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CREDIT-EQUITY MODELING UNDER A LATENT L EVY FIRM PROCESS

MASAAKI KIJIMA AND CHI CHUNG SIU

ABSTRACT. We propose a unified credit-equity modeling by extending létent structural
model originally proposed by Kijima et al. (2009) so as toluge jumps and regime switch-
ing. As in the original latent model, we treat the actual firatlue to be unobservable and one
can extract information from the correlated marker procéss equity value, which is actively
traded in the market. Default occurs when the actual firmevedaches a default threshold at the
first time before the maturity of debt. The purpose of suclkemsibn is to capture more realistic
credit spreads under different economic environments.|Né&triate the application of the model
through the pricing of credit default swaps and equity apicOur model can evaluate corporate
securities and their derivatives in a unified framework.

1. INTRODUCTION

Vast amount of studies have been conducted to model crsklibfia corporate firm. Among
them, modeling the credit risk under the structural apgndaes an economic appeal since it
provides an intuitive linkage between the firm value and thlees of corporate securities such
as debt and equity.

However, until recently, the equity and credit modelingmssdo be two separate themes in
the finance literature. That is, equity processes are mddeteugh the eyes of the investors,
while structural models reflect the perceptions of playassde firms. Consequently, many
prominent equity models have not taken the creditwortlsregshe firm value into account.
However, recent credit crisis shows the intimidate retatlop between the credit and equity
markets. Hence, new attempts are required to construct the credityeqpodeling in a unified
manner.

Consider a corporate firm that issues a debt and an equityDLlastd S be the debt and
equity values, respectively, and [&t be the firm value. According to the basic accounting
assumption, we have the relationship= D + S. The default occurs when reaches a default
threshold either at the maturity or at the first time beforéumty. This is the basic setting of
the structural approach.

The difficulty to construct the credit-equity modeling in mified manner stems from the
fact that the debt and equity possess different propefTieat is, while debt has finite maturity
and face value, equity has neither maturity nor face valweoviercome this difficulty in the
framework of structural models, the Merton model (1974) aadvariants (see, for example,
Merton (1976), Zhou (1997, 2001), and Kijima and Suzuki @0Gssume that the firm is
liquidated at the debt maturity and the equity value is eat&ld as a call option with the same
maturity written on the firm value. On the other hand, the hdlenodel (1994) and its variants
(see, for example, Leland and Toft (1996), Hilberink and &sg2001), and Chen and Kou
(2009)) consider a perpetual bond and the equity value &mdd by the balance theory.
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For example, during the credit crisis, both CDS (credit ditfawap) premiums and equity volatilities are at
their historical high.
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New attempt to overcome the difficulty appears in Credit@saproposed by Finger et al.
(2002), where the present value of debt, is assumed to be the discounted face value of
debt and the equity valug is modeled by a geometric Brownian motion. Through the basic
accounting relationship, the firm valdéis determined by = D + S and default is the first
passage time of to the face value.

Due to its simple formulation, CreditGrades quickly reesiwidespread popularity among
practitioners and many studied have been conducted to dxgitgppower in the credit-equity
modeling. For example, Bystrom (2006) shows that the gquibcess has a leading effect to
the credit spread and there is a positive relationship batwlee empirical credit spread and the
theoretical credit spread computed by the CreditGradesinod

As is well known in the finance literature, if the firm value ssamed to follow a diffusion
process, the model always generates unrealistic zero-&rortcredit spreads. To correct this
shortcoming without losing tractability, the original @r&rades model has been extended by
assuming the default barrier to be stochastic, indeperafehe firm value process. Recently,
Sepp (2006) extends the CreditGrades framework to inchieledase when the firm value pro-
cess follows either the double-exponential jump-diffasioodel or stochastic volatility model.
Ozeki et al. (2011) make use of the Weiner-Hopf factorizatiocheme to study credit and equity
problems when the firm dynamics is driven by a spectrally tiegévy process.

In this paper, we propose another unified credit-equity rhbgextending the latent struc-
tural model originally proposed by Kijima et al. (2009), wheave treat theactual firm value
to be unobservable and one can extract information from tuéen process that is observable
in the market. Unlike the latent structural model in Kijimizagé (2009), however, the marker
process in this paper is chosen to be the firm’s equity. In tlggnal latent structural model in
Kijima et al. (2009), the marker procegsrepresents th&angible asset of the firm correlated
to theactual firm value. For a given maturity’, the value of the debt is given in terms Bf
and A, with the default feature embedded ih Equity value is obtained as a residual value
after the payment has been made to the debt holder in timefaditer at maturity, whichever
comes first. Hence, by defining the firm’s tangible asset aécthreelated) marker process, eg-
uity comes as a by-product with same maturity as the corpdratd. As commented in Kijima
et al. (2009), the fact that equity has maturity is ratheeahstic. Moreover, the complicated
form of equity in the original latent structural model makiegifficult to price equity options,
even under the case of Brownian motion. Motivated by thetfzatt the liquidity of the equity
markets supersedes that of the corporate bond markets,aleisk the equity data of the firm
as means to extract firm’s credit information in this papee tén proceed to price the CDS
and equity options with default feature.

From the financial standpoint, pricing the CDS and the equptyjons using the equity data
alone enables us to study the relationship between CDS arity eopder a joint framework.
More specifically, embedding the firm value into the equitjueaallows us to introduce the
firm’s creditworthiness into the equity process. As we shaé#l in the subsequent discussion,
the current framework allows us to explain the effect of @redread on the option’s implied
volatility.

On the modeling perspective, this paper extends the otitatent process model on two
grounds. The first extension is to model the actual firm vaha equity processes by jump-
diffusion models. The reason to include jumps is to repredealistic short-term credit spreads.
Jumps are considered in both the actual firm value and equotepses, since surprise shocks
can occur both internally (i.e., firm restructuring) andeerally (i.e., market reaction to the
equity issued by the firm). The second extension is to incthdeaegime-switching dynamics
into the economy. Economic motivation of regime-switchisi¢gp capture the macroeconomic
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effect? During the credit crisis or economic downturn, the vol&&h of firm value and equity
are skyrocketing. When the economic environment returok ttanormal, the credit becomes
calm and the volatilities drop significantly. In particylaegime-switching jump-intensity is
served to describe the arrival frequency of the positiveragghtive news under different eco-
nomic landscape. As we shall soon see in the case of the CDiagrihe persistence of the
firm staying in a particular credit environment can be wetitoaed by the regime-switching fre-
guency. In fact, Bystrom (2006) demonstrates the autetadive behavior of the credit spread,
an evidence of the credit clustering.

When studying the latent process with both jump-diffusiod eegime-switching, it is im-
perative to investigate which effect, jump-diffusion ogimae-switching, has greater impact
on the price of the securities across a time horizon. Ivelifi Lévy jump should have more
dominant effect than the regime-switching on a very shorétinterval, whereas the situation is
reversed as the time interval expands. We shall verify ttiigtion analytically and numerically
when pricing CDSs and equity options under the current fraonie.

The rest of the paper is organized as follows. Section 2 ghesetup of our model with the
aforementioned structures. In particular, a regime-$witg double-exponential jump-diffusion
model is tractable for our purpose, and the key results oéthin Kijima and Siu (2011) are
summarized in Section 3. Section 4 provides the pricing edlicdefault swaps in our setting,
while Section 5 considers equity derivatives with defaedéttire. To enhance the versatility of
our model, we also discuss the extension to the case of ramddrdefault barrier. Section 6
provides a comprehensive numerical analysis on the effiéctodel’s parameters on the CDSs
and equity options. Section 7 concludes the paper. Appehdontains proofs of some results
mentioned in the paper.

2. MODEL SETUP

In this section, we discuss the structure of our extendeshidirm model and its assump-
tions. As in Kijima et al. (2009), we assume that the capitatket is frictionless and there
exists no information asymmetry. Moreover, we also assiraemoney can be borrowed from
the money market at a constant, riskfree interestraténless otherwise stated, we shall work
only on the probability spac&?, F, P) and always assume that the risk-neutral probability
measureP exists. Moreover, filtratiot is generated by the stochastic processes considered in
this paper.

As commonly observed, asset prices fluctuate under differ@mnomic or credit environ-
ment. Intuitively, the actual firm value and the equity vadue driven by two factors, idiosyn-
cratic and systematic factors. Systematic factors reféineéanacroeconomic influence on the
asset prices. Examples of macroeconomic indicators iedardss Domestic Products (GDP),
inflationary/deflationary pressure, and sovereign risksese systematic factors in turn affect
the prices and volatilities of equity prices, as well as tbwal firm values, as it is equally
susceptible to the credit environment. We shall use the Madkain as the driving factor of
switching from one economic regime to another. Each regioneesponds to different param-
eters in the latent firm model, indicating that equity andiatcfirm values behave differently
under different economic or credit background.

Let{J; : t > 0} be a Markov chain with state spaée For simplicity, we assume thét is
finite and containg elements, i.eE = {1,2,...,d}. Let Q be the intensity matrix of;, with
respect to the Lebesgue measure, i.e.

Q = {qij}iJEEJ

%Sju et al. (2008) discuss in detail on the pricing of CDSs utige regime-switching Brownian motion within
the structural framework.
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Qi = — Z Qij-
i#j
Assume that/; = i and, defining a holding timé as a positive random variable

¢ =inf{t: J, # i},
the standard Markov chain theory shows that, for any tirre0,
(2.1) P(¢ > t) = exp(—giit).

That is, ¢ is exponentially distributed with meah;[(] = qi This implies that the higher
the value ofg,;; the faster the Markov chaid; leaves stateé. As discussed in Fouque et al.
(2000), if we model the volatility function of an equity pexs in terms of a Markov chain,
the parametey;; can be seen as the parameter governing the degree of ¥plpélhsistence.
Together with an additional assumption @f being ergodic, the long term behavior of the
volatility process can then be fully captured by the invaridistribution of J;. See Fouque
et al. (2000) for details on the common stochastic volgtitibdels used in finance.

In what follows, we shall use the Markov chaif to describe both the volatility and the
Lévy measure of the firm and equity processes. The presdnfecan then relax the indepen-
dent increment assumption embedded in every Lévy prottesgby bringing forth the level of
volatility persistence that is well-documented by the emopl studies mentioned in the intro-
duction.

With the regime-switching dynamics in place, we are now isifon to discuss the struc-
tures of the actual firm value and equity processes.

where

2.1. Firm value dynamics. First, we consider the actual firm value, which is latent oolun
servable in the market. Léf; be a regime-switching Lévy process with the following caical
representation:

@2) xi- [ B (s + / (AW ¢ / t [ o0 =) s,

where, under the regimg = j, b*(.J;) = b;* denotes the drifiy* (.J;) = ¢ the volatility, and
pX(Jy) = p* represents the random jump measure with compensator) = v*. The pro-
cessWX represents the standard Brownian motion and all the randogepses are mutually
independent.

To compute the moment generating functi®fexp(uX;)] for v € R, we need to impose
one restriction onX;: X; has the second finite moment under each regime, i.e., foy evell,

max/(l Ay* v (dy) < oo,
J R

Then, for anyu € R, the moment generating functid[exp(uX})] is finite and takes the form
as follows (see Asmussen (2000)):

(2.3) Ei[exp(uX;)] = exp (K*[u]t),
(2.4) K*[u] = {#} () }diag + Q,
where

1
HJX(U) = bJXU + é(O'JXu)2 + /R(euy —1- yl{‘ygl})yf(dy).

Now, theactual firm value at time, denoted by4,, is assumed to be given by
(2.5) Ay = exp(Xy), t >0,
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where X, = log(A4y) denotes the value of the actual log-firm valug at 0. It is assumed
that A, itself is latent, i.e. unobservable to the investors, anm thontradable in the market.
Observe that, if there is only one regime and there are nogumvp return to the Brownian
motion framework as in Kijima et al. (2009). The inclusionuinps is to capture the effects of
surprise shocks to the firm. Note that regime-switching ¢smaffect both the volatility and the
random jump measure. Volatility driven by the Markov chaaults in the volatility persistence
as delineated in Fouque et al. (2000). The Markov-modultexqb process is to capture the
impact of the shocks to the firm under different macroecoeagnvironments. For example,
sudden shock, both systematic and idiosyncratic, duriedithe of credit crisis should have
bigger (negative) impact to the firm than that, say, durirggtitne of economic prosperity.

In contrast to the ordinary structural models, we assuntedigfault occurs when the actual
firm value exceeds a default threshold. That is, define

(2.6) T=inf{t>0: A4 <T}=inf{t>0: X, <L}

for somel’ = e”. Under this definition of default time, default is firm-specific.

2.2. Equity process. Let S; be the equity value of the firm at tinite Contrast to the actual firm
value, the equity value is observable and assumed to beectimded in the market.
LetY; = log S;, and assume that, for each regime,

Y =pXi + Z;

for some constant € [0, 1], whereZ; can be seen as the impact factor that is non-firm specific.
Thus, the parameterdescribes the importance of the actual firm value on equitghét the
value ofp, the greater influence the actual firm value has on the eqistye shall soon see, this
simple structure on equity allows us to draw the informatbthe firm quality into the equity
valuation and thus embed credit feature into the correspgrejuity derivative products.

In what follows, we assume that, is also modeled by a regime-switching Lévy process,
independent of other processes. That s,

(2.7) Sy = exp(pXi + Z1),
also, as in (2.2)Z; has the following canonical representation:

z- [ W (g)ds + / ()W / t (0 = ) s,

whereb” (.J;) = b7 denotes the drifiz”(.J;) = o7 the volatility, andu”(.J;) = 117 represents the

random jump measure with compensatét.J;) = v7. Additionally, we setZ, = log(Sy/Aj).
Similar to the case of(;, we need an additional assumption for the moment generating

functionE;[exp(uZ;)], u € R, to be finite. That is, for every > 0, we assume

max/(l /\yz)yjz(dy) < 00.
7 JR

The moment generating functid@)[exp(uZ,)] is given as follows:

(2.8) Ei[exp(uZ;)] = exp (K?[ult) ,
(2.9) K?[u] = {7 (u)}diag + Q,
where

1
K,JZ(’LL) = iju + 5(0]-Zu)2 + /R(e“y -1- y1{|y‘§1})yjz(dy).

Note from (2.4) and (2.9) that the regime switching factpaffects bothX,; andZ; simultane-
ously.
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Similar to the discussion on the actual firm value processetjuity process has jumps from
X, andZ; given a regimeJ;. While jumps inX, refer to the jumps brought by sudden changes
of the firm value, jumps it¥, refer to sudden shocks in the market, unrelated to the firoreval
The latter shocks may be due to the sudden changes in the inpeniception on the equity
market.

Parallel to the original Black-Cox (1976) model, defaulttioé¢ firm would trigger a drop
in the equity value. However, unlike typical structural rets] default of the firm may not
necessarily imply an immediate default in equity, as isroftbserved in actual markets. This
is a significant departure from the traditional structurahiework. The jump effect on equity
values in time of credit event would become particularlyq@enced when evaluating the equity
products under the latent firm model, as we will soon see er Ections.

From the construction of the equity value, it is clear thatphicing of any equity derivative
under the current framework requires a prior knowledge endmt distribution ofX; andZ; at
any timet. Although.X; andZ, are conditionally independent givep X; andZ; are in general
not independent, as they share the same regime-switchinggeécelo ease computation, we
shall adopt the change-of-measure technique for the casgiofie-switching Lévy processes.
Hence, before proceeding further, let us first investigaatcessary tools to justify the change-
of-measure technique.

Lemma 2.1. Suppose that the function: [0, 7] x E — R is bounded and(-, j) is continuous
for eachj € E. Define, for¢ € R,

Vi=exp(g(t, J)t +CZy) .
Then,V, is alP-martingale with respect t@; if and only if
(2.10) gt J) = =k, ().
Proof. See Appendix A.1

Define an equivalent probability measitéy its Radon-Nikodym derivative as follows:
dP

(2.11) e

12)

Fi =
whereF; = {0(Z;), 0 < s <t}. )
DenotingE,;[.] as an expectation operator undfemve have the following results.

Corollary 2.1. Let(,~ € R. Then,

(2.12)  E; [exp (k05 (Ot +7X0)] = exp ((Q + {+7(C) + £} (7) Yeiag) 1)

and

(2.13) E; [exp (vX)] = exp ((Q + {5 (7) }aiag) 1) -

Proof. See Appendix A.2

Remark 2.1. Observe that, from Corollary 2.1, the distribution &f is unchanged undé®.
This is in agreement with our intuition thaf, and Z; are conditionally independent processes

given J;. As we will soon see, this change-of-measure formula greatluces the complexity
when pricing equity options in our framework.

From equation (2.12), we can now easily derive the drift ¢oomalon the equity process so
thate™"'S; is a martingale, i.e.
Ez’ [e_”&] =1.

So
Lete; = (0,---,0,1,0,---,0)" € R?is the unit vector withl in the i-th component and
1,=(1,...,1)T € R4,
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By the definition ofS,, this is equivalent to finding the drift &f; such that
e/ [, [e_” exp(pX; + Zt)} 1, =1,
forall - € E. By invoking Corollary 2.1, we have
(2.14) ] E; [ exp(pX + Z)] 1 = o exp(Q+ {5 () + 57 (1) — r}aag)t) L
Following the proof of Lemma 2.1, it is clear that

e; exp((Q + {FLJX(p) + /<ajZ(1) — ' }diag)t)1a = 1
if and only if
KX (p) 4+ K7(1) —r =0.
We then have the following sufficient condition 6hto preclude arbitrage opportunity:
1 2 1 Z

phy + b7 = 7’—5(003)'() —5(7; )?

/R(e”y —1 = pylyy<ay)v; (dy) — /R( —1—yly<y)vi (dy), j € E.

2.3. Calibration procedure. Before applying the latent model to the pricing of CDSs and
equity options, we shall describe briefly the calibrationgadures against the actual data in
this subsection. Since we treat the actual firm value to bdsemwable, our only source of
information on the firm value is the equity process, via tHatien (2.7), or equity derivatives.
Thus, before using the latent model to price the firm-relgextiucts, we must first calibrate
the latent model against the equity data. After the sucaksafibration, we can then proceed
to price firm-related products with the calibrated model.

Specifically, denote byv the number of observations and By= (X;,i = 1,...,N) the
vector of the equity (or its derivatives) values of Iengthsampled from the eqwty market Let
© be the vector of the equity model parameters, and deno¥(®By = (X;(0),i = 1,..., N)
the vector of the equity values of the model counterpartdib@dion procedure amounts to
finding the optimal®* such that the squared sum of the difference betwéand X(0) is
minimized. In other words,

1L o
* : 2
(2.15) " = argénmN ;(XZ(@) X;)=.

However, since the main scope of this paper is to study theauoa@ underpinning behind
the model’'s parameters, we have chosen the paranmeepereri with the intention to illustrate
specific effects. The actual performance of the calibradéd¢eint model and the implications
thereof are left for future research.

3. THE REGIME-SWITCHING DOUBLE-EXPONENTIAL JUMP MODEL

For practical use, it is important to derive analytic or semalytic solutions of derivative
prices for the purpose of efficient computation. To this emd,shall assume that, for each
regimeJ; = j, X ) follows the double- -exponential jump-diffusion model, ffidceveloped by
Kou (2002). The benefits of the Kou model are two-folds. Fitst double-exponential jump-
diffusion model allows two-sided jumps. This means thahkmsitive and negative news can
affect the actual firm and equity values. Second, we can elé¢hie Laplace transform of the
first passage time to the default threshold, which can betes@umerically with ease. Thus,
the assumption of the Kou process under each regime will taaithe necessary tractability
for efficient computation of first-passage-time distribug; see Kou and Wang (2003). In the

3In Section 6, we consider the pricing @éfaultable equity options.
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following, for the sake of simplicity, we assume thiatcontains only2 elements, i.e. &/ =

{1,2}.

In this setting, from (2.2), the log-firm value procesgis defined by

t t t
(3.1) Xt:/ bX(Js)der/ o—X(JS)dWSXJrZ/ 1=y ANZ ().

0 0 jee /o0
GivenJ; = j € E, b} ando;* are constants, anfiV;*(j) : ¢t > 0} is a compound Poisson
process with constant arrival raﬁ( and random jump sizeE;X with distribution VJX (dy),
where
(3.2) ¥ (dy) = A (e W Lm0y + (1 — pl)nse™V 1, cop)dy

with ¥ > 1, n% >0, and0 < p;* < 1.
The Laplace exponent (2.4) now takes the form

(3.3) K¥u] = {x7 (u) }aiag + Q.
where
(07 u) iy (L=p )y
3.4 Xu) = bfu+ L2 4\ | =LY J 292 1),
(3.4) m](u) U+ 5 + A nﬁ_u-i- nj§+u

3.1. First-passage-time distribution for the case of two regims. To study the first-passage-
time distribution under the regime-switching jump-difilas model, we recall some results from
Kijima and Siu (2011).

Define the first passage timeby (2.6), and assum&, > L and.J, = 7,7 = 1, 2. We want
to calculate

]Ei [e—aT"l‘bXT; JT‘JO — Z]

fora > 0andb € R\{n, —ns, i =1,2}.

To this end, we shall introduce few notations. Define

—,L —ar 0,L —ar
7T((Z'J) )[a] =B [e 1{JT=J'XT<L}} ’ W((i,j))[a] = E; [e 1{JT=jXT=L}} :
For each, [ = 1, ...,4, let g, , be the solutiorfsof the equation
(/@{{(u) —a-—- C_Il)(fig{(u) —a— q) = g,

wherer* (u) is defined in (3.4), such that

—00 < 01,0 < 02,0 < 03,0 < 04,0 < 0.

Let
N Ko(0La) —a — @2
Y= )
q2
and define
X X
ALY l l —122
(3.5) oy =y, hl | = ——12 hl,gy=—1, hl, | =——"2—
(1,00 =N 1,-) 1%+ Ol (2,0) (2,-) 1% + O1a
Also, define
— a (_7L)
e e Lh’%i,o) T(i1) h%L—) h%ZO)
(3.6) X = : , W= : , H= : ' :
—o04,0L 14 0,L 4 4
€ ot h(i70) 71—((7;,2)) h(lv_) h(z’o)

According to Theorem 1 of Kijima and Siu (2011), we have
(3.7) Hm =x.

4See Kijima and Siu (2010) for the existence of these solstion
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Parallel to the case of regime-switching Brownian motiovedigped in Guo (2001), the matrix
H takes the form of a special Alternant matrix, called the éqd) Vandermonde matrix, which
is invertible as the roots iff are distinct. In order to obtaiR; [e~2"+%%~; J ], define
X
n iz~ L

B = : oo [b] = el
fi.10] nj)§+be fiolb] =e

for j = 1, 2. Thanks to the conditional memoryless and independengepres, we have

~

CarbX,s _L
Eile ™ 1 i xoeny) = 7l Fo b

and

artbX, o on7
Eile ™ 1 i xomny) = 7o Fio[b]-

Therefore, by invoking Corollary 2 of Kijima and Siu (201%e obtain
(3.8) Bl 1) = 3 (w3 Fuo )+ 755 Forl6])

j

In what follows, we shall see that the tractable first-pasgage distribution for the regime-
switching double-exponential jump-diffusion greatly anhes the analysis of the credit and
equity products within our framework.

4. CREDIT DEFAULT SWAP

In this section, we consider the credit default swap (CDSkart) of a corporate firm. CDS
is a bilateral contract between two parties, protectiorebbayd protection seller. In actual credit
markets, liquidity of CDS’s of corporate firms is significgrtigher than that of the corporate
bonds issued by firms.

As CDS has a nature of a swap, there are payment exchangeselpetwo parties during
the life of the contract. Upon entering a CDS contract wittokeery rateR, notional amount
N, and maturityl’, the protection buyer will make payment, known as the CDS premium, to
the protection seller on the pre-specified payment datesjqed that the reference entity has
not defaulted by the time of payment. If the reference enlgfaults, the protection seller will
pay the protection buyer the amoumt— R)N and the contract terminates.

Assuming that there are no counterparty risks, the abowvigésn can be compactly sum-
marized by the following two equations:

T .
Protection Buyer's Leg= E; { / cgf)Ne‘”l{T>t}dt]
0

TNT )
= E [/ e_’"tcg,f)th]
0

Ez[l _ e—T(T/\T)]
,
1 —Eile™ Lirery] — e IP(r>T)
r

= cgf)N

= cgf)N
and
T
Protection Payer's Leg= (1 — R)N / e AP (1 < 1)
0
= (1 - R)NEZ [e_TTl{T<T}] ,

Wherecgf) denote the CDS premium under regimand 7 is defined as (2.6). To exclude
any arbitrage opportunity, the CDS premiu:ﬁﬁ must be calculated by equating the protection
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buyer’s leg and the protection seller’s leg, so that
[ et dPi(r < t)
[ e mtPy( > t)dt

, E; [G_T71{7<T}]
1-— Ez [6_T71{7<T}] — G_TT]PJZ'(T > T) .

Observe that, by the definition of default timethe above formulation of the CDS only takes
the actual firm value process into an account. This is the setraditional structural models.

What makes the latent firm model different from the tradiglbmodels is that securities
issued by the firm are embedded with credit quality of the fiithough the actual firm value
is unobservable, we can use the actively traded CDS prentioimetract credit quality of the
firm.> This is in contrast with the intent of the original latentustiural model in Kijima et
al. (2009). In the original latent structural model, cregliality from the corporate bonds is
extracted from the tangible asset correlated to the actualvalue. Tangible assets are the
asset shown on the accounting book of the firm and thus canbentgvealed during periodic
corporate announcement. Hence, tangible assets on thergicgpbook are seen as the lagging
factor on the credit quality of the firm. On the other hand, GBfresents not only the credit
quality of the firm but also the market perception of the drgdality of the firm for some time
in thefuture. Hence, CDS provides us the forward-looking indicator ef¢hedit quality of the
firm.

We shall now move to provide an explicit calculation of the&premium when; is the

candidate process as in (3.1). To compute the CDS premiﬁrfrom (4.1), it is clear that

c$> can be computed once we compute the first-passage-timeljlith®;(r > T') for each

T. For the case of Brownian motion, this first-passage-tinadgbility is well known and
has a closed-form solution. Unfortunately, the closednfeolution is absent when one makes a
departure from the Brownian motion framework. Neverthglby taking the Laplace transform
of P;(7 > t) with respect ta yields the following result.

Before proceeding to compute CDS at any timéet us first investigate the asymptotic
behaviors of the CDS premium with respect to time. In pakiicuwe shall now investigate the
effect on the CDS premium as time approache8 &mdoc under the general jump-diffusion
processes with regime-switch. This analysis collectivadn be seen as an extension of the
results of Ruf and Scherer (2011) to include the regimeehung case.

&) = (1-R)

(4.1) - (1-R)

Lemma 4.1. Denoter = — log(A%) and.J, = i. Then, we have
(4.2) lim & = (1 = R)yrvX((—o0, 7)),

wherev(?) denotes the Lévy measure under regime
Proof. See Appendix A.3.

Lemma 4.1 conveys a very important message. The non-zedd spgead is inducednly
by the Lévy measure under the initial regimig and the diffusion component plays no role.
Additionally, regime-switching intensity doa®t enter into the picture at = 0. This is in
line with the concept of holding time of a Markov chain prasehin (2.1). Hence, contrary
to the previous studies, CDS premium computed under theneegivitching Brownian motion
alone cannot produce non-zero credit spread! This furtrsgifies the role of Lévy measure in
explaining theshort-termbehavior of the CDS curve.

5The default event of the CDS is essentially the default egétite underlying firm. High liquidity of the CDS
market may provide us an updated inference of the actual @revunder our framework.
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By the simple limiting argument, the almost surely finitenhefthe default time-, and the
stationary distribution of the Markov chaif, we also have the following result. The proof is
omitted.

Lemma 4.2. AssumeP;[r < oo] = 1 and.J, = i. Then,

Enle™"]
(@) _
(4.3) lim ¢ = (1 R)r1 o]’

wherell denotes the stationary distribution of the Markov chain

Contrary to the behavior of the CDS premiuni/at- 0, the effect of the regime-switching
enters into the picture in Lemma 4.2. As we shall soon seeemtimerical examples, the
presence of the regime-switching factor pulls the valuhef@€DS premium computed under
the initial high and low regimes together and Lemma 4.2 plesia limiting value of which the
prices of CDS under different regimes converge at the faroénioe time horizon.

For the value of CDS at any timec (0, oc0), we shall proceed to compute it via Laplace
transform. For the rest of the paper, we shall denot&€pyand£~!(-) the Laplace transform
and inverse Laplace transform operators, respectivelgt ishfor univariate functiong(¢) and
f(), we denote

Cofe)= [ i, £ (F) = im = [ e f(a)da,
. R—oo 271 J_p

if the limit exists.
Similarly, for bivariate functiong(z, y) andg(«, ), we denote

Loslg(x,y)) / / —ar=fy (z,y)dzdy

E;;(g(a,ﬁ)) = lim lim —/ / e (o, B)dads,

R —o0 B—o0 472

and

if the limit exists.

Lemma 4.3. The Laplace transform d&;(r > T') with respect tdl’ is given by
1 Ez —arT
(4.4) LoPi(r>T) =~ — il
a a
whereas the Laplace transformldfie 71| with respect tdl’ is
B Ez e—(r+a)7—
(45) ,Ca[]Ei[e T71{7—<T}H = %
Proof. Direct calculation shows that
LP(r>T)] = LalEi[lir>ry]]
= E; { / e_aTdT}
0
B 1 B Ez [e—aT]
N a a
and ora
[e’] Ez e~ r4+a)tT
L.[E; lirery]] = E {/ —at ”dT} = %.
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Hence, we can recover the valuesfofr > T') andE;[e™""1;..7}] by performing the nu-
merical Laplace inversion. In this paper, we adopt the Alydtett (1992) algorithm to perform
the numerical inversion.

4.1. Regime-switching jump-diffusion model. For the case of regime-switching jump-diffusion
model with two regimes, by inserting equation (3.7) to Lenmfy we have the following ex-
pression for the CDS premium, after inverting the Laplaaadform.

Corollary 4.1. Assume that the actual firm value process follows the lat@tehdescribed in
(3.1) with Jy = ¢. Then, the CDS premium is given by

pRSi .
2 1€ F,

4.6 & = (1- R)r : -
( ) T ( ) 1 _ P2RS,7, _ e_rTPlI%S,Z

where we define

4
PlRS,i _ E;l (% . %Z — 0k aLth (Z bmk’))

k=1

with B = (b;;) = H~' andH being the form of (3.6), and where

4 4
, 1 Z .
Pyt = Lyt (5 Ze—@k,ath;&O) ( bmk>>
k=1 m=1

with B = (b;;) = H~' and H being the form of (3.6) withr being replaced by + a.

Proof. SinceB = (b;;) = H!, we have from (3.7) that = Bx. After some simple algebraic
manipulation, we have

4
e~aT. J Z e Ok, aLh(Z 0 (Z ban> )
m=1

The result follows by noting from (4.4) that

1 1
IP)Z' >t = L:_l - — _Ei —ar;Jr
>0 = £ (5 - Bl ])
1 1 4 4
a a k=1 m=1
The computation of;**" is similar by replacing: with r + a. O

4.2. Randomized default barrier. Up to now, we have assumed that the default barrier re-
mains constant over time. In reality, the default barriey wary as the creditworthiness of firm
changes over time. In fact, the original CreditGrades mprdgloses the concept of randomized
default barrier as means to cure the close-to-zero crpdéasl when evaluating the CDS under
a modified Black-Cox model, where the Brownian motion is thiy sandom source. See the
original CreditGrades model for the detailed coverage efrdindomized default barrier under
the modified Black-Cox modél.

For the case of regime-switching jump-diffusion model,itt@usion of randomized default
barrier is straightforward. To see this, we revisit the catafions ofP;(7 < t) under the case
of randomized barrieL.

6Sepps (2006) also considers the randomized default bagem extension of the extended CreditGrades model
with jumps or uncorrelated stochastic volatility.
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Corollary 4.2. Let L be the random default barrier with Laplace expon&ptu), u € R. If
Jo = 1, then we have

Pi(T < t) (Z eVr(=era) (Z bmk>> .

m=1

Proof. Observe that
Eile™; J;] = Ei[E-[“”'JILH

m=1
4
= ZQ‘I’L( Ok,a) <Z bmk)
m=1
The result follows by noting that
1
Pi(r<t) = L' (EIEZ[ “”;JT])
-1 1 —art
= Ly EEZ[E[ s J|L]]
1 4 4
= ﬁ;l (aze\h —0k,a) h(zO (Z bmk))
k=1 m=1

5. EQUITY OPTIONS

Since the celebrated Black-Scholes (1973) formula emengedy security models have
been introduced to alleviate the deficiency of the Brownianiom assumption and to capture
more realistic market phenomena. Despite the plethorawfyepricing models available, most
of them have no connection to the credit quality of the firBecause the underlying equity
process is tied closely with the credit quality of the firmoéiserved in the actual market, the
option price itself should reflect the connection to the alctum value.

In the case of structural models, on the other hand, manyeof tten be used for the pricing
of equity options with default features; however, they hesous drawbacks. The firm by itself
is not a tradable asset and the parameters of typical stalichwdels, such as the mean return
and volatility, are not directly observable. The origiratient structural model in Kijima et al.
(2009) remedies this defect by introducing the observatigible asset of the firm as means
to extract information on the actual firm value. In their flemork, equity is then expressed
as a residual amount after payment has been made to the ddbtshim case of default or at
maturity, whichever comes first. As mentioned in the intrcichn, this setting makes an implicit
assumption of equity with a maturity. Moreover, the resigjtiormulation of the equity process
takes rather complicated form that is difficult to price éguiptions even under the standard
Brownian motion.

As introduced in Section 2, we embrace the idea in Kijima et(@D09) by making use
of the correlated marker process to induce credit inforomatif a firm. More specifically, we
shall use equity process as the correlated marker procéiss attual firm value in the form of
(2.7). As we shall soon see, this formulation provides useatgieal of convenience in pricing

’An exception is the jump-to-default model proposed by Caale (2006) and later extended by Mendoza-
Arriaga et al. (2010).
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equity options with default feature. In practice, parametd the equity process are imputed
by calibrating the option price computed in this sectioniasfethe option data in the market.

Consider a defaultable call option with strike prigeand maturityZ’.2 The call option price
written onS is given by

Ci(S,K,T) = Eile " (Sr— K) 1irs1y]
(5.1) = Eile " (Sr— K)"] = Eile " (Sr — K) 1<), i € E,
or, equivalently,
Defaultable calE= Non-defaultable cal- Down-and-in call

so that the defautable call option can be replicated by hgldne unit of a non-defaultable call
option and selling one unit of a down-and-in call simultamgy. The major difference from
the non-defaultable case is that the down-and-in featurggered by the latent firm valuagt
by the equity value itself.

Parallel to the methodology used in the pricing of CDS, wdlghtce the defaultable call
option (5.1) via the Laplace transform. More preciselyiet —log K, and defindl to be an
identity matrix. The non-defaultable call option is priogd the Laplace transform with respect
to k, whereas the down-and-in call option is given in terms oftkbhéble Laplace transform with
respect tak and7'.

Theorem 5.1. Let &, 5 € R satisfy

X
0<t< m{% - 1}, min{ (p(¢ + 1) + K7( + 1)} > 0,

3 > max{max{x7 (£ + 1) —r,0}}.
JEE
Then, the Laplace transform &f[e "7 (S — K)T] with respect td: is given by

Le(Eife™ (Sr — K)*])
e—rTS£+1

(5.2) = 5(57"‘01) Z {exp (({K‘]Z(é +1) + ’ng(/)(é + 1)) bdiag + Q) T)}ij

J

and the double Laplace transform Bfle ™" (Sy — K)*1(,<y] with respect tok and T is
obtained as

Leg(Eile ™ (Sr — K) 1{r<ry))

Sf-‘rl B
0 Z [ [e—((ﬁJrr)—an (E+1)T+H(EFD) X7 1{JT:j}]
J

§E+1)
(5.3) x> ((r+ BT = ({26 + 1) + 5 (€ + 1)} g+ Q) )

L i€E

m

whereE; is the expectation und@; defined by (2.11).

Proof. For the first part, we take the Laplace transform with respeét Foré > 0, in order
to solve for

Ei [e7"" So(exp(pXr + Zr) — K)*],

8Johnson and Stulz (1987) considemtnerable option whose payoff is given hylin{f/T, (St — K)*}, where
V is the value of the total assets of issuer. In our model, defariggered by the actual firm value and no
counterparty risk of the issuer is considered.
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definek = — In(K) and take the single Laplace transform with respeét tbhen we have

AR e R
o I
— o7 Z E, / e—ﬁk(soerTJrZT _ e_k)dk:; Jr = j]
; L

—InSo—pXr—Z7p

— e—T‘T Z EZ /OO SoerT+ZT6_§k _ e—(§+1)kdk; JT — J:|

—InSo—pXr—Z7p

[ Getla(EtD(pXr+21)  §((0)s+1eE+D(pX+21)
- e_TTZEz’ 0_° _ 50T s Jr =7
- 3 £+1

e_TTSSH z_: [ (E+1)pXp+(E+1)Z ]
= STy E; |esTPaT Tdr =7
e 2
—r E+1 »
e 5 » [dP (E+0pXrHErVZr, ] _ j]
E(E+1) - dP
e—rng'i‘l B
R E,
TEPS

njz(ﬁ—i-l)T—i-p(ﬁ—i-l)XT;JT :j]

—TTS§+1

_ mz{exp(({nf(sﬂ)m (p(€ +1)}ag+ Q) 1)}, -

ij’

where the sixth equality follows by invoking the Randon-dilym derivative of the form of
(2.11).

Next, the second part (5.3) is proved by taking the doublddagptransform with respect
to & and7". To solve forE; [e=""'Sy(exp(p X7 + Zr) — K)"1{;<1}], definek = —In(K) and
take the double Laplace transform with respedt end7'. Then, we have

/ ﬁT/ —ékE —rT S ePXT+Zr _ e_k)l{ng, —lnso—pXT—ZT<k}]dk’dT

= E / ~(Bn)T / “ER(SperX T o F)dkdT
LJ T In So—pX7— ZT

[ oo E+1 (E+1) Zr+p(E+1
ZE/ (BT dpg e+ Zr+p(E+1)X dT
Jr dP §(E+1)
e S5l T DX ]
|/ (€ +1) |
1 00
N f(ggi 1)E [/ ol TR g
£+1
— SO B |:e—(ﬁ+r—n(ZJT)(§+1))T+p(§+1)XT
e+

x / T e fexp (i) (€ 1)(r + 8) — 1) (€ + D + pl€ + 1)Koy — X)) 1] ds
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Sf-ﬁ-l
20 R [e—((ﬁw)—nfm(§+1)T+(§+1)XT
§E+1)

X / e R [exp (k7)) (€ + 1)s + p(§ + 1) X,) | 7] ds}
0
Sf-ﬁ-l

0O R |:e_((/6+7")_“(ZJT)(§+1))T+p(§+1)X7—
§E+1)

% /OOO e~ B+l oy (({fif(f + 1) + K (p(€ + 1))}diag—|— Q) s) ds}

Sgt! = [ (B —RZ (D)) p(E+ )X
TR g j L)

3 (04 A= ({REE+ 1) + 6 (06 + 1)} g+ Q) )

n

completing the proof. O

5.1. Randomized default barrier. Parallel to the pricing of CDS, the concept of randomized
default barrier can also be applied to the case of equityoptiAssume thak is the regime-
switching jump-diffusion model (3.1) with two regimes. Theve have the following.

Corollary 5.1. Let L be the random default barrier with Laplace exponkgptu), v € R. Then,
the price of defaultable call option is given by

C(S,K,T)

. —rTS€+1 g .
= L (m z]: {exp (({’fj (E+1)+ K (p(& + 1))}dia9+ Q) T)}ij>
(wae e k“) e (; e ZO)

. Sf-‘rl
E_
EE+1)

SSH 22
b e\IjL(b Ok, a, _'_
Z 3k 0) o2 + b — 4

E(E+1)

(7=
S
5
@

[S]
=
~

7
S
Ead
N\

>

ES

~___

where
z X -1
a=B+1)=kAE+1), A= ((r+ BT ({KEE+1) + K5 (P +1)} g+ Q) )
Proof. Note that the random terth only appears in

E, [emjz ()= (B+n)T+olE+ DX JT:J,}] _

By combining the results of (3.8) and (5.1) and defining

a=—r7(E+1)+(B+r), b=pE+1),
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TABLE 1. Base case parameters for the firm-value proggssou (2002) Model with
two regimes

Vo [T] r [ bF [of [mii [mis ot [M L] R b [og [mon [mep [N |05 | a1 | @0
100 | 10.05]0.05 | 0.4 0.5 |30 | 0.5 0.05 | 0.2 1 0.6]0.5]0.5

w
X
o
o
o0
o

covery rate on CDS premium, Regime 1 Efect of 0¥ on CDS premium, Regime 1 Efect ofAX on CDS premium, Regime 1

€DS premium (bp)
CDS premium (bp)
g

CDS premium (bp)

X
50 - - o=04

3 3 4
Time to maturity (year) Time to maturity (year)

Effect of 0 on CDS premium, Regime 2 Effect of A} on CDS premium, Regime 2
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Time to maturiy (year) Time to maturity (year) Time to maturiy (year)

FIGURE 1. Impact of various parameters on the CDS premium under Kouegs
(2002) with two regimes: Regime 1 (First Row) and Regime Z¢8d Row)

we have
Ei |:e—a7'+bX7{; JT:| — Ez

1

Ez —ar+bX7 . J|LH

4
_ Z bis oV (b—era) pk 0 UiV
k=1

) e+ b
- n
+ bopeV L (b=0k,a) ’ eYr(b—ek a)hkZ 22
Z 2k 0 Z:: ( 70) 7722 + b
Zb4ke Hemeneng o)
The result follows by plugglng the above equation into (5.1) !

6. NUMERICAL EXAMPLES

In this section, we assume that the model parameters arertlagsriori with the intention
to illustrate the parameter effect on the prices of CDS arfautable equity options.

6.1. CDS. In this subsection, we shall study the impact of the regimigebing and jump-
diffusion components ok, to the CDS premium. The subsequent numerical studies are per
formed according to the base case parameters in Table 1. Fabla 1, it is clear that Regime

1 indicates the regime under whicty has both high volatility and infrequent jumps with big
jump sizes, whereas in Regin2e X; has small volatility and relatively frequent jumps with
moderate jump sizes.
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Effect of interest rate on CDS premium, Regime 1 Effect of interest rate on CDS premium, Regime 2
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FIGURE 2. Impact of interest rate on the CDS premium under Kou pso¢2302) with
two regimes: Regime 1 (Left) and Regime 2 (Right)

Effect of regime-switching on CDS premium: BM case Effect of regime-switching on P‘[I>T], i=1,2 premium: BM case
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FIGURE 3. Impact of regime-switching on the CDS premium under Briewwnmotion
with two regimes: CDS premium (Left) and Survival Probapi(iRight)

Effect of regime-switching on CDS premium: Jump Case Effect of regime-switching on survival probability: Jump Case
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FIGURE 4. Impact of regime-switching to the CDS premium under Kd20@) process
with two regimes(c{X = o5 = 0.2) : CDS premium (Left) and Survival Probability
(Right)

Figure 1 summarizes the impact of recovery rate, diffusiolawtdity, and the jump fre-
guency of the firm value proces§ to the CDS premium for the cases that the procésstarts
from high and low regimes. The general patterns of CDS cuavesn a close agreement with
those found in Chen and Kou (2009). Decreasing recoveryrtditas an upward-level effect on
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Effect of regime-switching on CDS premium
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FIGURE 5. Effects of switching intensity to the CDS premium underuKgrocess
(2002) with two regimes: The CDS curve denoted with reginmglicates that the initial
regime of the firm ig.
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FIGURE 6. Various shapes of the CDS curve under Kou process (2002w regimes

the CDS curve, since the amount issuer is required to pay default is greater; the CDS pre-
mium must then be higher to preclude any arbitrage oppdytubiffusion volatility indicates
the volatile behavior of the firm and thus higf¥, i = 1, 2, would imply higher CDS premium.
Similar effects are observed in the case of higher jump &agies.

Another important factor that impacts the CDS premium isléwel of risk-free interest
rate. The interest rate effect on the CDS premium for Regitraesd 2 is displayed in Figure 2.
Higher interest rate leads to lower CDS premium. This is pest with the empirical studies
mentioned in Chen and Kou (2009).

To study the impact of the regime-switching factor to the Gid&nium, we turn to Figures
3 and 4, where the underlying process in Figure 3 is the Bramvmniotion alone and the process
in Figure 4 is the Kou process (2002). The general patteragifire-switching on the left-hand
sides of Figures 3 and 4 is that the introduction of regiméetwng pulls the CDS premium
in the Regimes 1 and 2 closer together, with the differendedsEn them diminishing as the
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maturity of CDS lengthens. In fact, their values convergéhtocommon value predicted in
Lemma 4.2. The reason behind the convergence of CDS preminoey Regimes 1 and 2
can be explained by the survival probability curves on tigatrhand sides of Figures 3 and
4. The effect of regime-switching elevates the survivabatality under the Regime 1 while

it decreases the survival probability under the Regime 2ghkli survival probability under

Regime 1 results in lowering its CDS premium, and the oppasipact occurs for the case of
Regime 2.

Figures 3 and 4 also indicate that the regime-switchingofalss more influence on the
medium maturities than the short maturities. In fact, Feggimdicates that the regime-switching
Brownian motion alone cannot produce the non-zero sham-teedit spreads, as predicted in
Lemma 4.1. All CDS curves are emanated from the origin wherfitm value is modeled by
the regime-switching Brownian motion alone. On the otherdhdigure 4 studies the case of
regime-switching factor with jumps under each regime, wiglaving the diffusion volatility
to be constant across both regimes. Figure 4 has an inteyediservation that the CDS pre-
mium at the near-zero maturity region coincides with thepgeuiiffusion process without any
regime-switching effect, other things equal. In summarguFes 3 and 4 serve as the visual
justification of Lemma 4.1.

Figure 5 studies the effect of switching intensity on the Gid&mnium. Figure 5 shows that
increasing the regime-switching intensity would resulthe CDS curves under initial Regimes
1 and 2 converging to a common value. The common value isgagccomputed in Lemma
4.2. Moreover, observe that when the regime-switchingnsitees are fixed, the CDS curves
under initial Regimes 1 and 2 also converge to a common valbeit at a lower speed for the
case of small switching intensities. We shall return to feseral pattern later when we study
the impact of the regime-switching intensities to the iraghvolatilities of defaultable European
options.

He et al. (2000) provide an in-depth empirical investigatim the general shapes of the
credit spread curves. By grouping the corporate bonds vatious maturities, they classify
various shapes that the credit spread curve can take urfteredt credit-ratings. Hence, it is
of great interest to investigate if the model proposed ig plaiper can generate the credit spread
curves taking similar shapes as those in He et al. (2000\r&i§ provides various shapes of the
CDS curves. On the first row of Figure 6, we recover the shap€®®& curves similar to those
found in Chen and Kou (2009). More specifically, the upwdogped CDS curve corresponds
to the CDS with a high credit-rating. Downward-sloped CD&ays the CDS with relatively
low credit-rating and hump-shaped CDS captures the CDS thédlcredit-rating that lies in
between.

In addition to the hump-shaped CDS curves, the study of Hé. g2800) indicates that
other shapes of the CDS curves can also be found, albeit reggeintly observed than the
hump-shaped curves. In particular, from the study of He .e{2000), it appears that credit
spread curve with medium credit ratings can also have trexted-hump shapes. Second row of
Figure 6 displays the CDS curve with an inverted-hump shapesse inverted-hump shapes are
generated from the asymmetric regime-switching inteesitMore specifically, by increasing
the switching intensity of Regime 4, the firm value process leaves Regime 1 more frequently
than it does in Regime 2. From the parameters in Table 1, Regirefers to the state of which
firm has a relatively lower total volatility. With; > g2, the firm spends more time on average
in a lower volatility environment than it does in a higheraitlity region. This results in a lower
CDS term structure, even when the firm was initially at thehhiglatility state (Regime 1) at
the inception of the CDS contract. Interestingly, the deytthe inverted-hump is determined
only by the regime-switching intensity of the Markov chain Higher the regime-switching
intensity of Regime 1g,, deeper the inverted-hump shape would result. This treessiato the
fact that the persistence of the firm in a particular regimeflaential to the medium part of the
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TABLE 2. Base case parameters: Kou (2002) Model

So [K[ Vo [T r [0 Jox[nf [n [pX [M oz [n? [ n? ]p? L
100 |90 [100 | 1 [ 0.05|0.05 04 10| 4 [04]05|01] 40| 40 | 0.6 30

TaBLE 3. Defaultable European call prices with varyiAgand L, respectively
(LT=Laplace Transform, MC=Monte Carlo): Kou model (2002)

(L = 30) p=05 p=1
K LT MC LT MC
50 | 52.3496| 52.3743| 53.2586| 53.2084
60 | 43.0395| 43.0833| 44.8539| 44.8087
70 | 33.9613| 33.9352| 37.2213| 37.1980
80 | 25.5212| 25.5580| 30.4963| 30.4254
90 | 18.1890| 18.1917| 24.7249| 24.7196
100 | 12.2968| 12.2479| 19.8787| 19.8668
120 | 4.8799 | 4.8658 | 12.6252| 12.6182

(K = 90) p=05 p=1
L LT MC LT MC
10 | 18.1894] 18.2062| 24.7249| 24.7147
30 | 18.1890| 18.1229| 24.7249| 24.6617
50 | 18.0799| 18.0637| 24.6979| 24.6470
70 | 15.9291| 15.9271| 23.2404| 23.1921

21

TABLE 4. Defaultable European call prices with varyipigkou model (2002)

s 0 0.1 0.2 0.3 0.4 05 0.6
14.5801 | 14.8855 | 15.4048 | 16.1484 | 17.0930 | 18.1890 | 19.3907
o] 0.7 0.8 0.9 1
20.6646 | 21.9381 | 23.3452 | 24.7249

CDS term structure. Intuitively, in addition to the presergdit condition of the firm, investors
also take their perception on the average time the firm sgayirthe present condition when
purchasing the CDS.

Similar results are also found in the work of Hatgioannided Retropoulos (2007).They
observe the inverted-hump shaped credit curves in the Earoporporate bond markets for the
corporate bonds with credit ratings between AA- and B. Thatldén inverted-hump shapes
is more pronounced in BB and B rating bonds. They argue tlestettomplex credit curves
cannot be generated by stochastic processes with consiatitity. To capture the stochastic
behavior of the credit spread dynamics, Hatgioannides atdpoulos (2007) model the credit
spread dynamics directly by means of a two-factor Longstatf Schwartz (1992) process.
They conclude that the role of the stochastic volatility icredit spread model results in better
fitting to the credit curves observed in the market. In thisgsawe provide one explanation
behind these complex CDS curves via the regime-switchingppdiffusion model.

6.2. Equity Options.

In this subsection, we shall study the effects of parametktise model without and with
regime switching to defaultable equity options through etioal examples. We investigate the
equity options under the case when bdfhand Z; take the form of the double-exponential
jump-diffusion processes. Observe that the choic&,dfiere is not a strict necessity. In fact,
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FIGURE 7. Effects of correlatiorp to the implied volatility of a defaultable European
call: Kou model (2002)
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FIGURE 8. Effects of various parameters to the implied volatilifyaaefaultable Euro-
pean call p = 0.5): Kou model (2002)

Z, can be any Lévy process and we just chogséo take the form of Kou process (2002) for
simplicity.
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Effect of time maturity on implied volatility, p=1
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FIGURE 9. Effects of time-to-maturity to the implied volatility @ defaultable Euro-
pean call: Kou model (2002)
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FIGURE 10. Effect ofox to CDS premium and the defaultable European call: CDS
(left) and defaultable European call (right) in Kou moded@2)

6.2.1. Without Regime switching. Unless otherwise stated, the numerical examples in this sub
section are performed in accordance to the parameters giveable 2° In Table 2, the pa-
rameters ofX; indicate its dominant role in the equity process. This isdabas the firm value
should have a critical influence on its equity value. The jwsizes induced by, are bigger
than those induced b¥;. This can be reasoned as jumps fréimrepresent corporate restruc-
turing or change of its credit rating, whereas jumps frégpdenote the sudden change of the
investor’s preference to the equity due to some non-firmigpdactors.

Table 3 provides the prices of the defaultable Europeanva#til various values of strike
price K and default barrief.. The computations are done by both the numerical Lapla@-inv
sion of the result in Theorem 5.1 and by the Monte Carlo sitiaria° The closeness in values

90Observe that the drift ter¥ is left unspecified. It is uniquely determined by (2.15).

10The Monte Carlo simulation in this paper are done by takibg)00 sample paths, simulating on the jump
times. Simulating on jump times instead of regular time stepkes use of the concept of Brownian bridge and the
first-passage-time density function of the Brownian matiae Chapter 5 of Cont and Tankov (2004) for details
of this approach.
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TABLE 5. Base case parameters: Kou (2002) Model with two regimes

So [ K| Vo [T] v |0 |of [y [mis | pi [ M [of |nfi [0t [ pf [M ]| L
100 {90100 1|0.05{005/04]| 10| 4 {04]05]|0.1]|40 |40 (06| 3 |30
1)5( Ué( 775(1 775(2 p§ )\5( oy | My | M | D5 | A | @1 | @
005/01]20|10(04| 1 |01]60 |60 (04| 4 [05]0.5

by these two methods delineates the strength of the Laplansform technique as the values
can be computed within few seconds.

Table 4 captures the effect pfto the values of call options. It shows that increasirttas
a positive effect on the value of the call option. More spealfy, higherp implies the greater
impact of the firm’s default on its equity value. Equivalgntive can find the positive effect
of p to option prices from Figure 7. Implied volatilities in Figu7 increase in level as the
correlation factop increases. In addition, greatereduces the curvature of implied volatility
while it increases the negative skewness. This can be eeuldy the fact thap provides a
direct linkage between the firm’s credit condition and itasiggvalue. Since highes increases
the impact of the default nature of the firm on its equity, leigh induces investors’ demand
to cover their short positions by means of longing the inHtieney calls. Consequently, the
price of the in-the-money call (equivalently, out-of-thr@ney put) is higher than that of the
out-of-the-money call (in-the-money put). This price diffntial between in-the-money and
out-of-the-money options intensifies as the dependen@eEer increases.

Figure 8 displays the effects of various parameterX pdnd Z, to the implied volatilities.
Increase in jump intensities in bofty, and Z; elevates the levels of the implied volatility. The
effect is particularly dominant for the case &f, as increase in* implies higher frequency
of jumps, which in turn implies higher probability of defauSincep® denotes the probability
of an upward jump, diminishing value pf implies higher chance aoX, jumping downward,
thereby increasing the probability of hitting the defawdtiter L. The resulting effect elevates
the implied volatilities, with greater gap at in-the-momegion. Interestingly enough, the effect
of p? has a rather sluggish effect on the implied volatility. Tisislue to the fact that jump
sizes fromZ, are small relative to that fronX; and that jumps irZ;, contribute nothing to the
probability of default inX;, due to independent assumption 8pandZ,. Finally, the impacts
of o* ando? on the implied volatility are greater than that of their jumgmponents. This
can be explained as follows. The total variance of the jurfipgion process is equal to the
sum of the variance of its volatility and jump components.thWiigher values o~ or o
contributes more to the total variance of the process thainjtimp counterparts. As the role of
jump component diminishes, the high volatility processdmees closer to the case of geometric
Brownian motion. Therefore, the implied volatility curviéstten as>* ando? increase.

Figure 9 shows the effect of time-to-maturity on the imphedatilities. Implied volatility
curve flattens as the maturity of the option lengthens. Tis iagreement to the actual im-
plied volatility curve observed in the market (see, e.gntGmd Tankov (2004)). However, as
discussed in Cont and Tankov (2004), the phenomenon of@ahplatility curve flattening is
particularly pronounced for most of the Lévy processesoantered in the finance literature.
We shall return to this issue later when we study the effectaturity on the regime-switching
jump-diffusion processes.

Figure 10 depicts the relationship between the CDS spredthanimplied volatility of the
equity options. Increase in* results in both increase in CDS premium and implied votgtili
of its equity options. This is consistent with the realitathlistressed firm usually has both high
CDS premium and high implied volatility on its equity optias investors become exceedingly
concerned with high possibility of default in the near fetur
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TABLE 6. Defaultable European call prices with varyiigand L: Kou model with two
regimes. (LT=Laplace Transform, MC=Monte Carlo)

(L =30, p=0.5) Regime 1 Regime 2
K LT MC LT MC
50 52.4063| 52.4602| 52.3704| 52.3616
60 43.0150| 43.0710| 42.9596| 42.9490
70 33.8436/| 33.8720| 33.4950| 33.4470
80 25.2278| 25.2891| 24.2984| 24.2596
90 17.6605| 17.6096| 15.7826| 15.7468
100 11.5841| 11.5500| 8.8754 | 8.9143
120 4.2256 | 4.2862 | 1.8643 | 1.8652

(K =90, p=0.5) Regime 1 Regime 2
L LT MC LT MC
10 17.6608| 17.7218| 15.7827| 15.8179
30 17.6605| 17.6669| 15.7826| 15.7797
50 17.5804| 17.5100| 15.7698| 15.7346
70 15.8148| 15.8886| 15.2496| 15.2491

Regime-switcing effect on European call Regime-switching effect on implied volatility, p=0.5,T=1, q1:q2:0.5
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FIGURE 11. Regime-switching effect on the implied volatility offdaltable European
call: Implied volatility (Left) and defaultable Europeaalic(Right)

6.2.2. Regime Switching case. As illustrated in Konikov and Madan (2002), the independent
and stationary increments of Lévy processes make it ififlexn capturing the implied volatility
curve across different maturities. In particular, the by of the independent increments of
Lévy processes makes the implied volatility be deterntimizith respect to time (Cont and
Tankov, 2004), a feature that is in strong disagreement reiltity. For this reason, we shall
now proceed to study the equity options with an inclusionegfime-switching effect. For
simplicity, we shall only focus on the case thatis also the Kou process (2002) under each
regime. The parameters faf; andZ, for the case of two regimes are given in Table 5. In Table
5, it is clear that the values of, and Z; in Regimel indicate that Regimé has higher total
volatility than Regime 2.

Similar to the last subsection, we compute the defaultapteons under various values
of strike price K and default barried, by means of the Laplace transform and Monte Carlo
simulation for high and low regimes. Observe that we havelainpatterns on the equity
options with respect t& andL as those shown in Table 3. In particular, higlhemcreases the
chance of the defaultable European call to be exercisedfetlite-money, resulting in its lower
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Effect of regime-switching intensities on implied volatility,p=0.5, T=1
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FIGURE 12. Effect on switching intensity for initial Regimes 1 (gblines) and initial
Regime 2 (dotted lines), with same switching intensities,g; = ¢o.
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FIGURE 13. Effectofp;’,i = 1,2, onthe skewness of implied volatility & 1): Initial
Regime 1 (Left) and Initial Regime 2 (Right)

current value. As the defaultable European call can be settrealown-and-out call, increasing
the level of L would certainly decrease the value of the options.

Another interesting aspect of regime-switching from thewf Table 3 is the difference
between the prices under Regimes 1 and 2 with respect to tiespmoneyness. When the
option is deep in-the-money, the prices under Regimes 1 difte2in less than 1 decimal point.
As option moves from deep in-the-money to deep out-of-tloeey, the difference between
high and low regimes gains its momentum gradually. The Visffact is displayed on the
left-hand side of Figure 11.

To study the regime-switching effect to the implied volatjlwe now turn our focus to the
right-hand side of Figure 11. The presence of Markov chaimcreases the curvature of the
implied volatility curve, comparing to the case with no megiswitching. This phenomenon
is parallel to the case of the continuous-time stochastiatity models. The presence of the
stochastic volatility factor introduces the persistentdatal volatility of the process. This
persistence in turn slows down the decay in the curvaturieenimplied volatility curve.
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FIGURE 14. Effect of time-to-maturity on implied volatilityo(= 1): Initial Regime 1
(Left) and Initial Regime 2 (Right)
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FIGURE 15. Effects of correlation on the implied volatility of defaultable European
call in Kou model (2002): Initial Regime 1 (First row) and tial Regime 2 (Second
row)

Figure 12 captures the role of regime-switching intensityhte implied volatility curve.
In Figure 12, increasing the regime-switching intensibaags the implied volatilities of the
Regimes 1 and 2 together. More specifically, the solid lirggasent the implied volatilities
under initial Regime 1, whereas the dash lines representithked volatilities under initial
Regime 2, with different regime-switching intensities.€lihtroduction of the regime-switching
factor results in lowering the implied volatility of Regimewhile elevating the implied volatil-
ity of Regime 2. As switching intensity dictates the avertigee of the process to stay in one
regime, speeding up the switching intensity on both regiresslts in Regimes 1 and 2 con-
verge to a common regime. Consequently, the differencearofition values under Regimes
1 and 2 reduces. When the difference in prices of high and éginre diminishes, so do their
corresponding implied volatilities.
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FIGURE 16. Effects of default feature on the implied volatility affdultable European
call (L = 50): Initial Regime 1 (First row) and initial Regime 2 (Secormv)

Parallel to our study on the CDS curve, we would like to iniggge the combined effects
of the jump-diffusion and regime-switching factors on tlgeigéy options. From Bollen (1998),
we know that option pricing under the regime-switching Bnian motion can also generate
volatility smile. This certainly begs a question on the irtigeof regime-switching and jump-
diffusion components to the shape of the implied volatdilyve. Figure 13 studies the shapes of
implied volatility curve under the case of regime-switanhBrownian motion with and without
the jump components. In both Regimes 1 and 2, it appearsit@aegime-switching Brownian
motion produces symmetric smiles, whereas the inclusigarop components introduces the
negative skewness in volatility smile. In fact, the negaskewness is more pronounced as the
probability of upper jumps ok (i.e. pX, i = 1,2) decreases. From Cont and Tankov (2004),
we know that the negative skewness of implied volatility tencaptured by the distribution
of downward jumps of the underlying process. The creatiothefsymmetric volatility smile
implies that regime-switching Brownian motion can prodfatdail distributions, i.e. excessive
kurtosis. However, the symmetry in volatility smile refle¢hat regime-switching Brownian
motion cannot create skewed distributions. Since negskie@ness is a common feature found
in the equity markets, it appears that regime-switchingaBrian motion alone is not flexible
enough to introduce skewness to the implied volatility.

Time effect on the shape of implied volatility is one impaottéeature to investigate when
pricing options under any stochastic process. In the pusvsubsection, we see that implied
volatility flattens as the maturity of the option increasésgure 14 studies the effect of the
option’s maturity on the implied volatility on Regimes 1 a2dWhile we see that the volatility
curve flattens as the maturity elongates, it appears thaspgked of flattening seems to be
slower. AtT = 3, smile effect remains highly visible in comparison to the@t7 = 0.25.

In addition, the implied volatility curves with initial Ré@ges 1 and 2 behave differently with
increasing maturities. In Regime 1, the implied volatilityrve moves downward as it flattens.
In Regime 2, the implied volatility curve elevates as itsvature decreases. This effect is
strikingly similar to the case when we study the effect ofithplied volatility curve with respect
to changing regime-switching intensities. This is not aem@incidence but is a consequence of
long-term behavior of an ergodic Markov chain. As discussdebuque et al. (2000), the long-
term behavior of the ergodic Markov chain is governed cotepleby its invariant distribution,
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which can be expressed as the products of the switchingsitiesy; and the timel’. This
indicates that increasing the regime-switching inteasitr speeding up the time has the same
impact as the invariant distribution of the underlying Marlkchain. Therefore, it is no surprise
that the implied volatilities of Regimes 1 and 2 converge tmaamon implied volatility curve
asT lengthens, as captured in Figure 14.

Figure 15 studies the correlation effect &f on the equity options. Similar to the case
of Kou process (2002) in the previous subsection, highleas an upward shift to the implied
volatility across Regimes 1 and 2. Increase mugments the negative skewness of the implied
volatility curve across Regimes 1 and 2. As explained in theecof no regime-switch, the
negative skewness reflects the credit nature of the equiz.dépendence paramegecontrols
the degree of the firm’s credit exposure to equity. Sinceri@ied volatility of the put option
with the same strike and maturity coincides that of the cptlam, we can also interpret the
increase in negative skewness through the eyes of the dupitiers. To hedge against the
possibility of the firm’s default before the option’s matyriequity holders can purchase the
deep out-of-the-money put to lock in their loss in the casadvlerse situations. This increases
the demand of the out-of-the-money puts than that of the@artoney puts, thereby augmenting
negative skewness of the implied volatility curve.

Figure 16 compares the difference of implied volatilitywes between the defaultable and
non-defaultable options. In Figure 16, the implied voigtiturves indicated by “No Default”
mean that they are generated without taking the assumpitidefault feature into account. For
the low volatility case, the implied volatility curves of ‘@ault” and “No Default” are almost in-
distinguishable. In the higher volatility case, the diffiece between implied volatility curves of
“Default” and “No Default” becomes greater in in-the-momegion and the two curves remain
indistinguishable in at-the-money and out-of-the-moregyans. This is in the line with the im-
plied volatility curves of vanilla and down-and-out callsserved in the actual market. Lower
volatility implies that the firm is not in a volatile state atite probability of default is slim. In
the high volatility case, higher probability of default uéts in greater difference between the
non-defaultable and defaultable options, resulting ifed#ince in the implied volatility when
the options are currently in the money. When the option isetuily deep out-of-the-money, the
chance of exercising the option is slim, regardless of tHauliefeature, and hence the prices
of non-defaultable and defaultable optons have similareslresulting in overlapping implied
volatility curves in that region.

7. CONCLUSION

With an increasing evidence of the linkage between equityaedit aspects of a corporate
firm, we propose an extended version of the latent firm valudahfirst proposed by Kijima
et al. (2009) so as to include jumps and regime-switchingadyins. As with the original
latent firm value model, the extended latent model assuna¢ghté equity and actual firm value
processes are correlated. Numerical examples on the CD&ymes confirm our intuition that
jumps and regime-switching dynamics can generate mornstiearedit spread, especially near
the short and median parts of the term structure.

Following the work of Kijima et al. (2009), we assume that #wual firm value is not
directly observable to the investors. Different from thanfiework of Kijima et al. (2009),
equity process comes as an input to our framework instead afugput. We use the firm’s
equity as means to extract information on the actual firmezaltihe high liquidity of equity
market provides great convenience in analyzing the effethe creditworthiness of the firm
on its securities. Equity serves as a correlated markereproof the actual firm value in our
framework. The correlation captures the impact of the ¢igatality of the actual firm value on
its equity. Moreover, the definition of the equity as the surthe actual firm value and another
independent stochastic process allows us to include theridependent factor under the joint
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framework. Once the latent information of the firm is exteactrom the equity market data, we
illustrate the use of our equity-credit model via pricing firm’s credit default swap (CDS) and
equity option. The richness of the framework does not rettueenodel’s tractability as we can
price the defaultable European option via the Laplace toamsefficiently.

On atechnical level, this paper provides an extensive tigagson of the dominant effects of
the jump-diffusion and the regime-switching factors. Mepecifically, we prove analytically
that regime-switching Brownian motion alone does not e¢a¢ non-zero credit spread as the
maturity of the CDS approaches(oLévy jump factor plays a dominant role of the CDS spread
near zero maturity. On the other hand, in the longer timezooriwe see that the CDS spreads
of the high and low regimes come closer together. These wits@ns confirm our intuition
that Lévy jumps explain the short term behavior whereasmegswitching factor captures the
long-run effect of CDS dynamics. Numerical studies also alestrate the presence of the
regime-switching results in greater flexibility of genéngtdifferent credit spread curves, in
addition to those generated by jump-diffusion alone.

Regime-switching factor also plays a significant role ineél@ity option with default fea-
ture. In particular, the implied volatility curve againstilse price of the high regime decreases
while the implied volatility curve under the low regime ieases as the switching-intensity or
the maturity of the option lengthens. The symmetric smileegated by the regime-switching
Brownian motion tells us that regime-switching Browniantiao is not flexible enough in
capturing the skewness of the implied volatility curve,exsglly those under short maturities.
Cross comparison of the CDS curve against implied volgiilibvides a strong linkage of high
volatility of the firm value that creates an upward momentarhath the CDS and the implied
volatility curve. Finally, the versatility of the Laplaceahsform becomes particularly apparent
when pricing under the case of randomized default bariiecest requires no extra effort than
the case of constant default barrier.

For the illustration purpose, this paper only considerspttieing of CDS and defaultable
equity option under the joint framework. The pricing of atlsecurities issued by a firm using
our model deserves further investigation. For exampleptiveng of equity default swap, which
has both the equity and credit components of a firm, is theestibf great interest. This issue
will be addressed in the future work.
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A. PROOFs

A.1. Proof of Lemma 2.1. Let ZU) be a Lévy process with the triplf(t, j) +(b?, (o Z, (v?)
and Lévy exponertt;Z(z), where

77 (2) = 2g(t, ) + w7 (C2).

Define the procesg, by dZ, = dZ\’. Then, we see that

Efexp(Z)|F)] = exp(Z.)E; {e; exp < / t dZs) 14@}

= exp(Zy)e) exp ((Q+ {F77(1) }aiag) (t — u)) 1a,

wherel, = (1,...,1)T € R% Hence,V; = exp(Z;) is an{F,}-martingale if and only if it
holds that

e; exp ((Q+ {77 (D}diag) (t —w)) 1g=1, Vu<t.

We claim that the above condition is equivalenttd (1) = 0 for all t andj.
Suppose first that, for af,

752 (1) = 0.
As Q has an eigenvalue of zero with the eigenvedigiwe seeQ™1, = 0, for n > 1, whence
exp ((Q + {F;7(1) Ydiag) (t — u)) 14 = exp (Q(t — u)) 14 = 1,.

Therefore, the above condition holds.
Conversely, suppose that the above condition holds. Then

u—t

= ey, (Q+ {77(1) }diag) 1a
= Ruy2(1).

0 = lime) ﬁ lexp ((Q + {F;7 (1) }diag) (t —u)) — 14 1

Since it must hold for any;, we haver;Z(1) for all j and¢, proving the claim.

A.2. Proof of Corollary 2.1. We shall only prove (2.12), as (2.13) follows analogouslgfibe

aij(0,t) = E[exp (k) (Ot +7X0) Ligmgy | Jo =i
dP

= E P =P (K(Jt)(C)t +9X) Lgmgy | Jo =i

= E [GXP (CZi +7vXy) Lig=j} | Jo = Z} .
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Up too(h) terms, we have

CLZ'j(O, t+ h)

t+h t+h
= E{GXP </ <dZs+/ WdXs);Jt:J'aJtJrh:j‘Jo:Z}
0 0

t+h t+h
+ZE{exp (/ CdZs+/ ’YdXs)§Jt:k>Jt+h:j|‘]0:i}
0 0

ki

t t
= E {exp (/ (dZ, +/ ’des) L=
0 0

t+h t+h
X exp (/ ¢z +/ vdXs(”) L= g =p | Jo = 2}
t t

t t
+Y E [exp ( /0 ¢dZ, + /0 vdXS) L=k}

k#j

t+h t+h
X exp </ CdZs(k) + / ’}/dXs(k)) 1{Jt:k}1{Jt+h:j} ‘ JO = 7,:|
t t

t t
= E {exp </ (dZ, +/ 'des) Lig=y | Jo= 2}
0 0

t+h ‘ t+h '
xE [(1 + g;;h) exp ( / ¢dzY) + / vdXS(J)) | J = j}
t t

t t
+ZE [exp (/0 ¢dZ, +/0 /YdXs) Lig=iy | Jo = Z}

k#j

t+h t+h
xE [qkjhexp ( / ¢dz® + / vdXé’“)) | g = k} =K
t t

GivenJ; =k, Xt(k) andZt(k) are independent and we then have

t t
K = E {eXp (/ ¢dZ, +/ ’des) Lij=iy | Jo= 2}
0 0

B t+h ' t+h ]
x (1 + q;;h)E [exp </ ¢dzY +/ dey)) | J, :]}
t t

t t
+ZE [exp </0 CdZs +/0 VdXs) 1{Jt=k’} | Jo = Z:|

ki

t t
X Qi hIE {exp ( / ¢dz® + / deS(k)) | J, = k}
0 0

= a;;(0,8)(1+ gjzh) exp ((k7(¢) + K7 (7))h) + Z a(t, T)qesh exp ((57 () + k7t (7))h)
k#j
= a;(0,t)exp ((7(¢) + KX (7)h) + h Z aix(0, t)grj exp ((k7(C) + ki (7))h)

keE



34 MASAAKI KIJIMA AND CHI CHUNG SIU

where we have made use of the independent increments of &tkand Z) on the third
equality and Laplace exponents f&t/) andZ %) on the fourth equality. It follows that

aij (0, t+ h) - aij(O, t) al-j(t T)

) = =5 (e (6 (O + 5 ())R) = 1)

+ a0, t)gij exp ((KZ(C) + my (V)h),

keE

which implies
0
575 (0.) = a (0. 0(R7 () + k(1) + D aiel0, ).
keE
With the matrix formulatior¥(0,¢) = {a;;(0, 1) };;, andQ = {¢; }:;, we then have

0 z X
a_T]_:‘(o t) =F(0,1) (Q + {F&j (€) + K (7)}diag) :

SinceF'(0,0) = I, the matrix equation is solved as

F(0,1) = exp ((Q+ {x7(¢) + 17 (7) baiag) t) -

A.3. Proof of Lemma 4.1. SinceJ, is non-explosive, there exists only finite number of regime
switches in any compact interval. Define

x(h) = inf{t € [0, h], J; # i},

as the first time that the Markov chaih makes its first jump. Together with the assumption
that the probability of the jump-diffusion and the Markovaai jumping together is zero, we
have, up taw(h) term,

1
EPi[T< h]
L (I=guh) & X : 0)
= Tg P(N;' (i) = n)P; og;gf((h)Xs < -z
Al ah Y PN () = | inf XY < — h
(A1) h;qg g i (G) =n) JL(hl)gKh W < —z| +o(h)

0<s<x(h)

= hZIP’Nh =n) 2{ inf X()<—x\]\7}f((i):n}

g Z P(NE(i) = n)P, [ inf X0 < —o|NX(5) = n}

0<s<x(h)

+quZPNh =n) j[ inf XY < —z|NX(j) = n]+o(h)

FerR— x(h)<s<h

The first part of equation (A.1) represents the default tauotefore the first regime-switch
while the second component denotes the probability of diefawccur after the first regime-
switch.

Denotev;(h) as the first jump time of Poisson proceggs (i). Observe that
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% > PN (i) = n)P; { inf X9 < —z|N;¥(i) = n}

p— 0<s<x(h)
e M h
= P; { inf (bfs%—a;XWSX) < —x
h 0<s<x(h)
A e NP, | inf (bXs + XWX + Y 1m0 ) < —x
i 0<s<x(h) i i Vs i {s=29i(h)}

0<s<x(h)

X e AR )\Xh
= Z P, { inf (bs + o W+ NI (YY) < —x|N;¥ (1) = n} :

FoIIowmg the arguments in Ruf and Scherer (2011), we have

lim — ZIPNh —nIP’[ inf X0 < —x|Nh()—n}:ViX((—oo,x]).

R0 h 0<s<x(h)

By similar arguments, we also have

i g X)) =n )P | i () « _2INX(§) =n| =
%?Olq“Z_:P(Nh (7) n)IP’Z{ inf X" < —z|N; (i) n} 0

0<s<x(h)
and
liquZ]ZP NX(j —nIP’j[ inf XU < a:|Nh()—n] = 0.

R|0 h)<s<h
i i — x(h)<

The result follows by recalling the definition of CDS premiamd L'Hopital’s rule, i.e.,

T —r
(A.2) lim cgf) — lim le(l — R) fo e " dP; (1 < t)
710 T10 lefoT Pi(r > 1)t

= (1 - R)rv*((—o0, 2]).
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