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CREDIT-EQUITY MODELING UNDER A LATENT L ÉVY FIRM PROCESS

MASAAKI KIJIMA AND CHI CHUNG SIU

ABSTRACT. We propose a unified credit-equity modeling by extending the latent structural
model originally proposed by Kijima et al. (2009) so as to include jumps and regime switch-
ing. As in the original latent model, we treat the actual firm value to be unobservable and one
can extract information from the correlated marker process, the equity value, which is actively
traded in the market. Default occurs when the actual firm value reaches a default threshold at the
first time before the maturity of debt. The purpose of such extension is to capture more realistic
credit spreads under different economic environments. We illustrate the application of the model
through the pricing of credit default swaps and equity options. Our model can evaluate corporate
securities and their derivatives in a unified framework.

1. INTRODUCTION

Vast amount of studies have been conducted to model credit risk of a corporate firm. Among
them, modeling the credit risk under the structural approach has an economic appeal since it
provides an intuitive linkage between the firm value and the values of corporate securities such
as debt and equity.

However, until recently, the equity and credit modeling seems to be two separate themes in
the finance literature. That is, equity processes are modeled through the eyes of the investors,
while structural models reflect the perceptions of players inside firms. Consequently, many
prominent equity models have not taken the creditworthiness of the firm value into account.
However, recent credit crisis shows the intimidate relationship between the credit and equity
markets.1 Hence, new attempts are required to construct the credit-equity modeling in a unified
manner.

Consider a corporate firm that issues a debt and an equity. LetD andS be the debt and
equity values, respectively, and letV be the firm value. According to the basic accounting
assumption, we have the relationshipV = D +S. The default occurs whenV reaches a default
threshold either at the maturity or at the first time before maturity. This is the basic setting of
the structural approach.

The difficulty to construct the credit-equity modeling in a unified manner stems from the
fact that the debt and equity possess different properties.That is, while debt has finite maturity
and face value, equity has neither maturity nor face value. To overcome this difficulty in the
framework of structural models, the Merton model (1974) andits variants (see, for example,
Merton (1976), Zhou (1997, 2001), and Kijima and Suzuki (2001)) assume that the firm is
liquidated at the debt maturity and the equity value is evaluated as a call option with the same
maturity written on the firm value. On the other hand, the Leland model (1994) and its variants
(see, for example, Leland and Toft (1996), Hilberink and Rogers (2001), and Chen and Kou
(2009)) consider a perpetual bond and the equity value is obtained by the balance theory.
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New attempt to overcome the difficulty appears in CreditGrades proposed by Finger et al.
(2002), where the present value of debt,D, is assumed to be the discounted face value of
debt and the equity valueS is modeled by a geometric Brownian motion. Through the basic
accounting relationship, the firm valueV is determined byV = D + S and default is the first
passage time ofV to the face value.

Due to its simple formulation, CreditGrades quickly receives widespread popularity among
practitioners and many studied have been conducted to exemplify its power in the credit-equity
modeling. For example, Byström (2006) shows that the equity process has a leading effect to
the credit spread and there is a positive relationship between the empirical credit spread and the
theoretical credit spread computed by the CreditGrades model.

As is well known in the finance literature, if the firm value is assumed to follow a diffusion
process, the model always generates unrealistic zero short-term credit spreads. To correct this
shortcoming without losing tractability, the original CreditGrades model has been extended by
assuming the default barrier to be stochastic, independentof the firm value process. Recently,
Sepp (2006) extends the CreditGrades framework to include the case when the firm value pro-
cess follows either the double-exponential jump-diffusion model or stochastic volatility model.
Ozeki et al. (2011) make use of the Weiner-Hopf factorization scheme to study credit and equity
problems when the firm dynamics is driven by a spectrally negative Lévy process.

In this paper, we propose another unified credit-equity model by extending the latent struc-
tural model originally proposed by Kijima et al. (2009), where we treat theactual firm value
to be unobservable and one can extract information from the marker process that is observable
in the market. Unlike the latent structural model in Kijima et al. (2009), however, the marker
process in this paper is chosen to be the firm’s equity. In the original latent structural model in
Kijima et al. (2009), the marker processV represents thetangible asset of the firm correlated
to theactual firm value. For a given maturityT , the value of the debt is given in terms ofV
andA, with the default feature embedded inA. Equity value is obtained as a residual value
after the payment has been made to the debt holder in time of default or at maturity, whichever
comes first. Hence, by defining the firm’s tangible asset as the(correlated) marker process, eq-
uity comes as a by-product with same maturity as the corporate bond. As commented in Kijima
et al. (2009), the fact that equity has maturity is rather unrealistic. Moreover, the complicated
form of equity in the original latent structural model makesit difficult to price equity options,
even under the case of Brownian motion. Motivated by the factthat the liquidity of the equity
markets supersedes that of the corporate bond markets, we shall use the equity data of the firm
as means to extract firm’s credit information in this paper. We then proceed to price the CDS
and equity options with default feature.

From the financial standpoint, pricing the CDS and the equityoptions using the equity data
alone enables us to study the relationship between CDS and equity under a joint framework.
More specifically, embedding the firm value into the equity value allows us to introduce the
firm’s creditworthiness into the equity process. As we shallsee in the subsequent discussion,
the current framework allows us to explain the effect of credit spread on the option’s implied
volatility.

On the modeling perspective, this paper extends the original latent process model on two
grounds. The first extension is to model the actual firm value and equity processes by jump-
diffusion models. The reason to include jumps is to reproduce realistic short-term credit spreads.
Jumps are considered in both the actual firm value and equity processes, since surprise shocks
can occur both internally (i.e., firm restructuring) and externally (i.e., market reaction to the
equity issued by the firm). The second extension is to includethe regime-switching dynamics
into the economy. Economic motivation of regime-switchingis to capture the macroeconomic
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effect.2 During the credit crisis or economic downturn, the volatilities of firm value and equity
are skyrocketing. When the economic environment returns back to normal, the credit becomes
calm and the volatilities drop significantly. In particular, regime-switching jump-intensity is
served to describe the arrival frequency of the positive andnegative news under different eco-
nomic landscape. As we shall soon see in the case of the CDS pricing, the persistence of the
firm staying in a particular credit environment can be well captured by the regime-switching fre-
quency. In fact, Byström (2006) demonstrates the autocorrelative behavior of the credit spread,
an evidence of the credit clustering.

When studying the latent process with both jump-diffusion and regime-switching, it is im-
perative to investigate which effect, jump-diffusion or regime-switching, has greater impact
on the price of the securities across a time horizon. Intuitively, Lévy jump should have more
dominant effect than the regime-switching on a very short time interval, whereas the situation is
reversed as the time interval expands. We shall verify this intuition analytically and numerically
when pricing CDSs and equity options under the current framework.

The rest of the paper is organized as follows. Section 2 givesthe setup of our model with the
aforementioned structures. In particular, a regime-switching double-exponential jump-diffusion
model is tractable for our purpose, and the key results obtained in Kijima and Siu (2011) are
summarized in Section 3. Section 4 provides the pricing of credit default swaps in our setting,
while Section 5 considers equity derivatives with default feature. To enhance the versatility of
our model, we also discuss the extension to the case of randomized default barrier. Section 6
provides a comprehensive numerical analysis on the effectsof model’s parameters on the CDSs
and equity options. Section 7 concludes the paper. AppendixA contains proofs of some results
mentioned in the paper.

2. MODEL SETUP

In this section, we discuss the structure of our extended latent firm model and its assump-
tions. As in Kijima et al. (2009), we assume that the capital market is frictionless and there
exists no information asymmetry. Moreover, we also assume that money can be borrowed from
the money market at a constant, riskfree interest rater. Unless otherwise stated, we shall work
only on the probability space(Ω, F , P) and always assume that the risk-neutral probability
measureP exists. Moreover, filtrationF is generated by the stochastic processes considered in
this paper.

As commonly observed, asset prices fluctuate under different economic or credit environ-
ment. Intuitively, the actual firm value and the equity valueare driven by two factors, idiosyn-
cratic and systematic factors. Systematic factors refer tothe macroeconomic influence on the
asset prices. Examples of macroeconomic indicators include Gross Domestic Products (GDP),
inflationary/deflationary pressure, and sovereign risks. These systematic factors in turn affect
the prices and volatilities of equity prices, as well as the actual firm values, as it is equally
susceptible to the credit environment. We shall use the Markov chain as the driving factor of
switching from one economic regime to another. Each regime corresponds to different param-
eters in the latent firm model, indicating that equity and actual firm values behave differently
under different economic or credit background.

Let {Jt : t ≥ 0} be a Markov chain with state spaceE. For simplicity, we assume thatE is
finite and containsd elements, i.e.E = {1, 2, . . . , d}. Let Q be the intensity matrix ofJt with
respect to the Lebesgue measure, i.e.

Q = {qij}i,j∈E
,

2Siu et al. (2008) discuss in detail on the pricing of CDSs under the regime-switching Brownian motion within
the structural framework.
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where
qii = −

∑

i6=j

qij .

Assume thatJ0 = i and, defining a holding timeζ as a positive random variable

ζ = inf{t : Jt 6= i},

the standard Markov chain theory shows that, for any timet ≥ 0,

P(ζ > t) = exp(−qiit).(2.1)

That is, ζ is exponentially distributed with meanEi[ζ ] = 1
qii

. This implies that the higher
the value ofqii the faster the Markov chainJt leaves statei. As discussed in Fouque et al.
(2000), if we model the volatility function of an equity process in terms of a Markov chainJt,
the parameterqii can be seen as the parameter governing the degree of volatility persistence.
Together with an additional assumption ofJt being ergodic, the long term behavior of the
volatility process can then be fully captured by the invariant distribution ofJt. See Fouque
et al. (2000) for details on the common stochastic volatility models used in finance.

In what follows, we shall use the Markov chainJt to describe both the volatility and the
Lévy measure of the firm and equity processes. The presence of Jt can then relax the indepen-
dent increment assumption embedded in every Lévy process,thereby bringing forth the level of
volatility persistence that is well-documented by the empirical studies mentioned in the intro-
duction.

With the regime-switching dynamics in place, we are now in a position to discuss the struc-
tures of the actual firm value and equity processes.

2.1. Firm value dynamics. First, we consider the actual firm value, which is latent or unob-
servable in the market. LetXt be a regime-switching Lévy process with the following canonical
representation:

Xt =

∫ t

0

bX(Js)ds +

∫ t

0

σX(Js)dW X
s +

∫ t

0

∫

R

y(µX(Js) − νX(Js))(dy)ds,(2.2)

where, under the regimeJt = j, bX(Jt) ≡ bX
j denotes the drift,σX(Jt) ≡ σX

j the volatility, and
µX(Jt) ≡ µX

j represents the random jump measure with compensatorνX(Jt) ≡ νX
j . The pro-

cessW X
t represents the standard Brownian motion and all the random processes are mutually

independent.
To compute the moment generating functionEi[exp(uXt)] for u ∈ R, we need to impose

one restriction onXt: Xt has the second finite moment under each regime, i.e., for every t ≥ 0,

max
j

∫

R

(1 ∧ y2)νX
j (dy) < ∞.

Then, for anyu ∈ R, the moment generating functionEi[exp(uXt)] is finite and takes the form
as follows (see Asmussen (2000)):

(2.3) Ei[exp(uXt)] ≡ exp
(
KX [u]t

)
,

(2.4) KX [u] ≡ {κX
j (u)}diag + Q,

where

κX
j (u) = bX

j u +
1

2
(σX

j u)2 +

∫

R

(euy − 1 − y1{|y|≤1})ν
X
j (dy).

Now, theactual firm value at timet, denoted byAt, is assumed to be given by

(2.5) At = exp(Xt), t ≥ 0,
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whereX0 ≡ log(A0) denotes the value of the actual log-firm value att = 0. It is assumed
that At itself is latent, i.e. unobservable to the investors, and thus nontradable in the market.
Observe that, if there is only one regime and there are no jumps, we return to the Brownian
motion framework as in Kijima et al. (2009). The inclusion ofjumps is to capture the effects of
surprise shocks to the firm. Note that regime-switching can also affect both the volatility and the
random jump measure. Volatility driven by the Markov chain results in the volatility persistence
as delineated in Fouque et al. (2000). The Markov-modulatedjump process is to capture the
impact of the shocks to the firm under different macroeconomic environments. For example,
sudden shock, both systematic and idiosyncratic, during the time of credit crisis should have
bigger (negative) impact to the firm than that, say, during the time of economic prosperity.

In contrast to the ordinary structural models, we assume that default occurs when the actual
firm value exceeds a default threshold. That is, define

(2.6) τ = inf{t ≥ 0 : At ≤ Γ} = inf{t ≥ 0 : Xt ≤ L}

for someΓ = eL. Under this definition of default timeτ , default is firm-specific.

2.2. Equity process. Let St be the equity value of the firm at timet. Contrast to the actual firm
value, the equity value is observable and assumed to be actively traded in the market.

Let Yt = log St, and assume that, for each regime,

Yt = ρXt + Zt

for some constantρ ∈ [0, 1], whereZt can be seen as the impact factor that is non-firm specific.
Thus, the parameterρ describes the importance of the actual firm value on equity. Higher the
value ofρ, the greater influence the actual firm value has on the equity.As we shall soon see, this
simple structure on equity allows us to draw the informationof the firm quality into the equity
valuation and thus embed credit feature into the corresponding equity derivative products.

In what follows, we assume thatZt is also modeled by a regime-switching Lévy process,
independent of other processes. That is,

(2.7) St = exp(ρXt + Zt),

also, as in (2.2),Zt has the following canonical representation:

Zt =

∫ t

0

bZ(Js)ds +

∫ t

0

σZ(Js)dW Z
s +

∫ t

0

∫

R

y(µZ(Js) − νZ(Js))(dy)ds,

wherebZ(Jt) ≡ bZ
j denotes the drift,σZ(Jt) ≡ σZ

j the volatility, andµZ(Jt) ≡ µZ
j represents the

random jump measure with compensatorνZ(Jt) ≡ νZ
j . Additionally, we setZ0 ≡ log(S0/A

ρ
0).

Similar to the case ofXt, we need an additional assumption for the moment generating
functionEi[exp(uZt)], u ∈ R, to be finite. That is, for everyt ≥ 0, we assume

max
j

∫

R

(1 ∧ y2)νZ
j (dy) < ∞.

The moment generating functionEi[exp(uZt)] is given as follows:

(2.8) Ei[exp(uZt)] ≡ exp
(
KZ [u]t

)
,

(2.9) KZ [u] ≡ {κZ
j (u)}diag + Q,

where

κZ
j (u) = bZ

j u +
1

2
(σZ

j u)2 +

∫

R

(euy − 1 − y1{|y|≤1})ν
Z
j (dy).

Note from (2.4) and (2.9) that the regime switching factorJt affects bothXt andZt simultane-
ously.
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Similar to the discussion on the actual firm value process, the equity process has jumps from
Xt andZt given a regimeJt. While jumps inXt refer to the jumps brought by sudden changes
of the firm value, jumps inZt refer to sudden shocks in the market, unrelated to the firm value.
The latter shocks may be due to the sudden changes in the market perception on the equity
market.

Parallel to the original Black-Cox (1976) model, default ofthe firm would trigger a drop
in the equity value. However, unlike typical structural models, default of the firm may not
necessarily imply an immediate default in equity, as is often observed in actual markets. This
is a significant departure from the traditional structural framework. The jump effect on equity
values in time of credit event would become particularly pronounced when evaluating the equity
products under the latent firm model, as we will soon see in later sections.

From the construction of the equity value, it is clear that the pricing of any equity derivative
under the current framework requires a prior knowledge on the joint distribution ofXt andZt at
any timet. AlthoughXt andZt are conditionally independent givenJt, Xt andZt are in general
not independent, as they share the same regime-switching processJt. To ease computation, we
shall adopt the change-of-measure technique for the case ofregime-switching Lévy processes.
Hence, before proceeding further, let us first investigate the necessary tools to justify the change-
of-measure technique.

Lemma 2.1. Suppose that the functiong : [0, T ]×E → R is bounded andg(·, j) is continuous
for eachj ∈ E. Define, forζ ∈ R,

Vt = exp (g(t, Jt)t + ζZt) .

Then,Vt is aP-martingale with respect toFt if and only if

g(t, Jt) = −κZ
(Jt)(ζ).(2.10)

Proof. See Appendix A.1

Define an equivalent probability measureP̃ by its Radon-Nikodym derivative as follows:

dP̃

dP

∣∣∣
Ft

≡ Vt,(2.11)

whereFt ≡ {σ(Zs), 0 ≤ s ≤ t}.

DenotingẼi[.] as an expectation operator underP̃, we have the following results.

Corollary 2.1. Let ζ, γ ∈ R. Then,

Ẽi

[
exp

(
κZ

(Jt)(ζ)t + γXt

)]
= exp

((
Q + {κZ

j (ζ) + κX
j (γ)}diag

)
t
)

(2.12)

and

Ẽi [exp (γXt)] = exp
((

Q + {κX
j (γ)}diag

)
t
)
.(2.13)

Proof. See Appendix A.2

Remark 2.1. Observe that, from Corollary 2.1, the distribution ofXt is unchanged under̃P.
This is in agreement with our intuition thatXt andZt are conditionally independent processes
givenJt. As we will soon see, this change-of-measure formula greatly reduces the complexity
when pricing equity options in our framework.

From equation (2.12), we can now easily derive the drift condition on the equity process so
thate−rtSt is a martingale, i.e.

Ei

[
e−rt St

S0

]
= 1.

Let ei = (0, · · · , 0, 1, 0, · · · , 0)> ∈ R
d is the unit vector with1 in the i-th component and

1d = (1, . . . , 1)> ∈ R
d.
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By the definition ofSt, this is equivalent to finding the drift ofSt such that

e>
i Ei

[
e−rt exp(ρXt + Zt)

]
1d = 1,

for all i ∈ E. By invoking Corollary 2.1, we have

e>
i Ei

[
e−rt exp(ρXt + Zt)

]
1d = e>

i exp((Q + {κX
j (ρ) + κZ

j (1) − r}diag)t)1d.(2.14)

Following the proof of Lemma 2.1, it is clear that

e>
i exp((Q + {κX

j (ρ) + κZ
j (1) − r}diag)t)1d = 1

if and only if
κX

j (ρ) + κZ
j (1) − r = 0.

We then have the following sufficient condition onSt to preclude arbitrage opportunity:

ρbX
j + bZ

j = r −
1

2
(ρσX

j )2 −
1

2
(σZ

j )2

−

∫

R

(eρy − 1 − ρy1{|y|≤1})ν
X
j (dy) −

∫

R

(ey − 1 − y1{|y|≤1})ν
Z
j (dy), j ∈ E.

2.3. Calibration procedure. Before applying the latent model to the pricing of CDSs and
equity options, we shall describe briefly the calibration procedures against the actual data in
this subsection. Since we treat the actual firm value to be unobservable, our only source of
information on the firm value is the equity process, via the relation (2.7), or equity derivatives.3

Thus, before using the latent model to price the firm-relatedproducts, we must first calibrate
the latent model against the equity data. After the successful calibration, we can then proceed
to price firm-related products with the calibrated model.

Specifically, denote byN the number of observations and byX = (Xi, i = 1, ..., N) the
vector of the equity (or its derivatives) values of lengthN , sampled from the equity market. Let
Θ be the vector of the equity model parameters, and denote byX̂(Θ) = (X̂i(Θ), i = 1, ..., N)
the vector of the equity values of the model counterparts. Calibration procedure amounts to
finding the optimalΘ∗ such that the squared sum of the difference betweenX and X̂(Θ) is
minimized. In other words,

Θ∗ = arg min
Θ

1

N

N∑

i=1

(X̂i(Θ) − Xi)
2.(2.15)

However, since the main scope of this paper is to study the economic underpinning behind
the model’s parameters, we have chosen the parametersa priori with the intention to illustrate
specific effects. The actual performance of the calibrated latent model and the implications
thereof are left for future research.

3. THE REGIME-SWITCHING DOUBLE-EXPONENTIAL JUMP MODEL

For practical use, it is important to derive analytic or semi-analytic solutions of derivative
prices for the purpose of efficient computation. To this end,we shall assume that, for each
regimeJt = j, X

(j)
t follows the double-exponential jump-diffusion model, first developed by

Kou (2002). The benefits of the Kou model are two-folds. First, the double-exponential jump-
diffusion model allows two-sided jumps. This means that both positive and negative news can
affect the actual firm and equity values. Second, we can derive the Laplace transform of the
first passage time to the default threshold, which can be inverted numerically with ease. Thus,
the assumption of the Kou process under each regime will maintain the necessary tractability
for efficient computation of first-passage-time distributions; see Kou and Wang (2003). In the

3In Section 6, we consider the pricing ofdefaultable equity options.
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following, for the sake of simplicity, we assume thatE contains only2 elements, i.e.E =
{1, 2}.

In this setting, from (2.2), the log-firm value processXt is defined by

(3.1) Xt =

∫ t

0

bX(Js)ds +

∫ t

0

σX(Js)dW X
s +

∑

j∈E

∫ t

0

1{Js=j}dNX
s (j).

GivenJt = j ∈ E, bX
j andσX

j are constants, and{NX
t (j) : t ≥ 0} is a compound Poisson

process with constant arrival rateλX
j and random jump sizesY X

j with distributionνX
j (dy),

where

(3.2) νX
j (dy) = λX

j (pX
j ηX

j1e
−ηX

j1y1{y≥0} + (1 − pX
j )ηX

j2e
ηX

j2y1{y<0})dy

with ηX
j1 > 1, ηX

j2 > 0, and0 ≤ pX
j ≤ 1.

The Laplace exponent (2.4) now takes the form

(3.3) KX [u] ≡ {κX
j (u)}diag + Q,

where

(3.4) κX
j (u) = bX

j u +
(σX

j u)2

2
+ λX

j

(
pX

j ηX
j1

ηX
j1 − u

+
(1 − pX

j )ηX
j2

ηX
j2 + u

− 1

)

.

3.1. First-passage-time distribution for the case of two regimes. To study the first-passage-
time distribution under the regime-switching jump-diffusion model, we recall some results from
Kijima and Siu (2011).

Define the first passage timeτ by (2.6), and assumeX0 > L andJ0 = i, i = 1, 2. We want
to calculate

Ei[e
−aτ+bXτ ; Jτ |J0 = i]

for a > 0 andb ∈ R\{ηX
i1 ,−ηX

i2 , i = 1, 2}.
To this end, we shall introduce few notations. Define

π
(−,L)
(i,j) [a] = Ei

[
e−aτ1{Jτ=j Xτ <L}

]
, π

(0,L)
(i,j) [a] = Ei

[
e−aτ1{Jτ=j Xτ=L}

]
.

For eachl, l = 1, ..., 4, let %l,a be the solutions4 of the equation

(κX
1 (u) − a − q1)(κ

X
2 (u) − a − q2) = q1q2,

whereκX
j (u) is defined in (3.4), such that

−∞ < %1,a < %2,a < %3,a < %4,a < 0.

Let

γl =
κ2(%l,a) − a − q2

q2
,

and define

(3.5) hl
(1,0) = γl, hl

(1,−) =
γlη

X
12

ηX
12 + %l,a

; hl
(2,0) = −1, hl

(2,−) =
−ηX

22

ηX
22 + %l,a

.

Also, define

(3.6) x =




e−%1,aLh1

(i,0)
...

e−%4,aLh4
(i,0)



 , π =




π

(−,L)
(i,1)
...

π
(0,L)
(i,2)



 , H =




h1

(1,−) · · · h1
(2,0)

...
. . .

...
h4

(1,−) · · · h4
(2,0)



 .

According to Theorem 1 of Kijima and Siu (2011), we have

Hπ = x.(3.7)

4See Kijima and Siu (2010) for the existence of these solutions.
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Parallel to the case of regime-switching Brownian motion developed in Guo (2001), the matrix
H takes the form of a special Alternant matrix, called the (squared) Vandermonde matrix, which
is invertible as the roots inH are distinct. In order to obtainEi[e

−aτ+bXτ ; Jτ ], define

f̂(j,−)[b] =
ηX

j2

ηX
j2 + b

ebL, f̂(j,0)[b] = ebL

for j = 1, 2. Thanks to the conditional memoryless and independence properties, we have

Ei[e
−aτ+bXτ 1{Jτ=j,Xτ <L}] = π

(−,L)
(i,j) f̂(j,−)[b]

and
Ei[e

−aτ+bXτ 1{Jτ=j,Xτ=L}] = π
(0,L)
(i,j) f̂(j,0)[b].

Therefore, by invoking Corollary 2 of Kijima and Siu (2011),we obtain

(3.8) Ei[e
−aτ+bXτ ; Jτ ] =

∑

j

(
π

(−,L)
(i,j) f̂(j,−)[b] + π

(0,L)
(i,j) f̂(j,0)[b]

)
.

In what follows, we shall see that the tractable first-passage-time distribution for the regime-
switching double-exponential jump-diffusion greatly enhances the analysis of the credit and
equity products within our framework.

4. CREDIT DEFAULT SWAP

In this section, we consider the credit default swap (CDS forshort) of a corporate firm. CDS
is a bilateral contract between two parties, protection buyer and protection seller. In actual credit
markets, liquidity of CDS’s of corporate firms is significantly higher than that of the corporate
bonds issued by firms.

As CDS has a nature of a swap, there are payment exchanges between two parties during
the life of the contract. Upon entering a CDS contract with recovery rateR, notional amount
N , and maturityT , the protection buyer will make paymentcT , known as the CDS premium, to
the protection seller on the pre-specified payment dates, provided that the reference entity has
not defaulted by the time of payment. If the reference entitydefaults, the protection seller will
pay the protection buyer the amount(1 − R)N and the contract terminates.

Assuming that there are no counterparty risks, the above description can be compactly sum-
marized by the following two equations:

Protection Buyer’s Leg = Ei

[∫ T

0

c
(i)
T Ne−rt1{τ>t}dt

]

= Ei

[∫ T∧τ

0

e−rtc
(i)
T Ndt

]

= c
(i)
T N

Ei[1 − e−r(τ∧T )]

r

= c
(i)
T N

1 − Ei[e
−rτ1{τ<T}] − e−rT

Pi(τ > T )

r

and

Protection Payer’s Leg= (1 − R)N

∫ T

0

e−rtdPi(τ ≤ t)

= (1 − R)NEi

[
e−rτ1{τ<T}

]
,

wherec
(i)
T denote the CDS premium under regimei and τ is defined as (2.6). To exclude

any arbitrage opportunity, the CDS premiumc(i)
T must be calculated by equating the protection
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buyer’s leg and the protection seller’s leg, so that

c
(i)
T = (1 − R)

∫ T

0
e−rtdPi(τ ≤ t)

∫ T

0
e−rtPi(τ > t)dt

= (1 − R)r
Ei

[
e−rτ1{τ<T}

]

1 − Ei[e−rτ1{τ<T}] − e−rT Pi(τ > T )
.(4.1)

Observe that, by the definition of default timeτ , the above formulation of the CDS only takes
the actual firm value process into an account. This is the sameas traditional structural models.

What makes the latent firm model different from the traditional models is that securities
issued by the firm are embedded with credit quality of the firm.Although the actual firm value
is unobservable, we can use the actively traded CDS premiumsto extract credit quality of the
firm.5 This is in contrast with the intent of the original latent structural model in Kijima et
al. (2009). In the original latent structural model, creditquality from the corporate bonds is
extracted from the tangible asset correlated to the actual firm value. Tangible assets are the
asset shown on the accounting book of the firm and thus can onlybe revealed during periodic
corporate announcement. Hence, tangible assets on the accounting book are seen as the lagging
factor on the credit quality of the firm. On the other hand, CDSrepresents not only the credit
quality of the firm but also the market perception of the credit quality of the firm for some time
in thefuture. Hence, CDS provides us the forward-looking indicator of the credit quality of the
firm.

We shall now move to provide an explicit calculation of the CDS premium whenXt is the
candidate process as in (3.1). To compute the CDS premiumc

(i)
T from (4.1), it is clear that

c
(i)
T can be computed once we compute the first-passage-time probability Pi(τ > T ) for each

T . For the case of Brownian motion, this first-passage-time probability is well known and
has a closed-form solution. Unfortunately, the closed-form solution is absent when one makes a
departure from the Brownian motion framework. Nevertheless, by taking the Laplace transform
of Pi(τ > t) with respect tot yields the following result.

Before proceeding to compute CDS at any timet, let us first investigate the asymptotic
behaviors of the CDS premium with respect to time. In particular, we shall now investigate the
effect on the CDS premium as time approaches to0 and∞ under the general jump-diffusion
processes with regime-switch. This analysis collectivelycan be seen as an extension of the
results of Ruf and Scherer (2011) to include the regime-switching case.

Lemma 4.1. Denotex = − log( L
A0

) andJ0 = i. Then, we have

lim
T↓0

c
(i)
T = (1 − R)rνX

i ((−∞, x]),(4.2)

whereν(i) denotes the Lévy measure under regimei.

Proof. See Appendix A.3.

Lemma 4.1 conveys a very important message. The non-zero credit spread is inducedonly
by the Lévy measure under the initial regimeJ0 and the diffusion component plays no role.
Additionally, regime-switching intensity doesnot enter into the picture att = 0. This is in
line with the concept of holding time of a Markov chain presented in (2.1). Hence, contrary
to the previous studies, CDS premium computed under the regime-switching Brownian motion
alone cannot produce non-zero credit spread! This further justifies the role of Lévy measure in
explaining theshort-term behavior of the CDS curve.

5The default event of the CDS is essentially the default eventof the underlying firm. High liquidity of the CDS
market may provide us an updated inference of the actual firm value under our framework.
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By the simple limiting argument, the almost surely finiteness of the default timeτ , and the
stationary distribution of the Markov chainJt, we also have the following result. The proof is
omitted.

Lemma 4.2. AssumePi[τ < ∞] = 1 andJ0 = i. Then,

lim
T→∞

c
(i)
T = (1 − R)r

EΠ[e−rτ ]

1 − EΠ[e−rτ ]
,(4.3)

whereΠ denotes the stationary distribution of the Markov chainJt.

Contrary to the behavior of the CDS premium atT → 0, the effect of the regime-switching
enters into the picture in Lemma 4.2. As we shall soon see in the numerical examples, the
presence of the regime-switching factor pulls the value of the CDS premium computed under
the initial high and low regimes together and Lemma 4.2 provides a limiting value of which the
prices of CDS under different regimes converge at the far endof the time horizon.

For the value of CDS at any timet ∈ (0,∞), we shall proceed to compute it via Laplace
transform. For the rest of the paper, we shall denote byL(·) andL−1(·) the Laplace transform
and inverse Laplace transform operators, respectively. That is, for univariate functionsf(t) and
f̂(α), we denote

Lα(f(t)) =

∫ ∞

−∞

e−atf(t)dt, L−1
t (f̂(α)) = lim

R→∞

1

2πi

∫ R

−R

eαtf̂(α)dα,

if the limit exists.
Similarly, for bivariate functionsg(x, y) andĝ(α, β), we denote

Lα,β(g(x, y)) =

∫ ∞

−∞

∫ ∞

−∞

e−αx−βyg(x, y)dxdy

and

L−1
x,y(ĝ(α, β)) = lim

R
′
→∞

lim
R→∞

−1

4π2

∫ R
′

−R
′

∫ R

−R

eαx+βy ĝ(α, β)dαdβ,

if the limit exists.

Lemma 4.3. The Laplace transform ofPi(τ > T ) with respect toT is given by

(4.4) La[Pi(τ > T )] =
1

a
−

Ei [e
−aτ ]

a
,

whereas the Laplace transform ofEi[e
−rτ1{τ<T}] with respect toT is

(4.5) La[Ei[e
−rτ1{τ<T}]] =

Ei[e
−(r+a)τ ]

a
.

Proof. Direct calculation shows that

La[P(τ > T )] = La

[
Ei

[
1{τ>T}

]]

= Ei

[∫ τ

0

e−aT dT

]

=
1

a
−

Ei [e
−aτ ]

a

and

La[Ei[e
−rτ1{τ<T}]] = Ei

[∫ ∞

τ

e−at−rτdT

]
=

Ei[e
−(r+a)τ ]

a
.

�
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Hence, we can recover the values ofPi(τ > T ) andEi[e
−rτ1{τ<T}] by performing the nu-

merical Laplace inversion. In this paper, we adopt the Abate-Whitt (1992) algorithm to perform
the numerical inversion.

4.1. Regime-switching jump-diffusion model. For the case of regime-switching jump-diffusion
model with two regimes, by inserting equation (3.7) to Lemma4.3, we have the following ex-
pression for the CDS premium, after inverting the Laplace transform.

Corollary 4.1. Assume that the actual firm value process follows the latent model described in
(3.1) withJ0 = i. Then, the CDS premium is given by

c
(i)
T = (1 − R)r

P RS,i
2

1 − P RS,i
2 − e−rT P RS,i

1

, i ∈ E,(4.6)

where we define

P RS,i
1 = L−1

T

(
1

a
−

1

a

4∑

k=1

e−%k,aLhk
(i,0)

(
4∑

m=1

bmk

))

with B ≡ (bij) = H−1 andH being the form of (3.6), and where

P RS,i
2 = L−1

T

(
1

a

4∑

k=1

e−%k,a+rLhk
(i,0)

(
4∑

m=1

b̃mk

))

with B̃ = (b̃ij) = H̃−1 andH̃ being the form of (3.6) withr being replaced byr + a.

Proof. SinceB = (bij) = H−1, we have from (3.7) thatπ = Bx. After some simple algebraic
manipulation, we have

Ei[e
−aτ ; Jτ ] =

4∑

k=1

e−%k,aLhk
(i,0)

(
4∑

m=1

bmk

)
.

The result follows by noting from (4.4) that

Pi(τ > t) = L−1
T

(
1

a
−

1

a
Ei[e

−aτ ;Jτ ]

)

= L−1
T

((
1

a
−

1

a

4∑

k=1

e−%k,aLhk
(i,0)

(
4∑

m=1

bmk

)))

.

The computation ofP RS,i
2 is similar by replacingr with r + a. �

4.2. Randomized default barrier. Up to now, we have assumed that the default barrier re-
mains constant over time. In reality, the default barrier may vary as the creditworthiness of firm
changes over time. In fact, the original CreditGrades modelproposes the concept of randomized
default barrier as means to cure the close-to-zero credit-spread when evaluating the CDS under
a modified Black-Cox model, where the Brownian motion is the only random source. See the
original CreditGrades model for the detailed coverage of the randomized default barrier under
the modified Black-Cox model.6

For the case of regime-switching jump-diffusion model, theinclusion of randomized default
barrier is straightforward. To see this, we revisit the computations ofPi(τ < t) under the case
of randomized barrierL.

6Sepps (2006) also considers the randomized default barrieras an extension of the extended CreditGrades model
with jumps or uncorrelated stochastic volatility.
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Corollary 4.2. Let L be the random default barrier with Laplace exponentΨL(u), u ∈ R. If
J0 = i, then we have

Pi(τ < t) = L−1
T

(
4∑

k=1

eΨL(−%k,a)hk
(i,0)

(
4∑

m=1

bmk

))
.

Proof. Observe that

Ei[e
−aτ ; Jτ ] = Ei[Ei[e

−aτ ; Jτ |L]]

=
4∑

k=1

Ei[e
−%k,aL]hk

(i,0)

(
4∑

m=1

bmk

)

=
4∑

k=1

eΨL(−%k,a)hk
(i,0)

(
4∑

m=1

bmk

)
.

The result follows by noting that

Pi(τ < t) = L−1
T

(
1

a
Ei[e

−aτ ; Jτ ]

)

= L−1
T

(
1

a
Ei[Ei[e

−aτ ; Jτ |L]]

)

= L−1
T

(
1

a

4∑

k=1

eΨL(−%k,a)hk
(i,0)

(
4∑

m=1

bmk

))
.

�

5. EQUITY OPTIONS

Since the celebrated Black-Scholes (1973) formula emerged, many security models have
been introduced to alleviate the deficiency of the Brownian motion assumption and to capture
more realistic market phenomena. Despite the plethora of equity pricing models available, most
of them have no connection to the credit quality of the firm.7 Because the underlying equity
process is tied closely with the credit quality of the firm, asobserved in the actual market, the
option price itself should reflect the connection to the actual firm value.

In the case of structural models, on the other hand, many of them can be used for the pricing
of equity options with default features; however, they haveserious drawbacks. The firm by itself
is not a tradable asset and the parameters of typical structural models, such as the mean return
and volatility, are not directly observable. The original latent structural model in Kijima et al.
(2009) remedies this defect by introducing the observable tangible asset of the firm as means
to extract information on the actual firm value. In their framework, equity is then expressed
as a residual amount after payment has been made to the debt holders in case of default or at
maturity, whichever comes first. As mentioned in the introduction, this setting makes an implicit
assumption of equity with a maturity. Moreover, the resulting formulation of the equity process
takes rather complicated form that is difficult to price equity options even under the standard
Brownian motion.

As introduced in Section 2, we embrace the idea in Kijima et al. (2009) by making use
of the correlated marker process to induce credit information of a firm. More specifically, we
shall use equity process as the correlated marker process ofthe actual firm value in the form of
(2.7). As we shall soon see, this formulation provides us a great deal of convenience in pricing

7An exception is the jump-to-default model proposed by Carr et al. (2006) and later extended by Mendoza-
Arriaga et al. (2010).
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equity options with default feature. In practice, parameters of the equity process are imputed
by calibrating the option price computed in this section against the option data in the market.

Consider a defaultable call option with strike priceK and maturityT .8 The call option price
written onS is given by

Ci(S, K, T ) = Ei[e
−rT (ST − K)+1{τ>T}]

= Ei[e
−rT (ST − K)+] − Ei[e

−rT (ST − K)+1{τ≤T}], i ∈ E,(5.1)

or, equivalently,

Defaultable call= Non-defaultable call− Down-and-in call,

so that the defautable call option can be replicated by holding one unit of a non-defaultable call
option and selling one unit of a down-and-in call simultaneously. The major difference from
the non-defaultable case is that the down-and-in feature istriggered by the latent firm value,not
by the equity value itself.

Parallel to the methodology used in the pricing of CDS, we shall price the defaultable call
option (5.1) via the Laplace transform. More precisely, letk = − log K, and defineI to be an
identity matrix. The non-defaultable call option is pricedvia the Laplace transform with respect
tok, whereas the down-and-in call option is given in terms of thedouble Laplace transform with
respect tok andT .

Theorem 5.1.Let ξ, β ∈ R satisfy

0 < ξ < min
j∈E

{
ηX

j2

ρ
− 1

}

, min
j∈E

{κX
j (ρ(ξ + 1)) + κZ

j (ξ + 1)} > 0,

β > max
j∈E

{max{κZ
j (ξ + 1) − r, 0}}.

Then, the Laplace transform ofEi[e
−rT (ST − K)+] with respect tok is given by

Lξ(Ei[e
−rT (ST − K)+])

=
e−rT Sξ+1

0

ξ(ξ + 1)

∑

j

{
exp

((
{κZ

j (ξ + 1) + κX
j (ρ(ξ + 1))}diag + Q

)
T
)}

ij
(5.2)

and the double Laplace transform ofEi[e
−rT (ST − K)+1{τ≤T}] with respect tok and T is

obtained as

Lξ,β(Ei[e
−rT (ST − K)+1{τ≤T}])

=
Sξ+1

0

ξ(ξ + 1)

∑

j

Ẽi

[
e−((β+r)−κZ

j (ξ+1))τ+(ξ+1)ρXτ 1{Jτ=j}

]

×
∑

n

(
(r + β)I −

({
κZ

j (ξ + 1) + κX
j (ρ(ξ + 1))

}
diag

+ Q
))−1

jn
, i ∈ E,(5.3)

whereẼi is the expectation under̃Pi defined by (2.11).

Proof. For the first part, we take the Laplace transform with respectto k. For ξ > 0 , in order
to solve for

Ei

[
e−rT S0(exp(ρXT + ZT ) − K)+

]
,

8Johnson and Stulz (1987) consider avulnerable option whose payoff is given bymin{V̂T , (ST −K)+}, where
V̂ is the value of the total assets of issuer. In our model, default is triggered by the actual firm value and no
counterparty risk of the issuer is considered.
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definek = − ln(K) and take the single Laplace transform with respect tok. Then we have

∫ ∞

−∞

e−ξk
∑

j

Ei[e
−rT (S0e

ρXT +ZT − e−k)+; JT = j]dk

= e−rT
∑

j

Ei

[∫ ∞

− lnS0−ρXT−ZT

e−ξk(S0e
ρXT +ZT − e−k)dk; JT = j

]

= e−rT
∑

j

Ei

[∫ ∞

− lnS0−ρXT−ZT

S0e
ρXT +ZT e−ξk − e−(ξ+1)kdk; JT = j

]

= e−rT
∑

j

Ei

[
Sξ+1

0 e(ξ+1)(ρXT +ZT )

ξ
−

S(0)ξ+1e(ξ+1)(ρXT +ZT )

ξ + 1
; JT = j

]

=
e−rT Sξ+1

0

ξ(ξ + 1)

∑

j

Ei

[
e(ξ+1)ρXT +(ξ+1)ZT ; JT = j

]

=
e−rT Sξ+1

0

ξ(ξ + 1)

∑

j

Ẽi

[
dP̃

dP
e(ξ+1)ρXT +(ξ+1)ZT ; JT = j

]

=
e−rT Sξ+1

0

ξ(ξ + 1)

∑

j

Ẽi

[
eκZ

j (ξ+1)T+ρ(ξ+1)XT ; JT = j
]

=
e−rT Sξ+1

0

ξ(ξ + 1)

∑

j

{
exp

((
{κZ

j (ξ + 1) + κX
j (ρ(ξ + 1))}diag + Q

)
T
)}

ij
,

where the sixth equality follows by invoking the Randon-Nikodym derivative of the form of
(2.11).

Next, the second part (5.3) is proved by taking the double Laplace transform with respect
to k andT . To solve forEi

[
e−rT S0(exp(ρXT + ZT ) − K)+1{τ<T}

]
, definek = − ln(K) and

take the double Laplace transform with respect tok andT . Then, we have

∫ ∞

0

e−βT

∫ ∞

−∞

e−ξk
Ei[e

−rT (S0e
ρXT +ZT − e−k)1{τ≤T, − ln S0−ρXT −ZT <k}]dkdT

= Ei

[∫ ∞

τ

e−(β+r)T

∫ ∞

− ln S0−ρXT −ZT

e−ξk(S0e
ρXT −ZT − e−k)dkdT

]

= Ẽi

[∫ ∞

τ

e−(β+r)T dP̃

dP

Sξ+1
0 e(ξ+1)ZT +ρ(ξ+1)XT

ξ(ξ + 1)
dT

]

= Ẽi

[∫ ∞

τ

e−(β+r)T Sξ+1
0 e

κZ
(JT )

(ξ+1)T+ρ(ξ+1)XT

ξ(ξ + 1)
dT

]

=
Sξ+1

0

ξ(ξ + 1)
Ẽi

[∫ ∞

τ

e
−(β+r−κZ

(JT )
(ξ+1))T+ρ(ξ+1)XT dT

]

=
Sξ+1

0

ξ(ξ + 1)
Ẽi

[
e−(β+r−κZ

(Jτ )
(ξ+1))τ+ρ(ξ+1)Xτ

×

∫ ∞

0

e−(β+r)s
Ẽ
[
exp

(
κZ

(Jτ+s)(ξ + 1)(τ + s) − κZ
(Jτ )(ξ + 1)τ + ρ(ξ + 1)(Xτ+s − Xτ )

)
|Fτ

]
ds

]
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=
Sξ+1

0

ξ(ξ + 1)
Ẽi

[
e−((β+r)−κZ

(Jτ )
(ξ+1)τ+(ξ+1)Xτ

×

∫ ∞

0

e−(β+r)s
ẼJτ

[
exp

(
κZ

(Js)(ξ + 1)s + ρ(ξ + 1)Xs

)
|Fτ

]
ds

]

=
Sξ+1

0

ξ(ξ + 1)
Ẽi

[
e−((β+r)−κZ

(Jτ )
(ξ+1))τ+ρ(ξ+1)Xτ

×

∫ ∞

0

e−(β+r)sI exp
(({

κZ
k (ξ + 1) + κX

k (ρ(ξ + 1))
}

diag
+ Q

)
s
)

ds

]

=
Sξ+1

0

ξ(ξ + 1)

∑

j

Ẽi

[
e−((β+r)−κZ

j (ξ+1))τ+ρ(ξ+1)Xτ 1{Jτ=j}

]

×
∑

n

(
(r + β)I −

({
κZ

k (ξ + 1) + κX
k (ρ(ξ + 1))

}
diag

+ Q
))−1

jn
,

completing the proof. �

5.1. Randomized default barrier. Parallel to the pricing of CDS, the concept of randomized
default barrier can also be applied to the case of equity options. Assume thatXJ

t is the regime-
switching jump-diffusion model (3.1) with two regimes. Then, we have the following.

Corollary 5.1. LetL be the random default barrier with Laplace exponentΨL(u), u ∈ R. Then,
the price of defaultable call option is given by

C(S, K, T )

= L−1
k

(
e−rT Sξ+1

0

ξ(ξ + 1)

∑

j

{
exp

((
{κZ

j (ξ + 1) + κX
j (ρ(ξ + 1))}diag + Q

)
T
)}

ij

)

− L−1
k,T

(
Sξ+1

0

ξ(ξ + 1)

[(
4∑

k=1

b1ke
ΨL(b−%k,a)hk

(i,0)

)
η12

η12 + b
+

(
4∑

k=1

b2ke
ΨL(b−%k,a)hk

(i,0)

)]
2∑

n=1

A1n

+
Sξ+1

0

ξ(ξ + 1)

[(
4∑

k=1

b3ke
ΨL(b−%k,a)hk

(i,0)

)
η22

η22 + b
+

(
4∑

k=1

b4ke
ΨL(b−%k,a)hk

(i,0)

)]
2∑

n=1

A2n

)

,

where

a = (β + r) − κZ
j (ξ + 1), A =

(
(r + β)I −

({
κZ

k (ξ + 1) + κX
k (ρ(ξ + 1))

}
diag

+ Q
))−1

.

Proof. Note that the random termL only appears in

Ei

[
e(κZ

j (ξ+1)−(β+r))τ+ρ(ξ+1)XJ
τ 1{Jτ=j}

]
.

By combining the results of (3.8) and (5.1) and defining

a = −κZ
j (ξ + 1) + (β + r), b = ρ(ξ + 1),
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TABLE 1. Base case parameters for the firm-value processXt: Kou (2002) Model with
two regimes

V0 T r bX
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1 ηX
11 ηX
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FIGURE 1. Impact of various parameters on the CDS premium under Kou process
(2002) with two regimes: Regime 1 (First Row) and Regime 2 (Second Row)

we have

Ei

[
e−aτ+bXJ

τ ; Jτ

]
= Ei

[
Ei

[
e−aτ+bXJ

τ ; Jτ |L
]]

=

(
4∑
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b1ke
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)
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+
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(
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)
.

The result follows by plugging the above equation into (5.1). �

6. NUMERICAL EXAMPLES

In this section, we assume that the model parameters are chosen a priori with the intention
to illustrate the parameter effect on the prices of CDS and defaultable equity options.

6.1. CDS. In this subsection, we shall study the impact of the regime-switching and jump-
diffusion components ofXt to the CDS premium. The subsequent numerical studies are per-
formed according to the base case parameters in Table 1. FromTable 1, it is clear that Regime
1 indicates the regime under whichXt has both high volatility and infrequent jumps with big
jump sizes, whereas in Regime2, Xt has small volatility and relatively frequent jumps with
moderate jump sizes.
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FIGURE 2. Impact of interest rate on the CDS premium under Kou process (2002) with
two regimes: Regime 1 (Left) and Regime 2 (Right)
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Figure 1 summarizes the impact of recovery rate, diffusion volatility, and the jump fre-
quency of the firm value processXt to the CDS premium for the cases that the processXt starts
from high and low regimes. The general patterns of CDS curvesare in a close agreement with
those found in Chen and Kou (2009). Decreasing recovery rateR has an upward-level effect on
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FIGURE 6. Various shapes of the CDS curve under Kou process (2002) with two regimes

the CDS curve, since the amount issuer is required to pay upondefault is greater; the CDS pre-
mium must then be higher to preclude any arbitrage opportunity. Diffusion volatility indicates
the volatile behavior of the firm and thus highσX

i , i = 1, 2, would imply higher CDS premium.
Similar effects are observed in the case of higher jump frequencies.

Another important factor that impacts the CDS premium is thelevel of risk-free interest
rate. The interest rate effect on the CDS premium for Regimes1 and 2 is displayed in Figure 2.
Higher interest rate leads to lower CDS premium. This is consistent with the empirical studies
mentioned in Chen and Kou (2009).

To study the impact of the regime-switching factor to the CDSpremium, we turn to Figures
3 and 4, where the underlying process in Figure 3 is the Brownian motion alone and the process
in Figure 4 is the Kou process (2002). The general pattern of regime-switching on the left-hand
sides of Figures 3 and 4 is that the introduction of regime-switching pulls the CDS premium
in the Regimes 1 and 2 closer together, with the difference between them diminishing as the
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maturity of CDS lengthens. In fact, their values converge tothe common value predicted in
Lemma 4.2. The reason behind the convergence of CDS premiumsunder Regimes 1 and 2
can be explained by the survival probability curves on the right-hand sides of Figures 3 and
4. The effect of regime-switching elevates the survival probability under the Regime 1 while
it decreases the survival probability under the Regime 2. Higher survival probability under
Regime 1 results in lowering its CDS premium, and the opposite impact occurs for the case of
Regime 2.

Figures 3 and 4 also indicate that the regime-switching factor has more influence on the
medium maturities than the short maturities. In fact, Figure 3 indicates that the regime-switching
Brownian motion alone cannot produce the non-zero short-term credit spreads, as predicted in
Lemma 4.1. All CDS curves are emanated from the origin when the firm value is modeled by
the regime-switching Brownian motion alone. On the other hand, Figure 4 studies the case of
regime-switching factor with jumps under each regime, while leaving the diffusion volatility
to be constant across both regimes. Figure 4 has an interesting observation that the CDS pre-
mium at the near-zero maturity region coincides with the jump-diffusion process without any
regime-switching effect, other things equal. In summary, Figures 3 and 4 serve as the visual
justification of Lemma 4.1.

Figure 5 studies the effect of switching intensity on the CDSpremium. Figure 5 shows that
increasing the regime-switching intensity would result inthe CDS curves under initial Regimes
1 and 2 converging to a common value. The common value is precisely computed in Lemma
4.2. Moreover, observe that when the regime-switching intensities are fixed, the CDS curves
under initial Regimes 1 and 2 also converge to a common value,albeit at a lower speed for the
case of small switching intensities. We shall return to thisgeneral pattern later when we study
the impact of the regime-switching intensities to the implied volatilities of defaultable European
options.

He et al. (2000) provide an in-depth empirical investigation on the general shapes of the
credit spread curves. By grouping the corporate bonds with various maturities, they classify
various shapes that the credit spread curve can take under different credit-ratings. Hence, it is
of great interest to investigate if the model proposed in this paper can generate the credit spread
curves taking similar shapes as those in He et al. (2000). Figure 6 provides various shapes of the
CDS curves. On the first row of Figure 6, we recover the shapes of CDS curves similar to those
found in Chen and Kou (2009). More specifically, the upward-sloped CDS curve corresponds
to the CDS with a high credit-rating. Downward-sloped CDS portrays the CDS with relatively
low credit-rating and hump-shaped CDS captures the CDS withthe credit-rating that lies in
between.

In addition to the hump-shaped CDS curves, the study of He et al. (2000) indicates that
other shapes of the CDS curves can also be found, albeit less frequently observed than the
hump-shaped curves. In particular, from the study of He et al. (2000), it appears that credit
spread curve with medium credit ratings can also have the inverted-hump shapes. Second row of
Figure 6 displays the CDS curve with an inverted-hump shapes. These inverted-hump shapes are
generated from the asymmetric regime-switching intensities. More specifically, by increasing
the switching intensity of Regime 1,q1, the firm value process leaves Regime 1 more frequently
than it does in Regime 2. From the parameters in Table 1, Regime 2 refers to the state of which
firm has a relatively lower total volatility. Withq1 > q2, the firm spends more time on average
in a lower volatility environment than it does in a higher volatility region. This results in a lower
CDS term structure, even when the firm was initially at the high volatility state (Regime 1) at
the inception of the CDS contract. Interestingly, the depthof the inverted-hump is determined
only by the regime-switching intensity of the Markov chainJt. Higher the regime-switching
intensity of Regime 1,q1, deeper the inverted-hump shape would result. This translates into the
fact that the persistence of the firm in a particular regime isinfluential to the medium part of the
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TABLE 2. Base case parameters: Kou (2002) Model

S0 K V0 T r bX σX ηX
1 ηX

2 pX λX σZ ηZ
1 ηZ

2 pZ λZ L

100 90 100 1 0.05 0.05 0.4 10 4 0.4 0.5 0.1 40 40 0.6 3 30

TABLE 3. Defaultable European call prices with varyingK andL, respectively
(LT=Laplace Transform, MC=Monte Carlo): Kou model (2002)

(L = 30) ρ = 0.5 ρ = 1
K LT MC LT MC
50 52.3496 52.3743 53.2586 53.2084
60 43.0395 43.0833 44.8539 44.8087
70 33.9613 33.9352 37.2213 37.1980
80 25.5212 25.5580 30.4963 30.4254
90 18.1890 18.1917 24.7249 24.7196
100 12.2968 12.2479 19.8787 19.8668
120 4.8799 4.8658 12.6252 12.6182

(K = 90) ρ = 0.5 ρ = 1
L LT MC LT MC
10 18.1894 18.2062 24.7249 24.7147
30 18.1890 18.1229 24.7249 24.6617
50 18.0799 18.0637 24.6979 24.6470
70 15.9291 15.9271 23.2404 23.1921

TABLE 4. Defaultable European call prices with varyingρ: Kou model (2002)

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6
14.5801 14.8855 15.4048 16.1484 17.0930 18.1890 19.3907

ρ 0.7 0.8 0.9 1
20.6646 21.9881 23.3452 24.7249

CDS term structure. Intuitively, in addition to the presentcredit condition of the firm, investors
also take their perception on the average time the firm staying in the present condition when
purchasing the CDS.

Similar results are also found in the work of Hatgioannides and Petropoulos (2007).They
observe the inverted-hump shaped credit curves in the European corporate bond markets for the
corporate bonds with credit ratings between AA- and B. The depth in inverted-hump shapes
is more pronounced in BB and B rating bonds. They argue that these complex credit curves
cannot be generated by stochastic processes with constant volatility. To capture the stochastic
behavior of the credit spread dynamics, Hatgioannides and Petropoulos (2007) model the credit
spread dynamics directly by means of a two-factor Longstaffand Schwartz (1992) process.
They conclude that the role of the stochastic volatility in acredit spread model results in better
fitting to the credit curves observed in the market. In this paper, we provide one explanation
behind these complex CDS curves via the regime-switching jump-diffusion model.

6.2. Equity Options.

In this subsection, we shall study the effects of parametersof the model without and with
regime switching to defaultable equity options through numerical examples. We investigate the
equity options under the case when bothXt andZt take the form of the double-exponential
jump-diffusion processes. Observe that the choice ofZt here is not a strict necessity. In fact,
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FIGURE 7. Effects of correlationρ to the implied volatility of a defaultable European
call: Kou model (2002)
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FIGURE 8. Effects of various parameters to the implied volatility of a defaultable Euro-
pean call (ρ = 0.5): Kou model (2002)

Zt can be any Lévy process and we just chooseZt to take the form of Kou process (2002) for
simplicity.
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FIGURE 9. Effects of time-to-maturity to the implied volatility ofa defaultable Euro-
pean call: Kou model (2002)
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FIGURE 10. Effect ofσX to CDS premium and the defaultable European call: CDS
(left) and defaultable European call (right) in Kou model (2002)

6.2.1. Without Regime switching. Unless otherwise stated, the numerical examples in this sub-
section are performed in accordance to the parameters givenin Table 2.9 In Table 2, the pa-
rameters ofXt indicate its dominant role in the equity process. This is logical as the firm value
should have a critical influence on its equity value. The jumpsizes induced byXt are bigger
than those induced byZt. This can be reasoned as jumps fromXt represent corporate restruc-
turing or change of its credit rating, whereas jumps fromZt denote the sudden change of the
investor’s preference to the equity due to some non-firm specific factors.

Table 3 provides the prices of the defaultable European callwith various values of strike
priceK and default barrierL. The computations are done by both the numerical Laplace inver-
sion of the result in Theorem 5.1 and by the Monte Carlo simulations.10 The closeness in values

9Observe that the drift termbZ is left unspecified. It is uniquely determined by (2.15).
10The Monte Carlo simulation in this paper are done by taking50, 000 sample paths, simulating on the jump

times. Simulating on jump times instead of regular time steps makes use of the concept of Brownian bridge and the
first-passage-time density function of the Brownian motion. See Chapter 5 of Cont and Tankov (2004) for details
of this approach.



24 MASAAKI KIJIMA AND CHI CHUNG SIU

TABLE 5. Base case parameters: Kou (2002) Model with two regimes

S0 K V0 T r bX
1 σX

1 ηX
11 ηX

12 pX
1 λX

1 σZ
1 ηZ

11 ηZ
12 pZ

1 λZ
1 L

100 90 100 1 0.05 0.05 0.4 10 4 0.4 0.5 0.1 40 40 0.6 3 30

bX
2 σX

2 ηX
21 ηX

22 pX
2 λX

2 σZ
2 ηZ

21 ηZ
22 pZ

2 λZ
2 q1 q2

0.05 0.1 20 10 0.4 1 0.1 60 60 0.4 4 0.5 0.5

by these two methods delineates the strength of the Laplace transform technique as the values
can be computed within few seconds.

Table 4 captures the effect ofρ to the values of call options. It shows that increasingρ has
a positive effect on the value of the call option. More specifically, higherρ implies the greater
impact of the firm’s default on its equity value. Equivalently, we can find the positive effect
of ρ to option prices from Figure 7. Implied volatilities in Figure 7 increase in level as the
correlation factorρ increases. In addition, greaterρ reduces the curvature of implied volatility
while it increases the negative skewness. This can be explained by the fact thatρ provides a
direct linkage between the firm’s credit condition and its equity value. Since higherρ increases
the impact of the default nature of the firm on its equity, higher ρ induces investors’ demand
to cover their short positions by means of longing the in-the-money calls. Consequently, the
price of the in-the-money call (equivalently, out-of-the-money put) is higher than that of the
out-of-the-money call (in-the-money put). This price differential between in-the-money and
out-of-the-money options intensifies as the dependence parameterρ increases.

Figure 8 displays the effects of various parameters ofXt andZt to the implied volatilities.
Increase in jump intensities in bothXt andZt elevates the levels of the implied volatility. The
effect is particularly dominant for the case ofXt, as increase inλX implies higher frequency
of jumps, which in turn implies higher probability of default. SincepX denotes the probability
of an upward jump, diminishing value ofpX implies higher chance ofXt jumping downward,
thereby increasing the probability of hitting the default barrierL. The resulting effect elevates
the implied volatilities, with greater gap at in-the-moneyregion. Interestingly enough, the effect
of pZ has a rather sluggish effect on the implied volatility. Thisis due to the fact that jump
sizes fromZt are small relative to that fromXt and that jumps inZt contribute nothing to the
probability of default inXt, due to independent assumption onXt andZt. Finally, the impacts
of σX andσZ on the implied volatility are greater than that of their jumpcomponents. This
can be explained as follows. The total variance of the jump-diffusion process is equal to the
sum of the variance of its volatility and jump components. With higher values ofσX or σZ

contributes more to the total variance of the process than their jump counterparts. As the role of
jump component diminishes, the high volatility process becomes closer to the case of geometric
Brownian motion. Therefore, the implied volatility curvesflatten asσX andσZ increase.

Figure 9 shows the effect of time-to-maturity on the impliedvolatilities. Implied volatility
curve flattens as the maturity of the option lengthens. This is in agreement to the actual im-
plied volatility curve observed in the market (see, e.g., Cont and Tankov (2004)). However, as
discussed in Cont and Tankov (2004), the phenomenon of implied volatility curve flattening is
particularly pronounced for most of the Lévy processes encountered in the finance literature.
We shall return to this issue later when we study the effect ofmaturity on the regime-switching
jump-diffusion processes.

Figure 10 depicts the relationship between the CDS spread and the implied volatility of the
equity options. Increase inσX results in both increase in CDS premium and implied volatility
of its equity options. This is consistent with the reality that distressed firm usually has both high
CDS premium and high implied volatility on its equity optionas investors become exceedingly
concerned with high possibility of default in the near future.



CREDIT-EQUITY MODELING UNDER A LATENT LÉVY FIRM PROCESS 25

TABLE 6. Defaultable European call prices with varyingK andL: Kou model with two
regimes. (LT=Laplace Transform, MC=Monte Carlo)

(L = 30, ρ = 0.5) Regime 1 Regime 2
K LT MC LT MC
50 52.4063 52.4602 52.3704 52.3616
60 43.0150 43.0710 42.9596 42.9490
70 33.8436 33.8720 33.4950 33.4470
80 25.2278 25.2891 24.2984 24.2596
90 17.6605 17.6096 15.7826 15.7468
100 11.5841 11.5500 8.8754 8.9143
120 4.2256 4.2862 1.8643 1.8652

(K = 90, ρ = 0.5) Regime 1 Regime 2
L LT MC LT MC
10 17.6608 17.7218 15.7827 15.8179
30 17.6605 17.6669 15.7826 15.7797
50 17.5804 17.5100 15.7698 15.7346
70 15.8148 15.8886 15.2496 15.2491
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FIGURE 11. Regime-switching effect on the implied volatility of defaultable European
call: Implied volatility (Left) and defaultable European call (Right)

6.2.2. Regime Switching case. As illustrated in Konikov and Madan (2002), the independent
and stationary increments of Lévy processes make it inflexible in capturing the implied volatility
curve across different maturities. In particular, the property of the independent increments of
Lévy processes makes the implied volatility be deterministic with respect to time (Cont and
Tankov, 2004), a feature that is in strong disagreement withreality. For this reason, we shall
now proceed to study the equity options with an inclusion of regime-switching effect. For
simplicity, we shall only focus on the case thatZt is also the Kou process (2002) under each
regime. The parameters forXt andZt for the case of two regimes are given in Table 5. In Table
5, it is clear that the values ofXt andZt in Regime1 indicate that Regime1 has higher total
volatility than Regime 2.

Similar to the last subsection, we compute the defaultable options under various values
of strike priceK and default barrierL by means of the Laplace transform and Monte Carlo
simulation for high and low regimes. Observe that we have similar patterns on the equity
options with respect toK andL as those shown in Table 3. In particular, higherK increases the
chance of the defaultable European call to be exercised out-of-the-money, resulting in its lower
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current value. As the defaultable European call can be seen as the down-and-out call, increasing
the level ofL would certainly decrease the value of the options.

Another interesting aspect of regime-switching from the view of Table 3 is the difference
between the prices under Regimes 1 and 2 with respect to the option’s moneyness. When the
option is deep in-the-money, the prices under Regimes 1 and 2differ in less than 1 decimal point.
As option moves from deep in-the-money to deep out-of-the-money, the difference between
high and low regimes gains its momentum gradually. The visual effect is displayed on the
left-hand side of Figure 11.

To study the regime-switching effect to the implied volatility, we now turn our focus to the
right-hand side of Figure 11. The presence of Markov chainJt increases the curvature of the
implied volatility curve, comparing to the case with no regime-switching. This phenomenon
is parallel to the case of the continuous-time stochastic volatility models. The presence of the
stochastic volatility factor introduces the persistence in total volatility of the process. This
persistence in turn slows down the decay in the curvature of the implied volatility curve.
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FIGURE 14. Effect of time-to-maturity on implied volatility (ρ = 1): Initial Regime 1
(Left) and Initial Regime 2 (Right)
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FIGURE 15. Effects of correlationρ on the implied volatility of defaultable European
call in Kou model (2002): Initial Regime 1 (First row) and Initial Regime 2 (Second
row)

Figure 12 captures the role of regime-switching intensity to the implied volatility curve.
In Figure 12, increasing the regime-switching intensitiesbrings the implied volatilities of the
Regimes 1 and 2 together. More specifically, the solid lines represent the implied volatilities
under initial Regime 1, whereas the dash lines represent theimplied volatilities under initial
Regime 2, with different regime-switching intensities. The introduction of the regime-switching
factor results in lowering the implied volatility of Regime1 while elevating the implied volatil-
ity of Regime 2. As switching intensity dictates the averagetime of the process to stay in one
regime, speeding up the switching intensity on both regimesresults in Regimes 1 and 2 con-
verge to a common regime. Consequently, the difference in the option values under Regimes
1 and 2 reduces. When the difference in prices of high and low regime diminishes, so do their
corresponding implied volatilities.
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FIGURE 16. Effects of default feature on the implied volatility of defaultable European
call (L = 50): Initial Regime 1 (First row) and initial Regime 2 (Second row)

Parallel to our study on the CDS curve, we would like to investigate the combined effects
of the jump-diffusion and regime-switching factors on the equity options. From Bollen (1998),
we know that option pricing under the regime-switching Brownian motion can also generate
volatility smile. This certainly begs a question on the impacts of regime-switching and jump-
diffusion components to the shape of the implied volatilitycurve. Figure 13 studies the shapes of
implied volatility curve under the case of regime-switching Brownian motion with and without
the jump components. In both Regimes 1 and 2, it appears that the regime-switching Brownian
motion produces symmetric smiles, whereas the inclusion ofjump components introduces the
negative skewness in volatility smile. In fact, the negative skewness is more pronounced as the
probability of upper jumps ofXt (i.e. pX

i , i = 1, 2) decreases. From Cont and Tankov (2004),
we know that the negative skewness of implied volatility canbe captured by the distribution
of downward jumps of the underlying process. The creation ofthe symmetric volatility smile
implies that regime-switching Brownian motion can producefat tail distributions, i.e. excessive
kurtosis. However, the symmetry in volatility smile reflects that regime-switching Brownian
motion cannot create skewed distributions. Since negativeskewness is a common feature found
in the equity markets, it appears that regime-switching Brownian motion alone is not flexible
enough to introduce skewness to the implied volatility.

Time effect on the shape of implied volatility is one important feature to investigate when
pricing options under any stochastic process. In the previous subsection, we see that implied
volatility flattens as the maturity of the option increases.Figure 14 studies the effect of the
option’s maturity on the implied volatility on Regimes 1 and2. While we see that the volatility
curve flattens as the maturity elongates, it appears that thespeed of flattening seems to be
slower. AtT = 3, smile effect remains highly visible in comparison to the one atT = 0.25.
In addition, the implied volatility curves with initial Regimes 1 and 2 behave differently with
increasing maturities. In Regime 1, the implied volatilitycurve moves downward as it flattens.
In Regime 2, the implied volatility curve elevates as its curvature decreases. This effect is
strikingly similar to the case when we study the effect of theimplied volatility curve with respect
to changing regime-switching intensities. This is not a mere coincidence but is a consequence of
long-term behavior of an ergodic Markov chain. As discussedin Fouque et al. (2000), the long-
term behavior of the ergodic Markov chain is governed completely by its invariant distribution,
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which can be expressed as the products of the switching intensitiesqi and the timeT . This
indicates that increasing the regime-switching intensities or speeding up the time has the same
impact as the invariant distribution of the underlying Markov chain. Therefore, it is no surprise
that the implied volatilities of Regimes 1 and 2 converge to acommon implied volatility curve
asT lengthens, as captured in Figure 14.

Figure 15 studies the correlation effect ofXt on the equity options. Similar to the case
of Kou process (2002) in the previous subsection, higherρ has an upward shift to the implied
volatility across Regimes 1 and 2. Increase inρ augments the negative skewness of the implied
volatility curve across Regimes 1 and 2. As explained in the case of no regime-switch, the
negative skewness reflects the credit nature of the equity. The dependence parameterρ controls
the degree of the firm’s credit exposure to equity. Since the implied volatility of the put option
with the same strike and maturity coincides that of the call option, we can also interpret the
increase in negative skewness through the eyes of the equityholders. To hedge against the
possibility of the firm’s default before the option’s maturity, equity holders can purchase the
deep out-of-the-money put to lock in their loss in the case ofadverse situations. This increases
the demand of the out-of-the-money puts than that of the in-the-money puts, thereby augmenting
negative skewness of the implied volatility curve.

Figure 16 compares the difference of implied volatility curves between the defaultable and
non-defaultable options. In Figure 16, the implied volatility curves indicated by “No Default”
mean that they are generated without taking the assumption of default feature into account. For
the low volatility case, the implied volatility curves of “Default” and “No Default” are almost in-
distinguishable. In the higher volatility case, the difference between implied volatility curves of
“Default” and “No Default” becomes greater in in-the-moneyregion and the two curves remain
indistinguishable in at-the-money and out-of-the-money regions. This is in the line with the im-
plied volatility curves of vanilla and down-and-out calls observed in the actual market. Lower
volatility implies that the firm is not in a volatile state andthe probability of default is slim. In
the high volatility case, higher probability of default results in greater difference between the
non-defaultable and defaultable options, resulting in difference in the implied volatility when
the options are currently in the money. When the option is currently deep out-of-the-money, the
chance of exercising the option is slim, regardless of the default feature, and hence the prices
of non-defaultable and defaultable optons have similar values, resulting in overlapping implied
volatility curves in that region.

7. CONCLUSION

With an increasing evidence of the linkage between equity and credit aspects of a corporate
firm, we propose an extended version of the latent firm value model first proposed by Kijima
et al. (2009) so as to include jumps and regime-switching dynamics. As with the original
latent firm value model, the extended latent model assumes that the equity and actual firm value
processes are correlated. Numerical examples on the CDS premiums confirm our intuition that
jumps and regime-switching dynamics can generate more realistic credit spread, especially near
the short and median parts of the term structure.

Following the work of Kijima et al. (2009), we assume that theactual firm value is not
directly observable to the investors. Different from the framework of Kijima et al. (2009),
equity process comes as an input to our framework instead of an output. We use the firm’s
equity as means to extract information on the actual firm value. The high liquidity of equity
market provides great convenience in analyzing the effect of the creditworthiness of the firm
on its securities. Equity serves as a correlated marker process of the actual firm value in our
framework. The correlation captures the impact of the credit quality of the actual firm value on
its equity. Moreover, the definition of the equity as the sum of the actual firm value and another
independent stochastic process allows us to include the firm-independent factor under the joint
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framework. Once the latent information of the firm is extracted from the equity market data, we
illustrate the use of our equity-credit model via pricing the firm’s credit default swap (CDS) and
equity option. The richness of the framework does not reducethe model’s tractability as we can
price the defaultable European option via the Laplace transform efficiently.

On a technical level, this paper provides an extensive investigation of the dominant effects of
the jump-diffusion and the regime-switching factors. Morespecifically, we prove analytically
that regime-switching Brownian motion alone does not create the non-zero credit spread as the
maturity of the CDS approaches to0. Lévy jump factor plays a dominant role of the CDS spread
near zero maturity. On the other hand, in the longer time horizon, we see that the CDS spreads
of the high and low regimes come closer together. These observations confirm our intuition
that Lévy jumps explain the short term behavior whereas regime-switching factor captures the
long-run effect of CDS dynamics. Numerical studies also demonstrate the presence of the
regime-switching results in greater flexibility of generating different credit spread curves, in
addition to those generated by jump-diffusion alone.

Regime-switching factor also plays a significant role in theequity option with default fea-
ture. In particular, the implied volatility curve against strike price of the high regime decreases
while the implied volatility curve under the low regime increases as the switching-intensity or
the maturity of the option lengthens. The symmetric smile generated by the regime-switching
Brownian motion tells us that regime-switching Brownian motion is not flexible enough in
capturing the skewness of the implied volatility curve, especially those under short maturities.
Cross comparison of the CDS curve against implied volatility provides a strong linkage of high
volatility of the firm value that creates an upward momentum in both the CDS and the implied
volatility curve. Finally, the versatility of the Laplace transform becomes particularly apparent
when pricing under the case of randomized default barrier, since it requires no extra effort than
the case of constant default barrier.

For the illustration purpose, this paper only considers thepricing of CDS and defaultable
equity option under the joint framework. The pricing of other securities issued by a firm using
our model deserves further investigation. For example, thepricing of equity default swap, which
has both the equity and credit components of a firm, is the subject of great interest. This issue
will be addressed in the future work.
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A. PROOFS

A.1. Proof of Lemma 2.1. Let Z̃(j) be a Lévy process with the triplet(g(t, j)+ζbZ
j , ζσZ

j , ζνZ
j )

and Lévy exponentκj
Z(z), where

κj
Z(z) = zg(t, j) + κZ

j (ζz).

Define the process̃Zt by dZ̃t = dZ̃
(Jt)
t . Then, we see that

Ei[exp(Z̃t)|Fu] = exp(Z̃u)Ei

[
e>

Jt
exp

(∫ t

u

dZ̃s

)
1d|Fu

]

= exp(Z̃u)e
>
Ju

exp
((

Q + {κj
Z(1)}diag

)
(t − u)

)
1d,

where1d = (1, . . . , 1)> ∈ R
d. Hence,Vt = exp(Z̃t) is an{Ft}-martingale if and only if it

holds that

e>
Ju

exp
((

Q + {κj
Z(1)}diag

)
(t − u)

)
1d = 1, ∀u ≤ t.

We claim that the above condition is equivalent toκj
Z(1) = 0 for all t andj.

Suppose first that, for allj,

κj
Z(1) = 0.

As Q has an eigenvalue of zero with the eigenvector1d, we seeQn1d = 0d for n ≥ 1, whence

exp
((

Q + {κj
Z(1)}diag

)
(t − u)

)
1d = exp (Q(t − u))1d = 1d.

Therefore, the above condition holds.
Conversely, suppose that the above condition holds. Then

0 = lim
u→t

e>
Ju

1

t − u

[
exp

((
Q + {κj

Z(1)}diag

)
(t − u)

)
− Id

]
1d

= e>
Jt

(
Q + {κj

Z(1)}diag

)
1d

= κ(Jt)
Z(1).

Since it must hold for anyJt, we haveκj
Z(1) for all j andt, proving the claim.

A.2. Proof of Corollary 2.1. We shall only prove (2.12), as (2.13) follows analogously. Define

aij(0, t) = Ẽ
[
exp

(
κZ

(Jt)(ζ)t + γXt

)
1{Jt=j} | J0 = i

]

= E

[
dP̃

dP
exp

(
κZ

(Jt)(ζ)t + γXt

)
1{Jt=j} | J0 = i

]

= E
[
exp (ζZt + γXt) 1{Jt=j} | J0 = i

]
.
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Up too(h) terms, we have

aij(0, t + h)

= E

[
exp

(∫ t+h

0

ζdZs +

∫ t+h

0

γdXs

)
; Jt = j, Jt+h = j | J0 = i

]

+
∑

k 6=j

E

[
exp

(∫ t+h

0

ζdZs +

∫ t+h

0

γdXs

)
; Jt = k, Jt+h = j | J0 = i

]

= E

[
exp

(∫ t

0

ζdZs +

∫ t

0

γdXs

)
1{Jt=j}

× exp

(∫ t+h

t

ζdZ(j)
s +

∫ t+h

t

γdX(j)
s

)
1{Jt=j}1{Jt+h=j} | J0 = i

]

+
∑

k 6=j

E

[
exp

(∫ t

0

ζdZs +

∫ t

0

γdXs

)
1{Jt=k}

× exp

(∫ t+h

t

ζdZ(k)
s +

∫ t+h

t

γdX(k)
s

)
1{Jt=k}1{Jt+h=j} | J0 = i

]

= E

[
exp

(∫ t

0

ζdZs +

∫ t

0

γdXs

)
1{Jt=j} | J0 = i

]

×E

[
(1 + qjjh) exp

(∫ t+h

t

ζdZ(j)
s +

∫ t+h

t

γdX(j)
s

)
| Jt = j

]

+
∑

k 6=j

E

[
exp

(∫ t

0

ζdZs +

∫ t

0

γdXs

)
1{Jt=k} | J0 = i

]

×E

[
qkjh exp

(∫ t+h

t

ζdZ(k)
s +

∫ t+h

t

γdX(k)
s

)
| Jt = k

]
≡ K

GivenJt = k, X
(k)
t andZ

(k)
t are independent and we then have

K = E

[
exp

(∫ t

0

ζdZs +

∫ t

0

γdXs

)
1{Jt=j} | J0 = i

]

×(1 + qjjh)Ẽ

[
exp

(∫ t+h

t

ζdZ(j)
s +

∫ t+h

t

γdX(j)
s

)
| Jt = j

]

+
∑

k 6=j

E

[
exp

(∫ t

0

ζdZs +

∫ t

0

γdXs

)
1{Jt=k} | J0 = i

]

×qkjhẼ

[
exp

(∫ t

0

ζdZ(k)
s +

∫ t

0

γdX(k)
s

)
| Jt = k

]

= aij(0, t)(1 + qjjh) exp
(
(κZ

j (ζ) + κX
j (γ))h

)
+
∑

k 6=j

aik(t, T )qkjh exp
(
(κZ

k (ζ) + κX
k (γ))h

)

= aij(0, t) exp
(
(κZ

j (ζ) + κX
j (γ))h

)
+ h

∑

k∈E

aik(0, t)qkj exp
(
(κZ

k (ζ) + κX
k (γ))h

)
,
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where we have made use of the independent increments of eachX(j) andZ(j) on the third
equality and Laplace exponents forX(j) andZ(j) on the fourth equality. It follows that

aij(0, t + h) − aij(0, t)

h
=

aij(t, T )

h

(
exp

(
(κZ

j (ζ) + κX
j (γ))h

)
− 1
)

+
∑

k∈E

aik(0, t)qkj exp
(
(κZ

k (ζ) + κX
k (γ))h

)
,

which implies

∂

∂T
aij(0, t) = aij(0, t)(κ

Z
j (ζ) + κX

j (γ)) +
∑

k∈E

aik(0, t)qkj.

With the matrix formulationF(0, t) = {aij(0, t)}ij, andQ = {qij}ij , we then have

∂

∂T
F(0, t) = F(0, t)

(
Q + {κZ

j (ζ) + κX
j (γ)}diag

)
.

SinceF (0, 0) = I, the matrix equation is solved as

F(0, t) = exp
((

Q + {κZ
j (ζ) + κX

j (γ)}diag

)
t
)
.

A.3. Proof of Lemma 4.1. SinceJt is non-explosive, there exists only finite number of regime
switches in any compact interval. Define

χ(h) ≡ inf{t ∈ [0, h], Jt 6= i},

as the first time that the Markov chainJt makes its first jump. Together with the assumption
that the probability of the jump-diffusion and the Markov chain jumping together is zero, we
have, up too(h) term,

1

h
Pi[τ < h]

=
(1 − qiih)

h

∞∑

n=0

P(NX
h (i) = n)Pi

[
inf

0≤s<χ(h)
X(i)

s < −x

]

+
1

h

∑

j 6=i

qijh

∞∑

n=0

P(NX
h (j) = n)Pj

[
inf

χ(h)≤s<h
X(j)

s < −x

]
+ o(h)(A.1)

=
1

h

∞∑

n=0

P(NX
h (i) = n)Pi

[
inf

0≤s<χ(h)
X(i)

s < −x|NX
h (i) = n

]

−qii

∞∑

n=0

P(NX
h (i) = n)Pi

[
inf

0≤s<χ(h)
X(i)

s < −x|NX
h (i) = n

]

+
∑

j 6=i

qij

∞∑

n=0

P(NX
h (j) = n)Pj

[
inf

χ(h)≤s<h
X(j)

s < −x|NX
h (j) = n

]
+ o(h)

The first part of equation (A.1) represents the default to occur before the first regime-switch
while the second component denotes the probability of default to occur after the first regime-
switch.

Denoteϑi(h) as the first jump time of Poisson processNX
h (i). Observe that
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1

h

∞∑

n=0

P(NX
h (i) = n)Pi

[
inf

0≤s<χ(h)
X(i)

s < −x|NX
h (i) = n

]

=
e−λX

i h

h
Pi

[
inf

0≤s<χ(h)

(
bX
i s + σX

i W X
s

)
< −x

]

+λX
i e−λX

i h
Pi

[
inf

0≤s<χ(h)

(
bX
i s + σX

i W X
s + Y X

i 1{s≥ϑi(h)}

)
< −x

]

+
1

h

∞∑

n=2

e−λX
i h(λX

i h)n

n!
Pi

[
inf

0≤s<χ(h)

(
bX
i s + σX

i W X
s + NX

s (i)Y X
i

)
< −x|NX

h (i) = n

]
.

Following the arguments in Ruf and Scherer (2011), we have

lim
h↓0

1

h

∞∑

n=0

P(NX
h (i) = n)Pi

[
inf

0≤s<χ(h)
X(i)

s < −x|NX
h (i) = n

]
= νX

i ((−∞, x]).

By similar arguments, we also have

lim
h↓0

qii

∞∑

n=0

P(NX
h (i) = n)Pi

[
inf

0≤s<χ(h)
X(i)

s < −x|NX
h (i) = n

]
= 0

and

lim
h↓0

∑

j 6=i

qij

∞∑

n=0

P(NX
h (j) = n)Pj

[
inf

χ(h)≤s<h
X(j)

s < −x|NX
h (j) = n

]
= 0.

The result follows by recalling the definition of CDS premiumand L’Hôpital’s rule, i.e.,

lim
T↓0

c
(i)
T = lim

T↓0

1
T
(1 − R)

∫ T

0
e−rtdPi(τ ≤ t)

1
T

∫ T

0
e−rtPi(τ > t)dt

= (1 − R)rνX
i ((−∞, x]).(A.2)


