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A CHAOS EXPANSION APPROACH
FOR THE PRICING OF CONTINGENT CLAIMS

HIDEHARU FUNAHASHI AND MASAAKI KIJIMA

ABSTRACT. In this paper, we propose an approximation method based on the Wiener-Ito chaos
expansion for the pricing of European-style contingent claims. Our method is applicable to the
general class of continuous Markov processes. The resulting approximation formula requires
at most three-dimensional numerical integration. It will be shown through numerical examples
that, unlike existing approximation methods, the accuracy of our approximation remains quite
high even for the case of high volatility and long maturity.

Keywords: Wiener-Ito chaos expansion, Hermite polynomial, Black-Scholes model, succes-
sive substitution, diffusion process.

1. INTRODUCTION

Markov processes are used in a wide range of economics and finance to model underlying
uncertainties, due to their expressive richness and analytical tractability. In the option pric-
ing theory, underlying asset prices are often assumed to follow diffusion processes. However,
analytical solutions for European options written on the asset prices are, in most cases, hard
to obtain. On the other hand, efficient methods for calculating European options are required
in practice for any model, since European options are usually the only options that are liquid
enough to be used for the model calibration. Motivated by this gap, we study an approximation
method based on the Wiener-Ito chaos expansion for the pricing of financial contingent claims.

A vast number of articles have addressed the valuation problem of contingent claims. As the
models become more realistic, it becomes harder to obtain pricing formulas in closed form. As
a result, numerical methods for solving partial differential equations or Monte Carlo methods
are required to resolve the shortcoming. Unfortunately, however, these methods are in general
computationally too extensive to be used in practice, because the entire optimization procedure
is extremely time-consuming. Therefore, closed-form approximation formulas could be the
only feasible solution for practitioners.

Fouque et al. (2000) apply the singular perturbation technique to the option pricing under a
stochastic volatility model. They asymptotically expand the partial differential equation (PDE
for short) derived from a stochastic differential equation (SDE for short) of the underlying asset
price around the invariant distribution of volatility process. They also consider a fast mean-
reverting stochastic volatility model and succeed to capture the short timescale volatility, a
well-known phenomenon in practice (see Fouque et al., 2003a). The theoretical validity of the
singular perturbation method is argued in Fouque et al. (2003b). Hagan et al. (2002) use the
singular perturbation technique to obtain the prices of European options under the SABR model.
By using matched asymptotic expansions, de Jong (2010) solves singularly perturbed problems
and obtains approximated solutions in closed form for European options under various models.
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Kunitomo and Takahashi (1992) first develop the asymptotic theory, called the small distur-
bance asymptotic, for solving the valuation problem of average options when the underlying
asset price follows a geometric Brownian motion. Yoshida (1992a) uses the results derived by
Watanabe (1987) to obtain some useful results on the validity of the asymptotic expansions of
some functional on time-homogeneous diffusion processes. Moreover, his result confirms that
this approximation converges to the exact value when the volatility of the underlying asset goes
to zero. Takahashi (1999) proposes approximated formulas in closed form based on the asymp-
totic expansion method for European options when the underlying asset follows a diffusion.
Other important developments within this approach include Kunitomo and Takahashi (2001,
2003) and Takahashi and Takehara (2007). These articles use the small volatility asymptotic
expansion based on the infinite dimensional analysis, called the Watanabe-Yoshida theory, on
the Malliavin calculus.

Approximating the transition density or likelihood expansion for a diffusion process is other
successful examples. Aı̈t-Sahalia (2002, 2008) proposes a method to approximate the transition
probability by means of a Hermite polynomial expansion and derives closed-form approxima-
tions for the log-likelihood functions of univariate and multivariate diffusions. Xiu (2011) has
applied a similar strategy to derive a series approximation in closed form of European option
prices under a variety of diffusion models by using either the Hermite polynomial approach or
the undetermined coefficient method.

Recently, many of these approximate expansions have become popular in practice. However,
these approximations usually get worse in the case of high volatility and long maturity, which
causes a serious problem in practice, because derivatives with long maturities (beyond 10 years)
become common in the OTC markets, and options for those maturities frequently exhibit a
significant volatility smiles and skews. Handling these market skews and smiles are essential to
equity, fixed income and foreign exchange desks, because they have large exposures for a wide
range of strikes and maturities. In order to satisfy these trends, more accurate approximation
schemes are inevitable.

The Edgeworth and/or Gram-Charlier expansions work quite effectively when the cumulants
(or moments) of underlying process can be computed. The main idea of these expansions
is to derive the characteristic function of the distribution whose probability density function
(PDF for short) is approximated by the characteristic function of a known distribution (normal
distribution in most cases), and to recover the PDF through the inverse Fourier transform. In
the case of finite series, these expansions give the same result; however, since the arrangement
of terms differs, there could be a difference between the accuracy of truncated expansions.
Based on an Edgeworth expansion technique, Collin-Dufresne and Goldstein (2002) derive the
probability distribution of a coupon bond’s future price and propose an algorithm for the pricing
of swaptions when the underlying term-structure dynamics are affine. By applying the Gram-
Charlier expansion, Tanaka et al. (2010) provide an efficient method to approximate prices
of several interest-rate related derivatives including swaptions, CMS, CMS options, and credit
derivatives. However, in the case of diffusion processes, cumulants are rarely computable and,
therefore, these expansions are not applicable directly in general.

In order to overcome these shortcomings, we propose a new methodology. The outline of
our approach is as follows. First, we expand the underlying dynamics by Hermite polynomials
based on the Wiener-Ito chaos expansion. Second, we approximate it by a truncated sum of
iterated Ito stochastic integrals by means of successive substitution. Finally, we derive the
characteristic function of the approximated underlying asset price and convert it to the PDF by
inversion formula. The value of a European contingent claim is then derived in closed form by
the approximated probability density.

We provide numerical examples to investigate the accuracy of our approximations. Through
the comparison with previous works, we show that our approach provides far greater accuracy
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than the previously proposed schemes over a wide range of data sets. Especially, we emphasize
that our approximation works quite well even in the case of high volatility and long maturity,
unlike the previously proposed methods.

This paper is organized as follows. In the next section, we explain the backgrounds of the
ideas of approximation method developed in this paper. Section 3 provides the proposed ap-
proximation, while the detailed development of our approximation is explained in Section 4.
Based on the approximation scheme, we derive approximated formulas for the transition den-
sity function of the underlying diffusion process and for European call option prices in Section
5. Section 6 is devoted to numerical examples. Comparing with the exact formulas and Monte
Carlo simulation results, it is observed that our approximation formulas exhibit a very high ac-
curacy even for the case of high volatility and long maturity. Finally, Section 7 concludes this
paper.

Throughout the paper, we consider the complete probability space(Ω,F ,Q, {Ft}t≥0) and
assume that the filtration satisfies the usual conditions. The probability measureQ is a risk-
neutral measure, because we are interested in the pricing of contingent claims. The expectation
operator underQ is denoted byE.

2. THE BACKGROUNDS

In this paper, we assume that the price of the underlying asset{St}0≤t≤T follows the stochas-
tic differential equation (SDE for short)

(2.1)
dSt

St

= r(t)dt+ σ(St, t)dWt,

where the short rater(t) is a deterministic function of timet, the volatilityσ(s, t) is a determin-
istic function of both asset price and time, and{Wt}t≥0 is a standard Brownian motion under
the risk-neutral measureQ.

By applying Ito’s formula, we obtain

St = S0 exp

[∫ t

0

(
r(u)− 1

2
σ2(Su, u)

)
du+

∫ t

0

σ(Su, u)dWu

]
= F (0, t) exp

[∫ t

0

σ(Su, u)dWu −
1

2

∫ t

0

σ2(Su, u)du

]
,

whereF (0, t) = S0e
∫ t
0 r(u)du is the forward price of the underlying asset with delivery datet.

Denoting∥g∥2t =
∫ t

0
g2(u)du andJt(g) =

∫ t

0
g(u)dWu, we thus have

(2.2) St = F (0, t) exp

[
Jt(σ)−

1

2
∥σ∥2t

]
.

Therefore, it is essential to know (or to approximate) the distribution of the random variable of
the formexp[Jt(σ)− ∥σ∥2u/2], because the derivative price is given in terms of the expectation
E[f(St)] for some payoff functionf(S).

To this end, we found the following observations useful to approximate the distribution of the
random variable.

2.1. Expansion in terms of Hermite Polynomials. Let us denote byhn(x) the Hermite poly-
nomial of ordern defined by

(2.3) hn(x) = (−1)nex
2/2 dn

dxn
e−x2/2, n = 1, 2, . . . ,

with h0(x) = 1. For example, we haveh1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x, etc.
The following expansion offers excellent convergence. The result may be known; however,

for the sake of completeness, we provide a proof.
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Lemma 2.1. For anyx ∈ R andλ > 0, we have

(2.4) exp

[
tx− (

√
λt)2

2

]
=

∞∑
n=0

(
√
λt)n

n!
hn(

x√
λ
).

Proof. Let y = x/
√
λ, so that

exp

[
tx− (

√
λt)2

2

]
= ey

2/2 exp

[
−(

√
λt− y)2

2

]
.

By Taylor’s expansion aboutt = 0, we have

exp

[
−(

√
λt− y)2

2

]
=

∞∑
n=0

{
dn

dtn
exp

[
−(

√
λt− y)2

2

] ∣∣∣
t=0

}
tn

n!

=
∞∑
n=0

(
√
λ)n

{
dn

dzn
e−z2/2

∣∣∣
z=−y

}
tn

n!

=
∞∑
n=0

(−1)n
dn

dyn
e−y2/2 (

√
λt)n

n!
.

The result follows from (2.3). 2

In order to check the accuracy of this expansion, we consider the log-normal random variable
defined by

(2.5) X(t; θt) := exp

(
θt −

1

2
Σt

)
,

whereθt = σWt andΣt = σ2t. Note that this is the special case ofexp[It(σ)− ∥σ∥2t/2] when
σ(S, t) = σ.

Now, taket = 1 andλ = Σt in (2.4), and define

XH
N(t; x) :=

N∑
n=0

(√
Σt

)n
n!

hn

(
x√
Σt

)
.

Also, for the comparison purpose, we consider

XM
N (t;x) := e−

1
2
Σt

N∑
n=0

x

n!
,

the Maclaurin expansion counterpart. The square errors resulted from the truncation are calcu-
lated as

E
[(
XH

3 (t; θt)−X(t; θt)
)2] ≈ 0.03, E

[(
XM

3 (t; θt)−X(t; θt)
)2] ≈ 0.11,

where we sett = 10 andσ = 0.3, a typical volatility level observed in the market. Hence, the
Hermite expansion truncation provides an accurate approximation.

In order to check the accuracy more carefully, we compare the values ofXH
N(t, x) and

XM
N (t, x) for the interval−3

√
Σt ≤ x ≤ 3

√
Σt. Table 1 reports the values ofX(t, x), XH

N(t, x)
andXM

N (t, x) for N = 1, 2, 3 andt = 1, 5, 10. Here, we fixσ = 0.3 for the volatility. Clearly,
the speed of convergence in the Hermite expansion is much faster than that of the Maclaurin
counterpart.
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Table 1: A comparison between the Hermite and Maclaurin approximation

x Exact N = 1 N = 2 N = 3
Hermite Maclaurin Hermite Maclaurin Hermite Maclaurin

1 year (t = 1)
3
√
Σt 1.55 -0.45 -0.53 -0.09 -0.15 -0.01 -0.03

2.33
√
Σt 1.40 -0.22 -0.30 -0.02 -0.07 0.00 -0.01

2
√
Σt 1.33 -0.14 -0.21 -0.01 -0.04 0.00 -0.01√
Σt 1.15 0.01 -0.05 0.01 0.00 0.00 0.00
0 0.99 0.04 0.00 0.00 0.00 0.00 0.00

−
√
Σt 0.85 -0.01 -0.04 -0.01 0.00 0.00 0.00

−2
√
Σt 0.73 -0.12 -0.14 0.01 0.03 0.00 0.00

−2.33
√
Σt 0.70 -0.17 -0.19 0.03 0.05 0.00 -0.01

−3
√
Σt 0.63 -0.29 -0.29 0.07 0.09 -0.01 -0.02

5 years (t = 5)
3
√
Σt 2.59 -2.96 -3.57 -1.16 -1.95 -0.26 -0.87

2.33
√
Σt 2.07 -1.25 -1.76 -0.25 -0.79 0.03 -0.28

2
√
Σt 1.85 -0.71 -1.18 -0.04 -0.47 0.06 -0.14√
Σt 1.32 0.11 -0.23 0.11 -0.05 0.01 -0.01
0 0.95 0.20 0.00 -0.02 0.00 -0.02 0.00

−
√
Σt 0.68 -0.08 -0.15 -0.08 0.03 0.02 -0.01

−2
√
Σt 0.48 -0.55 -0.48 0.12 0.24 0.02 -0.08

−2.33
√
Σt 0.43 -0.73 -0.62 0.27 0.36 -0.02 -0.15

−3
√
Σt 0.35 -1.12 -0.92 0.68 0.70 -0.22 -0.38

10 years (t = 10)
3
√
Σt 3.71 -7.13 -8.53 -3.53 -5.94 -0.97 -3.50

2.33
√
Σt 2.70 -2.60 -3.77 -0.61 -2.21 0.19 -1.06

2
√
Σt 2.31 -1.35 -2.40 0.00 -1.26 0.28 -0.53

1
√
Σt 1.44 0.30 -0.40 0.30 -0.12 0.02 -0.03

0 0.89 0.36 0.00 -0.09 0.00 -0.09 0.00
−
√
Σt 0.56 -0.20 -0.21 -0.20 0.07 0.09 -0.02

−2
√
Σt 0.35 -0.99 -0.67 0.36 0.48 0.07 -0.25

−2.33
√
Σt 0.30 -1.28 -0.84 0.71 0.72 -0.09 -0.43

−3
√
Σt 0.22 -1.88 -1.21 1.72 1.37 -0.84 -1.08

The numbers indicate the difference between the exact value and approximation.

2.2. Wiener-Ito Chaos Expansion. First, note that the expansion (2.4) is valid also for random
variable. Hence, puttingt = 1, x = Jt(σ) andλ = ∥σ∥2t , we obtain

(2.6) exp

(
Jt(σ)−

1

2
∥σ∥2t

)
=

∞∑
n=0

∥σ∥nt
n!

hn

(
Jt(σ)

∥σ∥t

)
.

Second, Ito (1951) showed that, forn ≥ 1,

(2.7)
∥σ∥nt
n!

hn

(
Jt(σ)

∥σ∥t

)
=

∫ t

0

∫ tn

0

· · ·
∫ t2

0

σ(t1)σ(t2) · · ·σ(tn)dWt1 · · · dWtn ,

where{Wt}t≥0 is a one-dimensional Brownian motion. This expansion is a special case of the
so-called Wiener-Ito Chaos expansion.
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Applying these results to equation (2.2), we then obtain

St

F (0, t)
= exp

[
Jt(σ)−

1

2
∥σ∥2t

]
= 1 +

∞∑
n=1

∫ t

0

∫ tn

0

· · ·
∫ t2

0

σ(t1)σ(t2) · · ·σ(tn)dWt1 · · · dWtn .(2.8)

As we shall show later, when the volatilityσ(t) is deterministic, the iterated integral can be
evaluated very easily.

2.3. Successive Substitution.Consider a stochastic process{Xt; 0 ≤ t ≤ T} that satisfies the
stochastic integral equation (SDE)

(2.9) Xt = X0 exp

(∫ t

0

a(s)ds− 1

2

∫ t

0

b2(Xs, s)ds+

∫ t

0

b(Xs, s)dWs

)
,

wherea(t) andb(x, t) satisfy some regularity conditions.
In certain cases, the solution{Xt} can be constructed by successive substitution. Namely, let

X
(0)
t = X0e

∫ t
0 a(s)ds, and defineX(k+1)

t by

(2.10) X
(k+1)
t = X0 exp

(∫ t

0

a(s)ds− 1

2

∫ t

0

b2(X(k)
s , s)ds+

∫ t

0

b(X(k)
s , s)dWs

)
successively. Then, it is expected thatX

(k)
t converges to the solutionXt almost surely.

A sufficient condition is known for the convergence, which we state below for the sake of
completeness. The proof is similar to the one for the existence of strong solution in the SDE
(2.1), and is omitted. See, e.g., Chapter 5 of Øksendal (2000) for the detailed proof.

Proposition 2.1. LetT > 0, and suppose thata(t) andb(t, x) satisfy

|b(t, x)2|+ |b(t, x)| ≤ C(1 + | log x|), x ∈ R, t ∈ [0, T ],

and

|b(t, x)2 − b(t, y)2|+ |b(t, x)− b(t, y)| ≤ D

∣∣∣∣log(x

y

)∣∣∣∣ , x, y ∈ R, t ∈ [0, T ],

for some constantC andD. Then,X(k)
t converges to the solutionXt almost surely.

Remark 2.1. It should be noticed that the condition in the above proposition is often too strong
for practical uses. Hence, in the following development, we shall assume that the successive
substitution produces the solution without checking the condition.

In the following sections, based on these observations, we intend to develop an approximation
method for the pricing of European contingent claims.

3. THE PROPOSEDAPPROXIMATION

In this section, we propose an approximation method based on the observations explained in
the previous section.

Suppose that the SDE (2.1) admits a solution

(3.1) St = F (0, t) exp

[∫ t

0

σ(Su, u)dWu −
1

2

∫ t

0

σ2(Su, u)du

]
.
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Let S(0)
t = F (0, t) and defineS(m)

t successively according to (2.10), i.e.,

S
(m+1)
t = F (0, t) exp

[∫ t

0

σm(u)dWu −
1

2

∫ t

0

σ2
m(u)du

]
= F (0, t) exp

[
Jt(σm)−

1

2
∥σm∥2t

]
,(3.2)

whereσm(t) = σ(S
(m)
t , t). It is assumed throughout the rest of this paper thatS

(m)
t converges

to St asm → ∞. It follows that

(3.3) St = S
(1)
t +

∞∑
m=1

{S(m+1)
t − S

(m)
t }.

On the other hand, from (2.6) and (3.2), we have

S
(m+1)
t

F (0, t)
= 1 +

∞∑
n=1

∥σm∥nt
n!

hn

(
Jt(σm)

∥σm∥t

)
.

Hence, defining

(3.4) Im,n(t) =
1

n!

{
∥σm∥nt hn

(
Jt(σm)

∥σm∥t

)
− ∥σm−1∥nt hn

(
Jt(σm−1)

∥σm−1∥t

)}
,

we obtain from (3.3) that

(3.5) St = S
(1)
t + F (0, t)

∞∑
m,n=1

Im,n(t).

Our approximation is to truncate the infinite sum atm + n ≤ 3. As we shall see later through
numerical experiments, this truncation produces a highly accurate approximation forSt.

To be more specific, consider an iterated integral

I :=
∞∑
n=1

∫ t

0

∫ tn

0

· · ·
∫ t2

0

σ1(t1)σ2(t2) · · ·σn(tn)dWt1 · · · dWtn .

When the volatilitiesσn(t) are deterministic functions, the iterated integral converges very
quickly, so that we can truncate it atn = 3. In other words, we can neglect the terms of
ordern, n ≥ 4.

Before proceeding, note from (2.8) that

S
(1)
t

F (0, t)
= 1 +

∞∑
n=1

∫ t

0

∫ tn

0

· · ·
∫ t2

0

σ0(t1)σ0(t2) · · ·σ0(tn)dWt1 · · · dWtn ,

whereσ0(t) = σ(F (0, t), t), which is a deterministic function. Hence, we define

S̃
(1)
t = F (0, t)

[
1 +

∫ t

0

σ0(t1)dWt1 +

∫ t

0

∫ t2

0

σ0(t1)σ0(t2)dWt1dWt2

+

∫ t

0

∫ t3

0

∫ t2

0

σ0(t1)σ0(t2)σ0(t3)dWt1dWt2dWt3

]
,(3.6)

as an approximation forS(1)
t .

Summarizing, we approximate the quantitySt by

(3.7) St = S̃
(1)
t + F (0, t)

∑
m,n≥1; m+n≤3

Im,n(t),

whereS̃(1)
t is given by (3.6) andIm,n(t) by (3.4). In the next section, we approximate each

Im,n(t) by an iterated integral with deterministic volatilities.
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To this end, it is essential to reduce the iteration subscriptm by some means. In this pa-
per, we employ Taylor’s expansion aroundS(m−1)

t for this purpose. Recall thatJt(σm) =∫ t

0
σm(u)dWu =

∫ t

0
σ(S

(m)
u , u)dWu. It follows that

Jt(σm) ≈ Jt(σm−1) +

∫ t

0

σ′
m−1(u){S(m)

u − S(m−1)
u }dWu

+
1

2

∫ t

0

σ′′
m−1(u){S(m)

u − S(m−1)
u }2dWu(3.8)

and

(3.9) J2
t (σm) ≈ J2

t (σm−1) + 2Jt(σm−1)

∫ t

0

σ′
m−1(u){S(m)

u − S(m−1)
u }dWu,

where we denote

σ′
m(t) := ∂xσ(x, t)|x=S

(m)
t

, σ′′
m(t) := ∂xxσ(x, t)|x=S

(m)
t

for the sake of notational simplicity.

4. APPROXIMATION OFIm,n(t)

In this section, we approximate eachIm,n(t) by using the approximations (3.8) and (3.9).
Recall that

(4.1) S
(m+1)
t − S

(m)
t = F (0, t)

∞∑
n=1

Im,n(t) ≈ F (0, t)
∑

n≤3−m

Im,n(t)

by definition.

4.1. Approximation of I1,1(t). By definition,I1,1(t) = Jt(σ1)− Jt(σ0) and so, from (3.8), we
have

I1,1(t) ≈
∫ t

0

σ′
0(u){S(1)

u − S(0)
u }dWu +

1

2

∫ t

0

σ′′
0(u){S(1)

u − S(0)
u }2dWu.

SinceS(0)
t = F (0, t) andS(1)

t is approximated by (3.6), by ignoring the terms of higher orders,
we obtain

I1,1(t) ≈
∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)
dWs

+

∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs(4.2)

+
1

2

∫ t

0

σ′′
0(s)F

2(0, s)

(∫ s

0

σ0(u)dWu

)2

dWs.

Further, by Ito’s formula, we get∫ t

0

σ′′
0(s)F

2(0, s)

(∫ s

0

σ0(u)dWu

)2

dWs

= 2

∫ t

0

σ′′
0(s)F

2(0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs(4.3)

+

∫ t

0

σ′′
0(s)F

2(0, s)

(∫ s

0

σ2
0(u)du

)
dWs.
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Finally, substitution of (4.3) into (4.2) yields

I1,1(t) ≈
∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)
dWs

+

∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs(4.4)

+

∫ t

0

σ′′
0(s)F

2(0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs

+
1

2

∫ t

0

σ′′
0(s)F

2(0, s)

(∫ s

0

σ2
0(u)du

)
dWs.

4.2. Approximation of I1,2(t). By the definition of Hermite polynomials, we have

I1,2(t) =
1

2

{
(J2

t (σ1)− J2
t (σ0))− (∥σ1∥2t − ∥σ0∥2t )

}
≈ Jt(σ0)

∫ t

0

σ′
0(u){S(1)

u − S(0)
u }dWu −

1

2
(∥σ1∥2t − ∥σ0∥2t ),

where we have used (3.9) for the approximation. Hence, sinceJt(σ0) =
∫ t

0
σ0(u)dWu, σ0(t) =

σ(F (0, t), t), by ignoring the terms of higher orders, we obtain

I1,2(t) ≈
(∫ t

0

σ0(s)dWs

)(∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)
dWs

)
− 1

2

(
∥σ1∥2t − ∥σ0∥2t

)
,(4.5)

where we have applied (3.6) for the further approximation.
Now, by Ito’s formula, the first term in (4.5) is rewritten as(∫ t

0

σ0(s)dWs

)(∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)
dWs

)
=

∫ t

0

σ0(s)

(∫ s

0

σ′
0(u)F (0, u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs

+

∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)2

dWs

+

∫ t

0

σ0(s)σ
′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)
ds.

Similarly, for the second and third terms in the above expression, we get∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)2

dWs

= 2

∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs

+

∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ2
0(u)du

)
dWs
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and ∫ t

0

σ0(s)σ
′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)
ds

=

(∫ t

0

σ0(s)σ
′
0(s)F (0, s)ds

)(∫ t

0

σ0(s)dWs

)
−

∫ t

0

σ0(s)

(∫ s

0

σ0(u)σ
′
0(u)F (0, u)du

)
dWs,

respectively.
On the other hand, the second term in (4.5) is approximated as

∥σ1∥2t − ∥σ0∥2t =
∫ t

0

(σ2
1(s)− σ2

0(s))ds ≈ 2

∫ t

0

σ0(u)σ
′
0(u){S(1)

u − S(0)
u }ds,

by Taylor’s expansion aroundS(0)
t . Applying the approximation (3.6) and then using Ito’s

lemma, we obtain

∥σ1∥2t − ∥σ0∥2t ≈ 2

∫ t

0

σ0(s)σ
′
0(s)F (0, s)

(∫ s

0

σ0(u)dWu

)
ds

= 2

(∫ t

0

σ0(s)σ
′
0(s)F (0, s)ds

)(∫ t

0

σ0(s)dWs

)
− 2

∫ t

0

σ0(s)

(∫ s

0

σ0(u)σ
′
0(u)F (0, u)du

)
dWs.

Finally, we put these results together to obtain the approximation forI1,2(t) as

I1,2(t) ≈
∫ t

0

σ0(s)

(∫ s

0

σ′
0(u)F (0, u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs

+2

∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs(4.6)

+

∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ2
0(u)du

)
dWs.

4.3. Approximation of I2,1(t). By definition,I2,1(t) = Jt(σ2)− Jt(σ1) and so, from (3.8), we
have

I2,1(t) ≈
∫ t

0

σ′
1(u)(S

(2)
u − S(1)

u )dWs +
1

2

∫ t

0

σ′′
1(u)(S

(2)
u − S(1)

u )2dWs.

SinceS(2)
u − S

(1)
u = F (0, t)I1,1(t) due to (4.1), and sinceI1,1(t) = Jt(σ1)− Jt(σ0), we have

I2,1(t) ≈
∫ t

0

σ′
1(s)F (0, s)I1,1(s)dWs +

1

2

∫ t

0

σ′′
1(s)F

2(0, s)I21,1(s)dWs.

Hence, from (4.2), by ignoring higher terms, we obtain

I2,1(t) ≈
∫ t

0

σ′
1(s)F (0, s)

(∫ s

0

σ′
0(u)F (0, u)

(∫ u

0

σ0(r)dWr

)
dWs

)
dWs

+
1

2

∫ t

0

σ′′
1(s)F (0, s)

(∫ s

0

σ′
0(u)F (0, u)

(∫ u

0

σ0(r)dWr

)
dWs

)2

dWs.
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Now, we apply Taylor’s expansion toσ′
1(t) = ∂xσ(S

(1)
t , t) andσ′′

1(t) aroundS(0)
t . It follows

by ignoring higher terms again that

I2,1(t) ≈
∫ t

0

{
σ′
0(u) + σ′′

0(u){S(1)
u − S(0)

u }
}
F (0, u)

×
(∫ u

0

σ′
0(s)F (0, s)

(∫ s

0

σ0(r)dWr

)
dWu

)
dWs.

By applying (3.6) and ignoring higher terms again, we finally get

(4.7) I2,1(t) ≈
∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ′
0(u)F (0, u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs.

4.4. Approximation of Im,n(t), m+n ≥ 4. Here, we prove the case thatI2,2(t) ≈ 0 only. The
other terms can be proved in a similar manner. Note that

I2,2(t) =
1

2

{
(J2

t (σ2)− J2
t (σ1))− (∥σ2∥2t − ∥σ1∥2t )

}
.

From (3.9) and the approximation method used forI2,1, we obtain

J2
t (σ2) ≈ J2

t (σ1) + 2Jt(σ1)

∫ t

0

σ′
0(s)F (0, s)

(∫ s

0

σ′
0(u)F (0, u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs,

the second term being zero because it involves higher terms only. Similarly, we have

∥σ2∥2t − ∥σ1∥2t = E[J2
t (σ2)− J2

t (σ1)] ≈ 0,

proving the claim.

5. APPROXIMATION FORMULAS

The proposed approximations developed so far are put together to conclude the following.

Theorem 5.1.LetXt :=
St

F (0,t)
− 1. Then,

Xt ≈
∫ t

0

p1(s)dWs +

∫ t

0

p2(s)

(∫ s

0

σ0(u)dWu

)
dWs

+

∫ t

0

p3(s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs(5.1)

+

∫ t

0

p4(s)

(∫ s

0

p5(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs,

where

p1(s) :=

{
σ0(s) + F (0, s)σ′

0(s)

(∫ s

0

σ2
0(u)du

)
+

1

2
F 2(0, s)σ′′

0(s)

(∫ s

0

σ2
0(u)du

)}
,

p2(s) := σ0(s) + F (0, s)σ′
0(s),

p3(s) := σ0(s) + 3F (0, s)σ′
0(s) + F 2(0, s)σ′′

0(s),

p4(s) := σ0(s) + F (0, s)σ′
0(s),

p5(s) := F (0, s)σ′
0(s).

Note thatpk(t) are all deterministic functions.

In order to calculate the probability distribution ofXt, we intend to derive an approximated
characteristic function ofXt, which can then be inverted back to derive an approximation of
the probability distribution ofXt. This idea has been widely used for deriving approximated
distributions.
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Before proceeding, we define the following variables for the sake of notational simplicity.
Let

a1(t) =

∫ t

0

p1(s)dWs,

a2(t) =

∫ t

0

p2(s)

(∫ s

0

σ0(u)dWu

)
dWs,

and

a3(t) =

∫ t

0

p3(s)

(∫ s

0

σ0(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs

+

∫ t

0

p4(s)

(∫ s

0

p5(u)

(∫ u

0

σ0(r)dWr

)
dWu

)
dWs.

Then, from (5.1), we have

Xt ≈ a1(t) + a2(t) + a3(t).

Note thata1(t) follows a normal distribution with zero mean and varianceΣt :=
∫ t

0
p21(s)ds. It

is well known that the moments ofaj(t) conditional on the normal variatea1(t) can be obtained
explicitly. We shall make use of this result for our approximation.

Let the characteristic function ofXt beΨ(ξ) := E[eiξXt ]. We approximate it as

Ψ(ξ) ≈ E
[
e{iξ(a1(t)+a2(t)+a3(t))}

]
≈ E

[
eiξa1(t)

(
1 + iξa2(t) + iξa3(t)−

1

2
ξ2a2(t)

2

)]
.

See, e.g., Takahashi (1999) and Kunitomo and Takahashi (2001). Taking the conditional expec-
tation ona1(t), we then have

Ψ(ξ) ≈ E[eiξa1(t)] + iξE
[
eiξa1(t)E[a2(t) | a1(t)]

]
(5.2)

+ iξE
[
eiξa1(t)E[a3(t) | a1(t)]

]
− 1

2
ξ2E

[
eiξa1(t)E[a2(t)2 | a1(t)]

]
.

The conditional expectations can be evaluated explicitly, by just following the standard argu-
ments.

Namely, by consulting the well-known results (see Appendix A), we have the following.
From (A.1), (A.2) and (A.3), respectively, we obtain

E[a2(t)|a1(t) = x] = q1(t)

(
x2

Σ2
t

− 1

Σt

)
,(5.3)

E[a3(t)|a1(t) = x] = q2(t)

(
x3

Σ3
t

− 3x

Σ2
t

)
,(5.4)

E[a22(t)|a1(t) = x] = q3(t)

(
x4

Σ4
t

− 6x2

Σ3
t

+
3

Σ2
t

)
+ q4(t)

(
x2

Σ2
t

− 1

Σt

)
+ q5(t),(5.5)
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where

Σt =

∫ t

0

p21(s)ds,

q1(t) =

∫ t

0

p1(s)p2(s)

(∫ s

0

σ0(u)p1(u)du

)
ds,

q2(t) =

∫ t

0

p1(s)p3(s)

(∫ s

0

σ0(u)p1(u)

(∫ u

0

σ0(r)p1(r)dr

)
du

)
ds

+

∫ t

0

p1(s)p4(s)

(∫ s

0

p1(u)p5(u)

(∫ u

0

σ0(r)p1(r)dr

)
du

)
ds,

q3(t) = q21(t),

q4(t) = 2

∫ t

0

p1(s)p2(s)

(∫ s

0

p1(u)p2(u)

(∫ u

0

σ2
0(r)dr

)
du

)
ds

+2

∫ t

0

p1(s)p2(s)

(∫ s

0

σ0(u)p2(u)

(∫ u

0

σ0(r)p1(r)dr

)
du

)
ds

+

∫ t

0

p22(s)

(∫ s

0

σ0(u)p1(u)du

)2

ds,

q5(t) =

∫ t

0

p22(s)

(∫ s

0

σ2
0(u)du

)
ds.

Recall thata1(t) follows a normal distribution with zero mean and varianceΣt. Hence, we
can apply the following well known inversion formula.

Lemma 5.1. Suppose thatX follows a normal distribution with zero mean and varianceΣ.
Then, for any polynomial functionsf(x) andg(x), we have

1

2π

∫
R
e−ikyg(−ik)E

[
f(x)eikx

]
dk = g

(
∂

∂y

)
f(y)n(y; 0,Σ),

wheren(x; a, b) denotes the normal density function with meana and varianceb.

The above formula is easily obtained by differentiating both sides of

1

2π

∫
R
e−ikyE

[
h(x)eikx

]
dk = h(y)n(y; 0,Σ)

with respect toy. See, e.g., Takahashi (1999).
Let us denote the density function ofXt by fXt(x). By applying Lemma 5.1 to each term of

the characteristic function (5.2), we obtain the approximation of the density function as

fXt(x) = n (x; 0,Σt)−
∂

∂x
{E[a2(t)|a1(t) = x]n (x; 0,Σt)}

− ∂

∂x
{E[a3(t)|a1(t) = x]n (x; 0,Σt)}(5.6)

+
1

2

∂2

∂x2

{
E[a2(t)2|a1(t) = x]n (x; 0,Σt)

}
+ · · · .

Now, by substituting (5.3)–(5.5) into (5.6), we obtain the following result.
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Theorem 5.2.The probability density function ofXt is approximated as

fXt(x) ≈ 1

2Σ6
t

n (x; 0,Σt)

[
q3(t)

(
x6 − 15x4Σt + 45x2Σ2

t − 15Σ3
t

)
+Σ2

t (2q2(t) + q4(t))
(
x4 − 6x2Σt + 3Σ2

t

)
(5.7)

+Σ3
t

{
2q1(t)

(
x3 − 3xΣt

)
+ q5(t)

(
x2Σt − Σ2

t

)
+ 2Σ3

t

} ]
,

wheren(x; a, b) denotes the normal density function with meana and varianceb.

We remark that the polynomials involved in (5.7) are Hermite polynomialshn(x), and the
density functionfXt(x) can then be alternatively expressed as

fXt(x) =
1

2
n (x; 0,Σt)

[
q3(t)

Σ3
t

h6

(
x√
Σt

)
+

(2q2(t) + q4(t))

Σ2
t

h4

(
x√
Σt

)
+

2q1(t)(√
Σt

)3h3

(
x√
Σt

)
+

q5(t)

Σt

h2

(
x√
Σt

)
+ 2

]
.

Also, the density function ofSt is given by

(5.8) fSt(x) =
fXt

(
x

F (0,t)
− 1

)
F (0, t)

.

Finally, we are in a position to state an approximation formula for a European call option
with strikeK and maturityt written on the assetSt. Recall that the value of the European call
option is given by

C(t) = E
[
e−

∫ t
0 r(s)ds (St −K)+

]
= F (0, t)E

[
e−

∫ t
0 r(s)ds

(
Xt + K̃

)+
]
,

whereK̃ := 1− K
F (0,t)

. With the density functionfXt(x) at hand, it follows that

C(t) = S(0)

∫ ∞

−K̃

(
x+ K̃

)
fXt(x)dx.

Calculating the integral by using the approximated density function, we conclude the following.

Theorem 5.3.The value of a European call option with maturityt and strikeK is approximated
as

C(t) ≈ S0n(K̃; 0,Σ)

2
√
2Σ4

[√
2q3(t)(K̃

4 − 6K̃2Σ + 3Σ2)

+Σ2
√
2 (q4(t) + 2q2(t))

(
K̃2 − Σ

)
(5.9)

+Σ3
{
−2

√
2q1(t)K̃ +

√
2q5(t)Σ + 2

√
2Σ2

}]
+S0K̃

(
1− Φ(−K̃/

√
Σ)

)
,

whereΦ(x) is the cumulative distribution function of the standard normal distribution.
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6. NUMERICAL EXAMPLES

In this section, the accuracy of our approximation is studied through numerical examples. For
the so-called constant elasticity of variance (CEV) model, we calculate option prices using our
method and compare them with the exact solution. We also examine a model with no closed-
form solution by employing Monte Carlo simulations. As a comparison purpose, we calculate
the option prices using the other two approximations previously proposed in the literature.

The first candidate is based on the asymptotic theory, called the small disturbance asymptotic
(denoted SDA, hereafter). For a diffusion process, Takahashi (1999) asymptotically expands the
price of underlying asset up to the third order of volatility around zero, and derives approximated
solutions in closed form for European options. this approximation method is popular in practice,
because it is very accurate for the case of low volatility and short maturity.

The second candidate is based on the singular perturbation method (denoted SPM, hereafter).
By using matched asymptotic expansions, de Jong (2010) solves singularly perturbed problems
and obtains approximated solutions in closed form for European options under various models.

6.1. The CEV model. Suppose that the volatility in the SDE (2.1) is specified as

σ(S, t) := ν(t)Sβ(t)−1, t ≥ 0,

whereν(t) andβ(t) are deterministic functions of time. Ifβ(t) = 1 andν(t) = µ, then the
asset priceSt follows a geometric Brownian motion as in the Black-Scholes model (1973). On
the other hand, ifβ(t) = 0, then the asset price is normally distributed. The functionν(t) is
called a relative volatility, whileβ(s) is a time-dependent CEV parameter.

In the following, we consider the two settings; the Black-Scholes setting (i.e.,β(t) = 1) and
the square-root setting (i.e.,β(t) = 0.5). Note that closed-form solutions of option prices are
known for these cases.

In either case, we perform numerical experiments for low volatility and high volatility cases,
and short maturity (T = 1 year), medium maturity (T = 5 years) and long maturity (T = 10
years) cases. Other parameters are chosen asS0 = 80.00 andr = 3.0%. The strikesKi(T ),
i = 1, 2, · · · , 5, are selected by using the formula

(6.1) Ki(T ) = F (0, T ) exp(0.1×
√
T × δi),

whereδi = −1.0, −0.5, 0, 0.5, 1.0.
In order to check the accuracy, we consider the relative error (labeled by RE) defined by

RE =
Approximate Value− Exact Value

Exact Value

throughout the numerical experiments.

6.1.1. The Black-Scholes setting.We first consider the Black-Scholes case, i.e.,β(t) = 1 for
all t. In this case, the underlying asset price is log-normally distributed, and the exact option
prices are known as the Black-Scholes formula (1973).

Table 2 shows option prices for the low volatility case (ν = 0.15), whereas Table 3 for the
high volatility case (ν = 0.3). In the tables, BS means the exact prices calculated by the Black-
Scholes formula, and Ours indicates the approximated prices calculated by the formula given
in Theorem 5.3. The values in column SPM are based on Equation (5.9.15) in de Jong (2010),
while those in column SDA are calculated using Equation (2.22) in Takahashi (1999). The
relative errors are appended in each box.

From the two tables, we observe that, in the entire range of strikes and maturities, the rela-
tive errors of our approximation method are quite small. The error becomes slightly large for
long maturity and far in-the- and out-of-the money strikes. However, compared with the other
methods, the errors are significantly smaller. The largest magnitude of the relative error in our
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Table 2: European option prices in the Black–Scholes setting (Low volatility)

Strike BS Ours RE (%) SDA RE (%) SPM RE (%)
T=1 Year

91.11 1.90 1.90 0.01 1.88 -1.09 1.94 1.74
86.66 3.12 3.12 0.00 3.10 -0.81 3.14 0.42
82.44 4.78 4.78 -0.00 4.76 -0.56 4.78 -0.01
78.42 6.87 6.87 -0.00 6.85 -0.37 6.88 0.04
74.59 9.34 9.34 -0.00 9.31 -0.24 9.36 0.24

T=5 Years
116.24 4.50 4.51 0.17 4.28 -4.89 5.21 15.77
103.94 7.17 7.17 0.03 6.89 -3.91 7.67 6.95
92.95 10.65 10.65 -0.00 10.35 -2.83 10.95 2.79
83.11 14.87 14.87 -0.02 14.58 -1.94 15.11 1.57
74.32 19.63 19.62 -0.03 19.37 -1.31 19.99 1.84

T=10 Years
148.15 6.61 6.65 0.51 6.02 -8.96 9.55 44.44
126.49 10.31 10.32 0.09 9.52 -7.65 12.60 22.22
107.99 15.00 15.00 -0.01 14.15 -5.69 16.61 10.74
92.2 20.50 20.49 -0.05 19.68 -4.01 21.70 5.87
78.71 26.51 26.49 -0.08 25.76 -2.81 27.80 4.88

The parameters are chosen asr = 3.0%, S(0) = 80.0, β = 1.0 andν = 0.15.

Table 3: European option prices in the Black–Scholes setting (High volatility)

Strike BS Ours RE (%) SDA RE (%) SPM RE (%)
T=1 Year

91.11 6.38 6.38 0.02 6.18 -3.15 6.56 2.83
86.66 7.87 7.87 0.01 7.66 -2.69 8.03 2.08
82.44 9.54 9.54 -0.00 9.32 -2.26 9.69 1.59
78.42 11.38 11.38 -0.01 11.17 -1.88 11.53 1.29
74.59 13.39 13.39 -0.01 13.18 -1.54 13.54 1.13

T=5 Years
116.24 14.87 14.91 0.24 12.66 -14.86 17.53 17.90
103.94 17.82 17.84 0.09 15.47 -13.22 20.15 13.06
92.95 21.01 21.01 -0.03 18.60 -11.49 23.06 9.75
83.11 24.40 24.37 -0.11 21.99 -9.86 26.26 7.62
74.32 27.92 27.88 -0.16 25.57 -8.41 29.69 6.34

T=10 Years
148.15 21.48 21.61 0.63 15.30 -28.74 30.94 44.09
126.49 25.23 25.28 0.20 18.58 -26.36 33.27 31.84
107.99 29.18 29.14 -0.13 22.33 -23.47 36.00 23.38
92.2 33.24 33.13 -0.35 26.39 -20.60 39.14 17.75
78.71 37.34 37.16 -0.48 30.62 -17.99 42.65 14.22

The parameters are chosen asr = 3.0%, S(0) = 80.0, β = 1.0 andν = 0.3.

method is 0.51% in Table 2; however, considering the actual bid-ask spreads, this error would
be smaller than the spreads.

6.1.2. The Square-Root setting.We next consider the square-root case, i.e.,β(t) = 0.5 for all
t. In this case, the underlying asset price follows a chi-square distribution, and exact option
prices are known (see, e.g., Schroder, 1989).
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Table 4: European option prices in the square-root setting (Low volatility)

Strike Exact Ours RE (%) SDA RE (%) SPM RE (%)
T=1 Year

91.11 1.74 1.74 -0.00 1.74 -0.29 1.80 3.46
86.66 2.99 2.99 0.00 2.99 -0.20 3.02 0.99
82.44 4.71 4.71 0.00 4.70 -0.14 4.71 -0.01
78.42 6.86 6.86 -0.00 6.85 -0.09 6.86 0.05
74.59 9.37 9.37 0.00 9.36 -0.05 9.41 0.42

T=5 Years
116.24 3.61 3.61 -0.03 3.56 -1.40 4.61 27.74
103.94 6.43 6.43 0.01 6.37 -0.97 7.21 12.13
92.95 10.19 10.19 0.01 10.13 -0.64 10.58 3.84
83.11 14.71 14.71 0.00 14.65 -0.41 14.91 1.36
74.32 19.71 19.71 0.01 19.66 -0.26 20.13 2.13

T=10 Years
148.15 4.64 4.63 -0.09 4.51 -2.66 8.36 80.29
126.49 8.61 8.62 0.03 8.46 -1.83 11.84 37.53
107.99 13.87 13.87 0.02 13.70 -1.19 15.97 15.19
92.2 19.99 19.99 0.00 19.84 -0.76 21.19 5.98
78.71 26.49 26.50 0.02 26.37 -0.48 27.74 4.70

The parameters are set asr = 3.0%, S(0) = 80.0, β = 0.5 andν = 1.33.

Table 5: European option prices in the square-root setting (High volatility)

Strike Exact Ours RE (%) SDA RE (%) SPM RE (%)
T=1 Year

91.11 6.01 6.01 0.01 5.96 -0.81 6.19 2.97
86.66 7.60 7.60 0.01 7.55 -0.67 7.76 2.07
82.44 9.40 9.40 0.00 9.34 -0.54 9.54 1.49
78.42 11.36 11.36 0.00 11.31 -0.44 11.50 1.22
74.59 13.47 13.47 -0.00 13.42 -0.35 13.62 1.14

T=5 Years
116.24 12.86 12.88 0.12 12.36 -3.89 15.32 19.07
103.94 16.39 16.41 0.12 15.87 -3.17 18.59 13.43
92.95 20.18 20.20 0.07 19.66 -2.57 22.09 9.43
83.11 24.14 24.15 0.03 23.64 -2.09 25.87 7.15
74.32 28.16 28.17 0.02 27.69 -1.69 29.91 6.21

T=10 Years
148.15 17.12 17.18 0.33 15.85 -7.39 25.36 48.15
126.49 22.05 22.14 0.39 20.74 -5.95 29.43 33.44
107.99 27.20 27.28 0.26 25.90 -4.80 33.50 23.14
92.2 32.38 32.43 0.15 31.13 -3.87 37.82 16.79
78.71 37.42 37.47 0.12 36.25 -3.13 42.51 13.61

The parameters are set asr = 3.0%, S(0) = 80.0,β = 0.5 andν = 2.66.

Table 4 shows option prices for the low volatility case (ν = 1.33), whereas Table 5 for the
high volatility case (ν = 2.66). The volatilitiesν are so determined that the variances of log-
returns at each expiry are equivalent to those of the Black–Scholes setting whose volatilities are
around30%. In these tables, the labels are the same as the Black–Scholes setting, except that
the values in column SPM are based on Equation (6.4.7) in de Jong (2010).
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Table 6: European option prices in the ERV model (low volatility)

Strike MC Ours RE (%) SDA RE (%)
T=1 Year

91.11 1.81 1.80 -0.67 1.70 -6.04
86.66 3.05 3.05 0.00 2.99 -1.87
82.44 4.74 4.75 0.17 4.75 0.19
78.42 6.88 6.89 0.16 6.95 0.98
74.59 9.38 9.38 0.10 9.48 1.11

T=5 Years
116.24 3.81 3.77 -0.98 3.29 -13.73
103.94 6.60 6.60 -0.11 6.30 -4.54
92.95 10.31 10.32 0.15 10.33 0.17
83.11 14.77 14.79 0.14 15.07 2.06
74.32 19.71 19.73 0.10 20.20 2.49

T=10 Years
148.15 4.95 4.87 -1.48 3.92 -20.73
126.49 8.90 8.88 -0.19 8.28 -6.97
107.99 14.06 14.08 0.16 14.08 0.11
92.2 20.08 20.11 0.15 20.67 2.96
78.71 26.49 26.52 0.13 27.46 3.67

The parameters are set asr = 3.0%, µ = S(0) = 80.0, κ = 0.01 andν = 0.075.

It can be seen that, in the entire range of strikes and maturities, the errors of our approximation
method are surprisingly small. The SDA may be comparable with ours for the short maturity
case.

6.2. The exponentially-retracting volatility model. Suppose that the volatility in the SDE
(2.1) is specified as

σ(St, t) := ν(t)
(
1 + eκ(t)(µ(t)−St)

)
,

whereν(t), κ(t) andµ(t) are positive deterministic functions of time. If the asset priceSt

increases to infinity, the volatility becomes constant. We refer to this model as the exponentially-
retracting volatility (ERV) model. Let us call the functionν(t) a relative volatility andκ(t) a
retraction parameter. The functionµ(t) is set to be the initial asset priceS0 in this example.
Note that closed-form solutions and SPM approximations for option prices are not available in
this case. Hence, we compare our approximation results with Monte Carlo simulation.

As for the previous cases, tables 6 and 7 report the low volatility and high volatility cases,
and the short maturity (T = 1 year), medium maturity (T = 5 years) and long maturity (T =
10 years) cases. The volatilitiesν are set so that the variances of log-returns at each expiry
are equivalent to those of the log-normal process whose volatilities are around15%. Other
parameters are chosen asS0 = 80.00, r = 3.0%, κ(t) = 0.01 andµ(t) = S0. The strikes
Ki(T ), i = 1, 2, · · · , 5, are selected by the formula (6.1). In these tables, the label MC means
the prices calculated by Monte Carlo simulation. The other labels are the same as the previous
example.

We can see from the two tables that the relative errors of our approximation are well within
the observed bid-ask spreads in the actual market even in this complex setting.

7. CONCLUSION

In this paper, we propose an approximation method based on the Wiener-Ito chaos expansion
for the pricing of European-style options. Our method is applicable to the general class of
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Table 7: European option prices in the ERV model (High volatility)

Strike MC Ours RE (%) SDA RE (%)
T=1 Year

91.11 4.93 4.92 -0.16 4.72 -4.14
86.66 6.45 6.45 0.08 6.35 -1.48
82.44 8.21 8.22 0.14 8.22 0.19
78.42 10.18 10.20 0.14 10.30 1.18
74.59 12.34 12.35 0.13 12.55 1.70

T=5 Years
116.24 10.60 10.56 -0.37 9.54 -10.02
103.94 13.96 13.97 0.05 13.42 -3.88
92.95 17.68 17.70 0.13 17.70 0.09
83.11 21.65 21.67 0.08 22.19 2.48
74.32 25.76 25.77 0.07 26.74 3.82

T=10 Years
148.15 14.13 14.02 -0.77 11.99 -15.14
126.49 18.85 18.86 0.08 17.75 -5.80
107.99 23.91 23.95 0.17 23.96 0.21
92.2 29.12 29.14 0.06 30.24 3.83
78.71 34.28 34.29 0.03 36.29 5.88

The parameters are set asr = 3.0%, µ(t) = S0 = 80.0, κ = 0.01 andν(t) = 0.13.

continuous Markov processes. The resulting approximation formula requires at most three-
dimensional numerical integration; whence it is not computer-intensive for the valuation. It is
shown through numerical examples that, unlike existing approximation methods, the accuracy
of our approximation remains quite high even for the case of high volatility and long maturity.

The outline of our approach is as follows. First, we expand the underlying dynamics by
Hermite polynomials based on the Wiener-Ito chaos expansion. Second, we approximate it by
a truncated sum of iterated Ito stochastic integrals by means of successive substitution. Finally,
we derive the characteristic function of the approximated underlying asset price and convert it
to the probability density function by inversion formula. The value of a European contingent
claim is then derived in closed form by the approximated probability density.

As future works, we extend our method to multi-dimensional diffusions such as stochastic
interest-rate models and stochastic volatility models and consider applications for the valuation
problem of other financial contingent claims.

APPENDIX A. FORMULAS FORCONDITIONAL EXPECTATIONS

Let W i
t , i = 1, . . . , 4, be one-dimensional, independent standard Brownian motions, and let

yi(x) be some deterministic functions. Moreover, letΣ :=
∫ T

0
y21(t)dt, and denoteJT (y1) =∫ T

0
y1(t)dW

1
t .

Then, the following formulas are well known:

(A.1) E

[ ∫ T

0

y3(t)

(∫ t

0

y2(s)dW
2
s

)
dW 3

t

∣∣∣∣JT (y1) = x

]
= v1

(
x2

Σ2
− 1

Σ

)
,

where

v1 =

∫ T

0

y3(t)y1(t)

(∫ t

0

y2(s)y1(s)ds

)
dt.
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E

[ ∫ T

0

y4(t)

(∫ t

0

y3(s)

(∫ s

0

y2(u)dW
2
u

)
dW 3

s

)
dW 4

t

∣∣∣∣JT (y1) = x

]
= v2

(
x3

Σ3
− 3x

Σ2

)
,(A.2)

where

v2 =

∫ T

0

y4(t)y1(t)

(∫ t

0

y3(s)y1(s)

(∫ s

0

y2(u)y1(u)du

)
ds

)
dt.

Furthermore,

E

[(∫ T

0

y3(t)

(∫ t

0

y2(s)dW
2
s

)
dW 3

t

)2 ∣∣∣∣JT (y1) = x

]
= v3

(
x4

Σ4
− 6x2

Σ3
− 3

Σ2

)
+ v4

(
x2

Σ2
− 1

Σ

)
+ v5,(A.3)

where

v3 =

(∫ T

0

y3(t)y1(t)

(∫ t

0

y2(t)y1(t)ds

)
dt

)2

,

v4 = 2

∫ T

0

y3(t)y1(t)

(∫ t

0

y3(s)y1(s)

(∫ s

0

y22(u)du

)
ds

)
dt

+2

∫ T

0

y3(t)y1(t)

(∫ t

0

y2(s)y3(s)

(∫ s

0

y2(u)y1(u)du

)
ds

)
dt

+

{∫ T

0

y23(t)

(∫ t

0

y2(s)y1(s)ds

)2

dt

}
,

v5 =

∫ T

0

y23(t)

(∫ t

0

y22(u)du

)
dt.

Formulas (A.1), (A.2) and (A.3) are one-dimensional versions of Lemma 2.1 in Takahashi
(1999). See also Yoshida (1992b) for detailed discussions on the conditional expectations.
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