ln) , li = li (u) for u ∈ [0, T ] , we
denote the n-times iterated integral as

ω
(k1,l1),(k2,l2),...,(kn,ln)
t,T , ω

(
k1,l1ω

(k2,l2),...,(kn,ln)

·,T

)
t,T (C.2)

for ∀t ∈ [0, T ] .

Lemma 16 (Duality Formula) For G ∈ D1,∞ (Ω) and a square integrable and predictable process γ, we have

E
[
G

∫ t

0

γsdBs

]
= E

[∫ t

0

γsD
B
s (G)ds

]
(C.3)

where DB
s (G) =

(
DB
s (G)

)
s≥0

is the first Malliavin derivative of G with respect to a one-dimensional standard

Brownian motion B.
Proof.See Nualart (2006).

As an application of the result above, an expectation of a random variable with a stochastic integral with respect
to Bα can be transformed by the duality formula to pick up only the diffusion coefficient of Bα. The technique
plays an important role as a building block in the following calculations.

Lemma 17 Suppose a random variable is given in a form of G (VT ) ∈ D1,∞ (Ω) , where G is a smooth function,

VT =
n∑
i=1

∫ T
0
ρit
√
υi0,tdB

i
t and Bi are independent standard Brownian motions for i = 1, 2, ..., n . Let γ be a square

integrable and predictable process. Then we have

E
[
G (VT )

∫ t

0

γsdB
α
s

]
= E

[
G(1) (VT )

∫ t

0

γsραt
√
υα0,tds

]
(C.4)

for all α = 1, 2, ..., n, where G(k) is the k-th derivative of G.
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Proof.Let us denote by Dα = (Dα
s (·))s≥0 the first Malliavin derivative with respect to the Brownian motion Bα,

for α = 1, 2, ..., n. Note that

Dα
s

(∫ T

0

ρit
√
υi0,tdB

i
t

)
= δiαραs

√
υαs1{s≤T},

where δij is the Kronecker’s delta. By the chain rule of Malliavin derivative (see Nualart, 2006, Proposition 1.2.3),
we have

Dα
s (G (VT )) = G(1) (VT )

n∑
i=1

Dα
s

(∫ T

0

ρit
√
υi0,tdB

i
t

)
= G(1) (VT ) ραs

√
υαs1{s≤T}. (C.5)

Then Lemma 16 yields the result.

Lemma 18 For any deterministic integrable function f on [0, T ] and any continuous semimartingale Z with Z(0) =
0, we have ∫ T

0

f (t)Z (t) dt =

∫ T

0

ω
(0,f)
t,T dZ (t) .

Proof.Applying Ito’s formula on ω
(0,f)
t,T Z (t), we have d

(
ω

(0,f)
t,T Z (t)

)
= −f (t)Z (t) dt + ω

(0,f)
t,T dZ (t). Note that

Z(0) = 0 and ω
(0,f)
T,T = 0. A direct integration on both side from t = 0 to t = T gives the result.

Lemma 19 Let P = P (x, y) to be the Black-Scholes formula of a put option, we have[
∂

∂y
− 1

2

[
∂2

∂x2
− ∂

∂x

]]
P (x, y) = 0 (C.6)

for all x ∈ R and y ∈ R+.
Proof.This can be proved by direct differentiation of the Black-Scholes formula.

To proceed, we state the following Lemma, which is an extension of Lemma 5.5 in Benhamou et al. (2010).

Lemma 20 Let G (VT ) = G

(
n∑
i=1

∫ T
0
ρit
√
υi0,tdB

i
t

)
∈ D1,∞ (Ω) as in Lemma 17, h be a deterministic function

which is integrable, and υi1,t = e−κit
∫ t

0
eκisξis

√
υi0,sdB

i
s as defined in (15) for i = 1, 2, ..., n,. Then,we have

E

[
G (VT )

∫ T

0

h (t) υα1,tdt

]
= ω

(κα,φα1),(−κα,h)
0,T E

[
G(1) (VT )

]
, (C.7)

E

[
G (VT )

∫ T

0

h (t) υα1,tυβ1,tdt

]
= ω

(κα,φα1),(κβ ,φβ1),(−(κα+κβ),h)
0,T E

[
G(2) (VT )

]
+ω

(κβ ,φβ1),(κα,φα1),(−(κα+κβ),h)
0,T E

[
G(2) (VT )

]
, α 6= β, (C.8)

where
φα1(s) = ραsξαsυα0,s, φβ1(s) = ρβsξβsυβ0,s.

Proof.For the equation (C.7), we have

E

[
G (VT )

∫ T

0

h (t) υα1,tdt

]
= E

[
G (VT )

∫ T

0

h (t) e−καt
[∫ t

0

eκαsξαs
√
υα0,sdB

α
s

]
dt

]

= E

[
G (VT )

∫ T

0

eκαsξαs
√
υα0,s

[∫ T

s

h (t) e−καtdt

]
dBαs

]

= E

[
G (VT )

∫ T

0

ω
(−κα,h)
s,T eκαsξαs

√
υα0,sdB

α
s

]

= E

[
G(1) (VT )

∫ T

0

ω
(−κα,h)
t,T eκαtραtξαtυα0,tdt

]
= E

[
G(1) (VT )

]
ω

(κα,φα1),(−κα,h)
0,T ,
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where we applied the Fubini theorem on the second equality and Lemma 17 on the fourth equality.
For the second equation (C.8), let us denote Y it = eκitυi1,t. Since it holds that due to d〈Y α, Y β〉 = 0 when α 6= β

υα1,tυβ1,t = e−(κα+κβ)tY αt Y
β
t = e−(κα+κβ)t

[∫ t

0

Y αs dY
β
s +

∫ t

0

Y βs dY
α
s

]
,

we observe

E

[
G (VT )

∫ T

0

h (t) υα1,tυβ1,tdt

]
= E

[
G (VT )

∫ T

0

h (t) e−(κα+κβ)t

(∫ t

0

Y αs dY
β
s +

∫ t

0

Y βs dY
α
s

)
dt

]
.

For the first term on the right-hand side

Y1 = E

[
G (VT )

∫ T

0

h (t) e−(κα+κβ)t

(∫ t

0

Y αs dY
β
s

)
dt

]
,

in a similar way as the previous discussion we have

Y1 = E

[
G (VT )

∫ T

0

h (t) e−(κα+κβ)t

(∫ t

0

Y αs e
κβsξβs

√
υβ0,sdB

β
s

)
dt

]

= E

[
G (VT )

∫ T

0

ω
(−(κα+κβ),h)
s,T Y αs e

κβsξβt
√
υβ0,sdB

β
s

]

= E

[
G(1) (VT )

∫ T

0

ω
(−(κα+κβ),h)
t,T eκβtρβtξβtυβ0,tY

α
t dt

]

= E

[
G(1) (VT )

∫ T

0

ω
(−(κα+κβ),h)
t,T eκβtφβ1(t)Y αt dt

]
,

where we applied Lemma 17 on the third equality. To further simplify, we use Lemma 18 by taking f (t) =

ω
(−(κα+κβ),h)
t,T eκβtφβ1(t), Z (t) = Y αt i.e., dZ (t) = eκαtξαt

√
υα0,tdB

α
t . Then by noting that

ω
(0,f)
t,T =

∫ T

t

ω
(−(κα+κβ),h)
s,T eκβsφβ1(s)ds = ω

(κβ ,φβ1),(−(κα+κβ),h)
t,T ,

Lemma 18 and Lemma 17 yields

Y1 = E

[
G(1) (VT )

∫ T

0

ω
(κβ ,φβ1),(−(κα+κβ),h)
t,T eκαtξαt

√
υα0,tdB

α
t

]

= E

[
G(2) (VT )

∫ T

0

ω
(κβ ,φβ1),(−(κα+κβ),h)
t,T eκαtραtξαtυα0,tdt

]
= ω

(κα,φα1),(κβ ,φβ1),(−(κα+κβ),h)
t,T E

[
G(2) (VT )

]
.

By similar argument, the second term is obtained as

Y2 = E

[
G (VT )

∫ T

0

h (t) e−(κα+κβ)t

(∫ t

0

Y βs dY
α
s

)
dt

]
= ω

(kβ ,φβ1),(kα,φα1),(−(κα+κβ),h)
0,T E

[
G(2) (VT )

]
.

C.1 Proof of equation (22) in Proposition 1

From the expansion formula, it is easy to verify that when ε = 1n, take i = α and j = β such that α 6= β, we have

Γα,βT = E
[
∂2P

∂x2
HαTHβT

]
+ E

[
∂2P

∂y2
LαTLβT

]
+ E

[
∂2P

∂x∂y
HαTLβT

]
+ E

[
∂2P

∂x∂y
HβTLαT

]
,
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where

Hαt =

∫ t

0

ραs
υα1,s

2(υα0,s)1/2
dBαs −

1

2

∫ t

0

ρ2
αsυα1,sds,

Lαt =

∫ T

0

(
1− ρ2

αs

)
υα1,sds.

By the application of Ito’s Lemma and the independence of
{
Bit : i = 1, 2, ..., n

}
, we can express

Γα,βT = E

[
∂2P

∂x2

∫ T

0

HαtdHβt

]
+ E

[
∂2P

∂x2

∫ T

0

HβtdHαt

]
+ E

[
∂2P

∂y2

∫ T

0

LαtdLβt

]
+ E

[
∂2P

∂y2

∫ T

0

LβtdLαt

]

+E

[
∂2P

∂x∂y

∫ T

0

HαtdLβt

]
+ E

[
∂2P

∂x∂y

∫ T

0

LβtdHαt

]
+ E

[
∂2P

∂x∂y

∫ T

0

HβtdLαt

]
+ E

[
∂2P

∂x∂y

∫ T

0

LαtdHβt

]
.

Let us denote the k-th term on the right-hand side by Ik. It is observed that the following pair of terms are
symmetric in α and β : I1&I2, I3&I4, I5&I7, and I6&I8. We make use of Lemma 17 and Lemma 19 repeatedly in
what follows in order to transform the terms of the partial derivatives with respect to x and y inside the expectations
above to the partial derivatives with respect to y only.

i.) I1&I2:
Noting that

dHβt = ρβt
υβ1,t

2(υβ0,t)1/2
dBβt −

1

2
ρ2
βtυβ1,tdt,

we have

I1 , E

[
∂2P

∂x2

∫ T

0

HαtdHβt

]
= E

[
∂2P

∂x2

∫ T

0

Hαtρβt
υβ1,t

2(υβ0,t)1/2
dBβt

]
− E

[
∂2P

∂x2

∫ T

0

Hαtρ
2
βt

υβ1,t

2
dt,

]
.

Since by Lemma 17 the first term is

E

[
∂2P

∂x2

∫ T

0

Hαtρβt
υβ1,t

2(υβ0,t)1/2
dBβt

]
= E

[
∂3P

∂x3

∫ T

0

Hαtρ
2
βt

υβ1,t

2
dt

]
,

we have

I1 = E

[(
∂3

∂x3
− ∂2

∂x2

)
P

∫ T

0

Hαtρ
2
βt

υβ1,t

2
dt

]
= E

[
∂2P

∂x∂y

∫ T

0

Hαtρ
2
βtυβ1,tdt

]
,

where Lemma 19 is applied on the second equality. To further simplify, we substitute the definition of Hαt, such
that

I1 =
1

2
E

[
∂2P

∂x∂y

∫ T

0

ρ2
βtυβ1,t

(∫ t

0

ραs
υα1,s

(υα0,s)1/2
dBαs

)
dt

]
− 1

2
E

[
∂2P

∂x∂y

∫ T

0

ρ2
βtυβ1,t

(∫ t

0

ρ2
αsυα1,sds

)
dt

]
, (C.9)

and by applying Fubini Theorem and Lemma 17 on the first term, we have

E

[
∂2P

∂x∂y

∫ T

0

ρ2
βtυβ1,t

(∫ t

0

ραs
υα1,s

2(υα0,s)1/2
dBαs

)
dt

]
=

1

2
E

[
∂2P

∂x∂y

∫ T

0

ραs
υα1,s

(υα0,s)1/2

(∫ T

s

ρ2
βtυβ1,tdt

)
dBαs

]

=
1

2
E

[
∂3P

∂x2∂y

∫ T

0

ρ2
αsυα1,s

(∫ T

s

ρ2
βtυβ1,tdt

)
ds

]

=
1

2
E

[
∂3P

∂x2∂y

∫ T

0

ρ2
βtυβ1,t

(∫ t

0

ρ2
αsυα1,sds

)
dt

]
.

Finally, by Lemma 19 we have

I1 = E

[
∂2P

∂y2

∫ T

0

ρ2
βtυβ1,t

(∫ t

0

ρ2
αsυα1,sds

)
dt

]
. (C.10)
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As term (2) is symmetric in (α, β) with term (1), by similar argument, we have

I2 = E

[
∂2P

∂x2

∫ T

0

HβtdHαt

]
= E

[
∂2P

∂y2

∫ T

0

ρ2
αtυα1,t

(∫ t

0

ρ2
βsυβ1,sds

)
dt

]
. (C.11)

ii.) I3&I4:
We express I3&I4 as

I3 = E

[
∂2P

∂y2

∫ T

0

LαtdLβt

]
= E

[
∂2P

∂y2

∫ T

0

(
1− ρ2

βt

)
υβ1,t

(∫ t

0

(
1− ρ2

αs

)
υα1,sds

)
dt

]
(C.12)

I4 = E

[
∂2P

∂y2

∫ T

0

LβtdLαt

]
= E

[
∂2P

∂y2

∫ T

0

(
1− ρ2

αt

)
υα1,t

(∫ t

0

(
1− ρ2

βs

)
υβ1,sds

)
dt

]
(C.13)

for later use.
iii.) I5, I6, I7 and I8:
By the definition of Hαt and Lβt, we have

I5 = E

[
∂2P

∂x∂y

∫ T

0

HαtdLβt

]

=
1

2
E

[
∂2P

∂x∂y

∫ T

0

(
1− ρ2

βt

)
υβ1,t

(∫ t

0

ραs
υα1,s

(υα0,s)1/2
dBαs

)
dt

]
− 1

2
E

[
∂2P

∂x∂y

∫ T

0

(
1− ρ2

βt

)
υβ1,t

(∫ t

0

ρ2
αsυα1,sds

)
dt

]
,

which is similar to (C.9). Thus, in the same way as the derivation of (C.10), we are ready to obtain

I5 =

[
∂2P

∂y2

∫ T

0

(
1− ρ2

βt

)
υβ1,t

(∫ t

0

ρ2
αsυα1,sds

)
dt

]
. (C.14)

As I5 is symmetric in (α, β) with I7, we have

I7 =

[
∂2P

∂y2

∫ T

0

(
1− ρ2

αt

)
υα1,t

(∫ t

0

ρ2
βsυβ1,sds

)
dt

]
. (C.15)

Similarily, for I6, we have

I6 = E

[
∂2P

∂x∂y

∫ T

0

LβtdHαt

]
=

1

2
E

[
∂2P

∂x∂y

∫ T

0

Lβtραt
υα1,t

(υα0,t)1/2
dBαt

]
− 1

2
E

[
∂2P

∂x∂y

∫ T

0

Lβtρ
2
αtυα1,tdt

]

Apply Lemma 17 on the first term, and then use Lemma 19, we obtain

I6 = E

[
∂2P

∂y2

∫ T

0

ρ2
αtυα1,t

(∫ t

0

(
1− ρ2

βs

)
υβ1,sds

)
dt

]
, (C.16)

and by symmetry we readily have

I8 = E

[
∂2P

∂y2

∫ T

0

ρ2
βtυβ1,t

(∫ t

0

(
1− ρ2

αs

)
υα1,sds

)
dt

]
. (C.17)

Finally, by summing up all the eight terms in (C.10)-(C.17), we have

Γα,βT = E

[
∂2P

∂y2

∫ T

0

[∫ t

0

υα1,sds

]
υβ1,tdt

]
+ E

[
∂2P

∂y2

∫ T

0

[∫ t

0

υβ1,sds

]
υα1,tdt

]
. (C.18)
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C.2 Proof of equation (27) in Theorem 3

We observe that the two terms in (C.18) are symmetric in (α, β). Hence, (C.18) is equivalent to

Γα,βT = γ (α, β) + γ (β, α) , (C.19)

where

γ (α, β) = E

[
∂2P

∂y2

∫ T

0

[∫ t

0

υα1,sds

]
υβ1,tdt

]
= E

[
∂2P

∂y2

∫ T

0

e−κβt
[∫ t

0

υα1,sds

]
eκβtυβ1,tdt

]
.

By applying Lemma 18 with f (t) = e−κβt and Z (t) =
(∫ t

0
υα1,sds

)
eκβtυβ1,t which satisfies

dZ (t) = eκβtυα1,tυβ1,tdt+

(∫ t

0

υα1,sds

)
eκβtξβt

√
υβ0,tdB

β
t ,

we have

γ (α, β) = E

[
∂2P

∂y2

∫ T

0

(∫ T

t

e−κβsds

)
eκβtυα1,tυβ1,tdt

]
+ E

[
∂2P

∂y2

∫ T

0

(∫ T

t

e−κβsds

)(∫ t

0

υα1,udu

)
eκβtξβt

√
υβ0,tdB

β
t

]
.

(C.20)

Consequently, with Lemma 20 we are ready to prove Theorem 3. Denote the first term in (C.20) to be

I1 = E

[
∂2P

∂y2

∫ T

0

(∫ T

t

e−κβsds

)
eκβtυα1,tυβ1,tdt

]
,

we can directly apply the second equality in Lemma 20 by taking h (t) =
(∫ T

t
e−κβsds

)
eκβt = eκβtω

(−κβ ,1)
t,T , and

readily obtain

I1 =
(
ω

(κα,φα1),(κβ ,φβ1),(−κα,1),(−κβ ,1)
0,T + ω

(κβ ,φβ1),(κα,φα1),(−κα,1),(−κβ ,1)
0,T

)
E
[

∂4P

∂x2∂y2

]
because

ω
(−(κα+κβ),h)
t,T =

∫ T

t

e−(κα+κβ)u

(∫ T

u

e−κβsds

)
eκβudu = ω

(−κα,1),(−κβ ,1)
t,T .

For the second term,

I2 = E

[
∂2P

∂y2

∫ T

0

ω
(−κβ ,1)
t,T

(∫ t

0

υα1,udu

)
eκβtξβt

√
υβ0,tdB

β
t

]
,

we apply Lemma 17 along with the Fubini Theorem, and then by Lemma 18, we have

I2 = E

[
∂3P

∂x∂y2

∫ T

0

ω
(−κβ ,1)
t,T eκβtρβtξβtυβ0,t

(∫ t

0

υα1,udu

)
dt

]

= E

[
∂3P

∂x∂y2

∫ T

0

(∫ t

0

eκβtφβ1(t)ω
(−κβ ,1)
t,T dt

)
υα1,udu

]

= E

[
∂3P

∂x∂y2

∫ T

0

ω
(κβ ,φβ1),(−κβ ,1)
t,T υα1,tdt

]
.

Then, we make use of the first equality in Lemma 20 by taking h (t) = ω
(κβ ,φβ1),(−κβ ,1)
t,T . Since it holds that by

definition

ω
(−κα,h)
t,T =

∫ T

t

e−καuω
(κβ ,φβ1),(−κβ ,1)
u,T du = ω

(−κα,1),(κβ ,φβ1),(−κβ ,1)
t,T ,
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we see

I2 = ω
(κα,φα1),(−κα,1),(κβ ,φβ1),(−κβ ,1)
0,T E

[
∂4P

∂x2∂y2

]
. (C.21)

As a result, we obtain

γ (α, β) = C (α, β)E
[

∂4P

∂x4∂y2

]
, (C.22)

where

C (α, β) = ω
(κα,φα1),(κβ ,φβ1),(−κα,1),(−κβ ,1)
0,T + ω

(κβ ,φβ1),(κα,φα1),(−κα,1),(−κβ ,1)
0,T + ω

(κα,φα1),(−κα,1),(κβ ,φβ1),(−κβ ,1)
0,T .

(C.23)

Combining the results, we are able to arrive the expression

cα,βT = C (α, β) + C (β, α) , (C.24)

which gives the result (27) in Theorem 3.

D Estimation of the Error Term

Our objective is to evaluate of the error term ε̃n in Theorem 3. To this end, we consider Black-Scholes formula
with the underlying prices parametrized by λ as

P̄ (λ, ε)=P (x (λ, ε) , y (λ, ε))

where

x (λ, ε) = x0+

n∑
i=1

∫ T

0

[ρit(1−λ)σi0,t+ λσεiit ] dB
i
t −

n∑
i=1

∫ T

0

ρ2
it

2

[
(1−λ)υi0,t +λυεii,t

]
dt

= x′ + λ∆x (ε) ,

y (λ, ε) =

n∑
i=1

∫ T

0

(1− ρ2
it) [(1−λ)υi0,t +λυεiit ] dt

= y′ + λ∆y (ε) .

Then P̄ (1, ε) = P (x′ + ∆x (ε) , y′ + ∆y (ε)) and the objective g(ε) is exactly expanded with respect to a new
parameter λ, instead of ε, as

g(ε) = E[P̄ (1, ε)] = E
[
P̄ (0, ε) + ∂λP̄ (0, ε) +

1

2
∂2
λP̄ (0, ε) +

∫ 1

0

dλ
(1− λ)2

2
∂3
λP̄ (λ, ε)

]
, (D.1)

where

∂λP̄ (0, ε) =
∂P (x′, y′)

∂x

(
n∑
i=1

ΓεiiT

)
+
∂P (x′, y′)

∂y

(
n∑
i=1

ΞεiiT

)
,

∂2
λP̄ (0, ε) =

∂2P (x′, y′)

∂x2

(
n∑
i=1

ΓεiiT

)2

+
∂2P (x′, y′)

∂y2

(
n∑
i=1

ΞεiiT

)2

+ 2
∂2P (x′, y′)

∂x∂y

(
n∑
i=1

ΓεiiT

)(
n∑
i=1

ΞεiiT

)
,

∂3
λP̄ (λ, ε) =

3∑
l=0

(
3

l

)
∂3P (x, y)

∂xl∂y3−l

(
n∑
i=1

ΓεiiT

)l( n∑
i=1

ΞεiiT

)3−l

.

It is important to note that the expression in (D.1) is exact. Given that definition, it is straight-forward to verify
that g(ε) = E[P̄ (1, ε)] the expansion in previous section can be obtained by keeping λ fixed at 1 with truncation to
the second-order. The advantage of considering this expansion with respect to λ is that we can express the error
for the expansion formula (B.3) as
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ε̃n = E[P̄ (1, ε)]

−

{
E [P (x′, y′)] + E

[
∂P (x′, y′)

∂x

n∑
i=1

(
εiΓi1,T +

ε2i
2

Γi2,T

)]

+E
[
∂P (x′, y′)

∂y

(
εiΞi1,T +

ε2i
2

Ξi2,T

)]
+

1

2
E

∂2P (x′, y′)

∂x2

(
n∑
i=1

εiΓi1,T

)2
+

1

2
E

∂2P (x′, y′)

∂y2

(
n∑
i=1

εiΞi1,T

)2


+ E

[
∂2P (x′, y′)

∂x∂y

(
n∑
i=1

εiΓi1,T

)(
n∑
i=1

εiΞi1,T

)]}
,

which can be computed by substituting E[P̄ (1, ε)] with (D.1) and noting P̄ (0, ε) = P (x′, y′) as

ε̃n =

n∑
i=1

E
[
∂P (x′, y′)

∂x
R

Γ
εi
iT

2,T +
∂P (x′, y′)

∂y
R

Ξ
εi
iT

2,T

]

+
1

2
E

∂2P (x′, y′)

∂x2


(

n∑
i=1

ΓεiiT

)2

−

(
n∑
i=1

εiΓi1,T

)2



+
1

2
E

∂2P (x′, y′)

∂y2


(

n∑
i=1

ΞεiiT

)2

−

(
n∑
i=1

εiΞi1,T

)2



+E

[
∂2P (x′, y′)

∂x∂y

{(
n∑
i=1

ΓεiiT

)(
n∑
i=1

ΞεiiT

)
−

(
n∑
i=1

εiΓi1,T

)(
n∑
i=1

εiΞi1,T

)}]

+E
[∫ 1

0

dλ
(1− λ)2

2
∂3
λP̄ (λ, ε)

]
.

To simplify the expression, we consider Γ
2
(ε) , (

∑n
i=1 ΓεiiT )

2
such that

∂Γ
2
(ε)

∂εi
= 2

(
n∑
i=1

ΓεiiT

)
∂ΓεiiT
∂εi

,

∂2Γ
2
(ε)

∂ε2i
= 2

(
∂ΓεiiT
∂εi

)2

+ 2

(
n∑
i=1

ΓεiiT

)
∂ΓεiiT
∂εi

,

∂2Γ
2
(ε)

∂εi∂εj
= 2

(
∂ΓεiiT
∂εi

)(
∂Γ

εj
iT

∂εi

)
+ 2

(
n∑
i=1

ΓεiiT

)
∂2ΓεiiT
∂εi∂εj

,

and

Γ
2
(ε) = Γ

2
(0) +

∑
i

∂Γ
2
(0)

∂εi
εi +

1

2

∑
i,j

∂2Γ
2
(ε)

∂εi∂εj
εiεj +R

Γ
2
(ε)

2,T

=
∑
i,j

Γi1,TΓj1,T εiεj +R
Γ
2
(ε)

2,T =

(
n∑
i=1

εiΓi1,T

)2

+R
Γ
2
(ε)

2,T ,

since Γ0
iT = 0. Similarly, we have

Ξ
2
(ε) ,

(
n∑
i=1

ΞεiiT

)2

=

(
n∑
i=1

εiΞi1,T

)2

+R
Ξ

2
(ε)

2,T ,

ΓΞ(ε) ,

(
n∑
i=1

ΓεiiT

)(
n∑
i=1

ΞεiiT

)
=

(
n∑
i=1

εiΓi1,T

)(
n∑
i=1

εiΞi1,T

)
+R

ΓΞ(ε)
2,T .
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Hence, by the linearity R
Γ(ε)
2,T =

∑n
i=1R

Γ
εi
iT

2,T , we can express the error term as

ε̃n = E1 + E2 + E3,

where

E1 = E
[
∂P (x′, y′)

∂x
R

Γ(ε)
2,T +

∂P (x′, y′)

∂y
R

Ξ(ε)
2,T

]
,

E2 =
1

2
E
[
∂2P (x′, y′)

∂x2
R

Γ
2
(ε)

2,T

]
+

1

2
E
[
∂2P (x′, y′)

∂y2
R

Ξ
2
(ε)

2,T

]
+ E

[
∂2P (x′, y′)

∂x∂y
R

ΓΞ(ε)
2,T

]
,

E3 = E
[∫ 1

0

dλ
(1− λ)2

2
∂3
λP̄ (λ, ε)

]
.

Therefore, the evaluation of the error term can be obtained by considering the expectations E1, E2 and E3. This
will be calculated explicitly in the next section with the help of some Lemmas and Propositions.

D.1 Evaluation of the Error Term

To estimate the bounds of the error term ε̃, we need the following Lemmas and Propositions. In what follows, a
positive constant C is understood to be the maximum of finitely many positive constants satisfying a condition.

Lemma 21 For all (l,m) ∈ N2, there exists a polynomial P̃ with positive coefficients such that

sup
x∈R

[
∂`+m

∂x`∂ym
P (x, y)

]
≤

P̃ (
√
y)

y
(2m+`−1)+

2

.

where P (x, y) is the Black-Scholes formula.

Lemma 22 For i = 1, 2, ..., n, we have for every p > 0,

sup
0≤εi≤1

E

(∫ T

0

υεiitdt

)−p ≤ C

T p
.

For a process Y = {Yt}, we denote Y ∗t = sup0≤s≤t Ys.

Lemma 23 The residuals for the squared volatility satisfy the following bounds

‖(R0,· [σ
εi ])∗t ‖p ≤ CεiξiSup

√
t,

‖(R1,· [σ
εi ])∗t ‖p ≤ C(εiξiSup

√
t)2,

‖(R2,· [σ
εi ])∗t ‖p ≤ C(εiξiSup

√
t)3,

and the lower and upper bounds of the volatility process

0 < min(σi0,
√
θiInf ) ≤ σi0,t ≤ max(σi0,

√
θiSup),

‖(σi1,·)∗t ‖p ≤ CξiSup
√
t,

‖(σi2,·)∗t ‖p ≤ C(ξiSup
√
t)2,

in which ‖Z‖p = E [|Z|p]1/p denotes the Lp-norm of a random variable Z.

Proposition 24 For i = 1, 2, ..., n, we have the following bounds

‖Γ1
iT ‖p ≤ C(ξiSup

√
T )
√
T , ‖R(Γ1

i )
2

2,T ‖p ≤ C(ξiSup
√
T )3T,

‖Ξ1
iT ‖p ≤ C(ξiSup

√
T )T, ‖R(Ξ1

i )
2

2,T ‖p ≤ C(ξiSup
√
T )3T 2,

‖RΓ1
i

2,T ‖p ≤ C(ξiSup
√
T )3
√
T , ‖RΓ1

iΞ
1
i

2,T ‖p ≤ C(ξiSup
√
T )3T

3
2 .

‖RΞ1
i

2,T ‖p ≤ C(ξiSup
√
T )3T,

Proof.The proof for the Lemma (21), (22), (23) and Proposition (24) can be found in Benhamou et al. (2010).
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Proposition 25 For i, j = 1, 2, ..., n, i 6= j, we have the bounds for the cross terms

‖RΓ1
iΓ

1
j

2,T ‖p ≤ C[(ξjSup
√
T )3 + (ξiSup

√
T )3]T, (D.2)

‖RΞ1
iΞ

1
j

2,T ‖p ≤ C[(ξjSup
√
T )3 + (ξiSup

√
T )3]T 2, (D.3)

‖RΓ1
iΞ

1
j

2,T ‖p ≤ C[(ξjSup
√
T )3 + (ξiSup

√
T )3]T

3
2 . (D.4)

Proof.From Proposition (24), we have the following expansion up to second order as

ΓεiiTΓ
εj
jT =

(
Γi0,T + εiΓi1,T +

ε2i
2

Γi2,T +R
Γ
εi
i

2,T

)(
Γj0,T + εjΓj1,T +

ε2j
2

Γj2,T +R
Γ
εj
j

2,T

)
,

ΞεiiTΞ
εj
jT =

(
Ξi0,T + εiΞi1,T +

ε2i
2

Ξi2,T +R
Ξ
εi
i

2,T

)(
Ξj0,T + εjΞj1,T +

ε2j
2

Ξj2,T +R
Ξ
εj
j

2,T

)
,

ΓεiiTΞ
εj
jT =

(
Γi0,T + εiΓi1,T +

ε2i
2

Γi2,T +R
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.

Hence, the error can be estimated as
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Applying the bounds based on Proposition (24) gives the result.

Consequently, we are ready to impose the bounds on the error terms E1, E2 and E3 when ε = 1n.
1. The error term E1 : Noting that
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T )3
√
T ,
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we have
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where we make use of the inequalities ‖
∑n
i=1Xi‖2 ≤

∑n
i=1 ‖Xi‖2 and |E [XY ]| ≤ ‖X‖2 ‖Y ‖2 .

2. The error term E2 : Noting that
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3. The error term E3 :
Firstly, by Lemma 1 and Lemma 2, we see that for any λ,∥∥∥∥ ∂3PBS
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Then, noting that ‖Γ1
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by applying similar argument to the remaining terms, we have

|E3| ≤
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Therefore, combining all the error terms, we are able to estimate the bound of the expansion errors as

|E| ≤ |E1|+ |E2|+ |E3| ≤ C
n∑
i=1

(ξiSup)
3T 2. (D.9)
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