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Abstract. The (marginal) risk contribution is very useful for analysing the

concentration risk in a portfolio. However, it is difficult to estimate the risk

contributions for VaR and ES precisely, especially by the Monte Carlo simulation.

Against this difficulty, we applied the saddlepoint approximation to estimate the

distribution function, so that the difficulty of estimating the risk contributions

for VaR was dissolved. In this article we propose new estimation methods for ES

and the risk contributions for ES based on the conditional independence and the

saddlepoint approximation. Numerical studies confirm that the new methods are

much better than the existing ones.

Keywords: Value at Risk, Expected Shortfall, (marginal) risk contribution,

additivity of the risk, subfiltration approach, conditional independence, saddle-

point approximation.
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1 Introduction

The risk management of a portfolio consisting of many financial instruments is very im-

portant for the financial institutions. Its importance grows more and more in these days,

especially after the worldwide financial crisis. Since the risk management and the capital

allocation of the portfolio are based on the amounts of risks, or potential loss, estimated

quantitatively by some models, many studies have been done about the risk evaluation

methods and models.

One of the most important roles of the risk evaluation models is estimating the potential

loss of a portfolio adequately, and the estimated values are monitored and reported to the

investors periodically. Additionally, it is desirable that the models can catch the signs of the

disastrous crises in the early stage. And, another important role is the concentration risk

analysis of the portfolio, that is, measuring which part contributes much to the total risk in

the portfolio. Such an analysis will give us important informations about how to deal with

the risks and which measures to take first prior to others. The first step of the concentration

risk analysis is estimating the volumes of the risk of individual assets (or subportfolios), of

course, with taking the diversification effect into consideration. Some risk measures have

been proposed for the concentration risk analysis, however, it is very difficult to estimate

such risk measures precisely and robustly, especially by the Monte Carlo simulation, which

is often used in the practical risk evaluation models.

The (marginal) risk contribution is one of the risk measures useful for the concentration

risk analysis. It has the meaning that the sensitivity of the total risk of a portfolio to

an infinitesimal change in asset allocation. Litterman (1997) proposed the concept of this

sensitivity, pointing out its desirable property that the sum of the sensitivities of all assets is

equal to the overall risk of the portfolio if the sensitivities are well-defined. This property of

the risk contribution is called as the additivity in this article. Since Litterman (1997), various

research papers have addressed about the risk contributions, for example, Tasche (1999),

Hallerbach (2002) and Kalkbrener (2005). Now, the concept of the risk contribution advances

to a concept for the risk allocation, and it is called as the Euler allocation according to Tasche

(2007), in which many findings and practical usages are summarized briefly. However, the

robust and precise estimation for the risk contributions is difficult technically except for the

risk contributions for the standard deviation.

By the way, a saddlepoint approximation is well-known as an evaluation method of the
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contour integral in the complex domain, and is often used in engineering. In financial en-

gineering, Arvanitis and Gregory (1998) and Arvanitis et al.(1999) used the saddlepoint

approximation in order to build an analytical credit risk evaluation model. Their ideas were

extended by Martin et al.(2001a) to estimate the distribution function of the portfolio’s po-

tential loss under more realistic settings, and soon later, Martin et al. (2001b) derived an

approximated formula for the risk contribution of each asset to the portfolio’s VaR (Value

at Risk). Summing up and clearing up the above ideas theoretically, Muromachi (2004)

proposed a new framework of a risk evaluation model by assuming the conditional indepen-

dence and using the saddlepoint method, and called it as a hybrid method. He showed that

much more reliable estimates of the risk contributions for VaR and ES (Expected Shortfall)

could be obtained by the hybrid method than those obtained by the ordinary Monte Carlo

simulation.

However, according to our numerical results shown in this article, the estimates of ES and

risk contributions for ES are not so reliable than those of VaR and risk contributions for VaR

in the hybrid method. Since the ES is one of the coherent risk measures (see Artzner et al.

(1999), Acerbi and Tasche (2002), and so on), the precise and robust estimation of ES and

the risk contributions for ES is important for the theoretically desirable risk management,

therefore, we have been seeking more reliable estimation methods.

In this article, we propose new estimation methods for ES and the risk contributions

for ES. The proposed calculation methods are based on a universal mathematical relation

between VaR and ES, and uses a saddlepoint approximation in order to calculate them easily

and quickly.

This article is organized as follows. In Section 2 we show the generalized hybrid method

and some useful expressions; the approximated formulas for the conditional distribution and

the risk contributions for VaR and ES. And, in order to estimate ES and risk contributions

for ES, two methods are introduced; “old methods” proposed by Muromachi (2004) and “new

methods” proposed in this article. In Section 3, we explain how to apply the hybrid method

to the risk evaluation model by using an example, and present some numerical results and

compare the estimates by the old and new methods, and Section 4 concludes this article.
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2 Hybrid method: setting and estimation methods

This section describes the framework of what we call as the hybrid method in more general

setting than that described in Muromachi (2004). There exist two approaches for evaluating

the potential loss of a portfolio: the simulation approach, and the analytical approach. The

hybrid method uses both to calculate the potential loss of a portfolio. It is an extended

method of the conditionally independent default model proposed by Martin et al. (2001a).

2.1 The setting

We consider the filtered probability space (Ω,F , (Ft)t≥0, P ), where P is the physical prob-

ability measure. Suppose that there are n assets, and that the price of the j–th asset per

share or face value at time t is denoted by Xj(t). Here, t = 0 means the present, and the

risk horizon is T, T > 0. Consider a portfolio π, and aj denotes the holding amount of the

j–th asset in the portfolio. Then the time t price of the portfolio π is X(t) =
∑n

j=1 ajXj(t).

We use a “sub-filtration approach” called in credit risk modeling. Let wj(t), j = 1, . . . ,m,

denote the basic factors and let

W(t) = (w1(t), . . . , wm(t)), t ≥ 0.

A filtration Gt is defined as a filtration generated by the process W(t), that is, Gt =

σ(W(s), 0 ≤ s ≤ t) 1. Here, the basic factors are defined as stochastic variables such

that Xj(t|GT ), 0 ≤ t ≤ T, j = 1, · · · , n become conditionally independent when GT are

given. Here, the conditional independence with respect to GT means that Xj(t), 0 ≤ t ≤
T, j = 1, · · · , n are independent given GT . On the other hand, the filtration generated by

all the processes except for W(t) is denoted by Ht, and the filtration F is defined as the

minimum filtration including G ∪ H, i.e., Ft = Gt ∨Ht for any t ∈ R+.

Next, we define some statistics explicitly. Suppose that X is a stochastic variable which

shows the future price of a portfolio, and FX(x) denotes its distribution function, and fX(x)

is its density function if it exists. In this article, the 100α percentile of X, denoted by QX(α),

0 < α < 1, is defined by 2

QX(α) ≡ inf {x|FX(x) ≥ α} (1)

1We assume that all the filtrations satisfy the usual conditions in this article.
2Definition (1) is a general expression for the inverse function of the distribution function, which can be

denoted by F−1
X (α).
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and the VaR ( Value at Risk ) with the confidence level 100α % is defined by

VaRX(α) ≡ c − QX(1 − α) (2)

where c is the reference value, for example, today’s price of the portfolio. Moreover, the ES

(Expected Shortfall) with the confidence level 100α % is defined by

ESX(α) ≡ 1

1 − α

∫ 1

α
VaRX(p)dp. (3)

When FX(x) is continuous and strictly increasing in x, these can be expressed more easily.

That is, we obtain

QX(α) = {x|FX(x) = α} (4)

ESX(α) = c − TCEX(QX(1 − α)) (5)

where TCE (Tail Conditional Expectation) is defined by

TCEX(x) ≡ E [X|X ≤ x] . (6)

Rigidly speaking, these definitions are restricted in this article, and other definitions and

terms might be used in other articles 3. Hereafter, for simplicity, we assume that FX(x) is

continuous and strictly increasing in x.

2.2 Estimation of the density and the distribution functions

By assumption, since the conditional prices Xj(T |GT ), j = 1, · · · , n is conditionally inde-

pendent given GT , the conditional moment generating function MX(s|GT ) of X(T |GT ) =∑n
j=1 ajXj(T |GT ) is given by

MX(s|GT ) ≡ E
[
esX(T |GT )

]
= E

[
es

∑n

j=1
ajXj(T |GT )

]
=

n∏
j=1

E
[
esajXj(T |GT )

]
. (7)

Here, we implicitly assume that the conditional moment generating function MX(s|GT ) ex-

ists. Since MX(s|GT ) is the Laplace transformation 4 of the conditional density function

fX(u|GT ) of X(T |GT ), we obtain by the inverse Laplace transformation,

fX(x|GT ) =
1

2πi

∫ σ+i∞

σ−i∞
MX(s|GT )e−xsds =

1

2πi

∫ σ+i∞

σ−i∞
eKX(s|GT )−xsds (8)

3For example, some people call TCE defined by (6) as CVaR (Conditional Value at Risk), ES (Expected

Shortfall) or TVaR (Tail Value at Risk).
4The direction of the contour integral is inverse to the standard definition of the Laplace transformation.
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where KX(s|GT ) ≡ log MX(s|GT ) is the conditional cumulant generating function of X(T |GT ),

σ is the real value such that the integral in (8) exists, and the contour in (8) is parallel to

the imaginary axis in the complex domain.

In order to evaluate (8), we use the saddlepoint approximation method, which is very

famous in engineering science. In the saddlepoint method, the integral in the complex domain

is approximated by the contribution from the curvilinear integral near the saddlepoint. A

detailed description is available in texts on engineering science or statistical science such as

Jensen (1995). In this article, we adopt the saddlepoint approximation with an asymptotic

expansion derived in Daniels (1987). Using the approximation 5, we obtain from (8),

fX(x|GT ) ' eKX(s̄|GT )−s̄x√
2πK

(2)
X (s̄|GT )

[
1 +

1

8
λ(4)(s̄|GT ) − 5

24
λ2

(3)(s̄|GT )
]

(9)

where s̄ is the saddlepoint of JX(s|GT ) ≡ KX(s|GT ) − xs, which means dJX(s̄|GT )/ds = 0,

K
(n)
X (s|GT ) is the n–th order derivative of KX(s|GT ), and λ(r)(s|GT ) ≡ K

(r)
X (s|GT )/(K

(2)
X (s|GT ))r/2.

Since KX(s|GT ) is a convex function, the saddlepoint s̄ is unique and can be searched numer-

ically with ease. We refer to the approximated formula (9) as the first–order approximation,

and the formula obtained by ignoring the terms of λ(3)(s̄|GT ) and λ(4)(s̄|GT ) in (9) as the

zeroth–order approximation.

Integrating the density function fX(v|GT ) from v = −∞ to v = x, and using the sad-

dlepoint approximation method with an asymptotic expansion, we obtain the approximated

formula for the conditional distribution function as

FX(x|GT ) =
1

2πi

∫ σ+i∞

σ−i∞

MX(s|GT )e−xs

s
ds

' eKX(s̄|GT )−s̄x+ 1
2
ẑ2

[
{1 − Φ(ẑ)}

{
1 +

1

6
λ(3)(s̄|GT )ẑ3

+
(

1

24
λ(4)(s̄|GT )ẑ4 +

1

72
λ2

(3)(s̄|GT )ẑ6
)}

+φ(ẑ)
{
−1

6
λ(3)(s̄|GT )(ẑ2 − 1)

−
(

1

24
λ(4)(s̄|GT )(ẑ3 − ẑ) +

1

72
λ2

(3)(s̄|GT )(ẑ5 − ẑ3 + 3ẑ)
)}]

(10)

for x ≤ E[X(T |GT )], where ẑ ≡
√

s̄2K
(2)
X (s̄|GT ), and Φ(·) and φ(·) are the distribution and

density functions of the standard normal distribution, respectively 6. Corresponding to the
5According to Jensen (1995), there exist two approximation formulas: for the continuous variable and for

the discrete one. In this article we use the former because its form is much simpler.
6The approximated formula for x > E[X(T |GT )] is obtained by replacing λ(3)(s̄|GT ) with −λ(3)(s̄|GT ).
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Edgeworth expansion which is used to derive (9) and (10), the approximated formula (10)

is called as the second–order approximation, while the formula obtained by ignoring the

terms of λ(4)(s̄|GT ) and λ2
(3)(s̄|GT ) is called as the first–order approximation, and the formula

obtained by ignoring all λ(r)(s̄|GT ) terms is the zeroth–order approximation.

Since the approximated values for the conditional distribution, fX(x|GT ) and FX(x|GT ),

are obtained above, the approximated values for the unconditional distribution can be ob-

tained by using the chain rule of the expectation. That is, the unconditional density and

distribution functions of X(T ) are given by

fX(x) = E [fX(x|GT )] (11)

and

FX(x) = E [FX(x|GT )] . (12)

Here, we can replace fX(x|GT ) in (11) and FX(x|GT ) in (12) with the approximations (9)

and (10), respectively.

In summary, we obtain the approximated values of the unconditional distribution, fX(x)

and FX(x), by the following procedures:

(1) Generate many sample paths of the basic factors from t = 0 to t = T , {W(s), 0 ≤ s ≤
T}. The Monte Carlo simulation is a powerful candidate to generate sample paths,

however, other methods can be used.

(2) Evaluate fX(x|W(s), 0 ≤ s ≤ T ) and FX(x|W(s), 0 ≤ s ≤ T ) given W(s), 0 ≤ s ≤ T

approximately by using (9) and (10).

(3) Calculate the right hand sides of (11) and (12) by using all sample paths to obtain the

approximated values of fX(x) and FX(x).

When the density and the distribution functions are obtained, the VaRs with arbitrary

confidence levels can be calculated easily.

Whatever the joint distribution of the basic factors is, the Monte Carlo simulation can

be used in order to generate sample paths in Procedure (1), and then the calculation in

Procedure (3) can be done numerically. Thus, we refer to our method as hybrid, which means

the hybrid of the Monte Carlo simulation in Procedure (1) and the analytical approximation

formulas in Procedure (2).
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On the other hand, when the joint distribution is described as a combination of some

distributions such as the normal distributions and the χ2 distributions, we can apply the

numerical quadratures to take the expectation in Procedure (3). For example, when the

basic factors are normally distributed, the Gaussian quadratures can be used. In such cases,

the best sample paths generated in Procedure (1) are already known in order to make the

quadratures work most efficiently.

2.3 Estimation of the expected shortfall: old method

The method described in this subsection is derived from Studer (2001). Due to the assump-

tion that the distribution function of X is continuous and strictly increasing, we have

ESX(α) = c − TCEX(QX(1 − α)).

Therefore, we focus on estimating TCEX(T )(x), which is written as follows:

TCEX(T )(x) ≡ E[X(T )|X(T ) ≤ x] =
1

P{X(T ) ≤ x}

∫ x

−∞
vfX(T )(v)dv. (13)

Additionally assuming that X(T ) ≥ 0, a.s. and E[X(T )] > 0 7, from (13), we have

TCEX(T )(x) =
E[X(T )]

P{X(T ) ≤ x}
Fh(x) (14)

where Fh(x) is the distribution function of X(T ) under the equivalent probability measure

Ph, under which the density function of X(T ) is given by

hX(T )(x) ≡
xfX(T )(x)

E[X(T )]
.

Using the approximated formula (10) for Fh(x) in (14), we can obtain the approximated for-

mula for TCEX(T )(x). Since the moment generating function of X(T ) under the probability

measure Ph is given by Mh(x) = M ′
X(T )(x)/M ′

X(T )(0), the approximated formula for Fh(x)

can be calculated in the same way as (10) easily.

7These assumptions can be applied if X(T ) is finitely bounded below. When there exists a constant d

such that X(T ) ≥ d, a.s., we define Y (T ) ≡ X(T ) − d and then apply the following discussion to Y (T )

instead of X(T ).
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2.4 Risk contributions

In this subsection, we describe the risk contribution briefly. VaR and ES are used to measure

the overall risk of a portfolio in financial institutions in these days, but in order to understand

the risk profile of the portfolio in detail, it is necessary to know how much each asset (or

subportfolio) in the portfolio contributes to the total risk of the portfolio. One of the

common measures of this contribution is the sensitivity of the total risk of the portfolio

to an infinitesimal change in asset allocation. From this point of view, various researchers

studied about the properties of the sensitivity, for example, Litterman (1997), Tasche (1999)

and Hallerbach (2002), Kalkbrener (2005), and so on.

Let Rp be a risk measure of a portfolio, for example, the standard deviation, VaRs and

ESs. The risk contribution of the j-th asset, hereafter denoted by RCj, is defined as the

sensitivity to an infinitesimal change of the holding amount of the j–th asset in the portfolio

(∂Rp/∂aj), multiplied by the holding amount (aj), that is,

RCj ≡ aj
∂Rp

∂aj

.

Notice that ∂Rp/∂aj does not always exist. However, if ∂Rp/∂aj exists, and additionally

if the risk measure Rp satisfies the first–order positive homogeneity 8, then the following

equation

n∑
j=1

RCj = Rp (15)

is always satisfied. Equation (15) is directly derived by the Euler’s theorem for the homoge-

neous function, therefore, its equality is guaranteed mathematically.

Previous studies show clear expressions of risk contributions for some risk measures such

as the standard deviation, VaRs and ESs. Some of them are shown below. See Tasche (1999)

in detail for the derivation and the necessary conditions. Soppose X(T ) =
∑n

j=1 ajXj(T ).

For example, the risk contribution of the j-th asset for the standard deviation is given by

RCSD
j ≡ aj

∂SDX(T )

∂aj

= aj
Cov(X(T ), Xj(T ))

SDX(T )

8A function f is called as n-th order positive homogeneous when

f(λa1, · · · , λam) = λnf(a1, · · · , am), λ > 0

is satisfied.
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if SDX(T ) > 0, where SDX(T ) is the standard deviation of X(T ) and Cov(X(T ), Xj(T )) is

the covariance between X(T ) and Xj(T ). Notice that RCSD
j is given as a simple form. On

the other hand, the risk contribution of the j-th asset for the VaR with confidence level α is

given by

RCV aR
j (α) ≡ aj

∂VaRX(T )(α)

∂aj

= aj

[
∂c

∂aj

−
∂QX(T )(1 − α)

∂aj

]

= aj
∂c

∂aj

− ajE
[
Xj(T )|X(T ) = QX(T )(1 − α)

]
(16)

if it exists. Similarly, the risk contribution of the j-th asset for the ES with confidence level

α is given by

RCES
j (α) ≡ aj

∂ESX(T )(α)

∂aj

= aj
∂c

∂aj

− ajE
[
Xj(T )|X(T ) ≤ QX(T )(1 − α)

]
(17)

if it exists. For example, if the joint density function of Xj(T ), j = 1, · · · , n is continuous

and positive almost everywhere, and there exist arbitrary ordered moments for Xj(T ), j =

1, · · · , n, then, (16) and (17) are satisfied for all α ∈ (0, 1).

Consider the risk contribution for the VaR. The second term in (16) is difficult to calcu-

late because this conditional expectation must be taken on condition that the total future

price of the portfolio X(T ) is constant; in general, if all the future prices Xj(T ), j = 1, · · · , n
are not redundant, the conditional expectation is calculated on a (n − 1)-dimensional hy-

perplane in the n-dimensional space. As you see easily, it is very difficult to calculate the

expectation, especially by the Monte Carlo simulation. About the estimation by the Monte

Carlo simulation, see Glasserman (2005) 9. So, we use another method to estimate the risk

contribution.

2.5 Estimation of the risk contributions for VaR

Consider a VaR with the confidence level α, 0 < α < 1, in our conditionally independent

setting. Hereafter, for simplicity, we drop the argument (T ), which means the future time

T , from many stochastic variables. For example, VaRX(α) means VaRX(T )(α). Given GT ,

the conditional distribution function is given by

FX(x|GT ) =
1

2πi

∫ σ+i∞

σ−i∞

eKX(s|GT )−sx

s
ds

9According to Glasserman (2005), the Monte Carlo simulation with importance sampling techniques is a

hopeful method.
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where the contour of the integral is parallel to the imaginary axis and runs to the right of

the origin if the pole should be avoided. Then, the unconditional distribution function is

given by

FX(x) = E

[
1

2πi

∫ σ+i∞

σ−i∞

eKX(s|GT )−sx

s
ds

]
. (18)

Differentiating (18) with respect to aj, j = 1, . . . , n and assuming the exchangeability be-

tween the differentiation and the integration, we have

∂

∂aj

FX(x) = E

[
1

2πi

∫ σ+i∞

σ−i∞

{
∂KX(s|GT )

∂aj

− s
∂x

∂aj

}
eKX(s|GT )−sx

s
ds

]
. (19)

Keeping FX(x) constant in (19), we obtain the contribution 10 of the j-th asset to α–percentile

QX(α), denoted by RCQX
j (α), as

RCQX
j (α) ≡ aj

∂QX(α)

∂aj

= aj

E

[∫ σ+i∞

σ−i∞

∂KX(s|GT )

∂aj

eKX(s|GT )−sQX(α)

s
ds

]

E
[∫ σ+i∞

σ−i∞
eKX(s|GT )−sQX(α)ds

]

= aj

E

[
1

2πi

∫ σ+i∞

σ−i∞

∂KX(s|GT )

∂aj

eKX(s|GT )−sQX(α)

s
ds

]
fX(QX(α))

. (20)

(20) is a slight modification of the expression derived by Martin et al. (2001b). Formally,

the integral in (20) can be obtained if KX(s) is replaced by

KM(s|GT ) ≡ KX(s|GT ) + log(∂KX(s|GT )/∂aj) − log s

in (8). Notice that KM(s|GT ) is not a cumulant generating function, however, the saddlepoint

approximation can be used to give an approximate in (20). Assuming that a reference value

c in (16) is differentiable with respect to aj, we obtain

RCV aR
j (α) =

∂c

∂aj

− aj

E

[
1

2πi

∫ σ+i∞

σ−i∞

∂KX(s|GT )

∂aj

eKX(s|GT )−sQX(α)

s
ds

]
fX(QX(α))

. (21)

2.6 Estimation of the risk contributions for ES: old method

Next, consider a ES with the confidence level α, 0 < α < 1. Here we assume that the

differentiation with respect to aj and the integration are exchangeable.

10Although QX(α) does not mean a risk directly, we call RCQX

j (α) a contribution to QX(α) simply.
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Given GT , since the tail conditional expectation TCEX(x|GT ) is given by (14), we have

∂

∂aj

TCEX(x) =
∂

∂aj

(
E[X(T )]

FX(x)
Fh(x)

)

=
1

FX(x)

[
Fh(x)E[Xj(T )] + E[X(T )]

∂Fh(x)

∂aj

]
− E[X(T )]Fh(x)

(FX(x))2

∂FX(x)

∂aj

.

Using the following relation

∂

∂aj

Fh(x) =
∂

∂aj

E[Fh(x|GT )] = E

[
1

2πi

∫ σ+i∞

σ−i∞

{
∂Kh(s|GT )

∂aj

− s
∂x

∂aj

}
eKh(s|GT )−sx

s
ds

]
,

where Kh(s|GT ) is the cumulant generationg function of X(T ) under Ph, we have

∂

∂aj

TCEX(x) =
Fh(x)E[Xj(T )]

FX(x)
+

E[X(T )]

FX(x)
E

[
1

2πi

∫ σ+i∞

σ−i∞

∂Kh(s|GT )

∂aj

eKh(s|GT )−sx

s
ds

]

−E[X(T )]

FX(x)

∂x

∂aj

E
[

1

2πi

∫ σ+i∞

σ−i∞
eKh(s|GT )−sxds

]
− E[X(T )]Fh(x)

(FX(x))2

∂FX(x)

∂aj

=
Fh(x)E[Xj(T )]

FX(x)
+

E[X(T )]

FX(x)
E

[
1

2πi

∫ σ+i∞

σ−i∞

∂Kh(s|GT )

∂aj

eKh(s|GT )−sx

s
ds

]

−xfX(x)

FX(x)

∂x

∂aj

− E[X(T )]Fh(x)

(FX(x))2

∂FX(x)

∂aj

.

Therefore, considering that FX(QX(1 − α)) = 1 − α is constant, we obtain

∂

∂aj

ESX(α) ≡ ∂

∂aj

TCEX(QX(1 − α))

∣∣∣∣∣
α=constant

=
Fh(QX(1 − α))E[Xj(T )]

α

+
E[X(T )]

α
E

[
1

2πi

∫ σ+i∞

σ−i∞

∂Kh(s|GT )

∂aj

eKh(s|GT )−sx

s
ds

]

−QX(1 − α)fX(QX(1 − α))

α

∂QX(1 − α)

∂aj

. (22)

The first and third terms in (22) are obtained before, and the second term is calculated by

the same method as that used in (20).

2.7 New estimation methods for ES and risk contribution for ES

As described in above, the explicit expression (22) of the risk contribution for ES is obtained.

However, due to our numerical results shown later, (22) does not give us so reliable estimates.

Moreover, in fact, (14) does not give us so reliable estimates, either. Therefore, we propose

other estimation methods of ES and the risk contribution for ES.
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The concept of the proposed methods is very simple. As described in (3), the following

relation

ESX(α) ≡ 1

1 − α

∫ 1

α
VaRX(p)dp (23)

exists. If we assume the exchangeability between the derivative with respect to aj and the

integral with respect to p, we obtain the following relation:

∂

∂aj

ESX(α) =
1

1 − α

∫ 1

α

∂VaRX(p)

∂aj

dp =
1

(1 − α)aj

∫ 1

α
RCV aR

j (p)dp. (24)

Since the numerical results shown below imply that our method gives good estimates for

VaRX(p) and RCV aR
j (α), it is expected that the combination of (24) and (21) would give us

good estimates for RCES
j (α). Similarly, the combination of (23) and the estimation method

of the distribution function FX(x) described in section 2.2 would give good estimates for

ESX(α).

3 Numerical examples

In this section we provide numerical examples for estimating VaR, ES, and their risk contri-

butions based on the distribution of the future value of a portfolio. Here, we always use the

second-order approximations in (9) and (10) when we use the hybrid method.

3.1 Applying the hybrid methods to KM model

In this subsection, we describe how to apply the hybrid method described in Section 2 to

the risk evaluation model. As an example of a risk evaluation model, we use Kijima and

Muromachi model (hereafter, abbreviated by KM Model). KM model is a synthetic risk

evaluation model of a portfolio, which means that the market and the credit risk can be

evaluated simultaneously and synthetically. We describe the model briefly in Appendix A.

All the notations here are the same in Appendix A.

Consider the situation where GT is given. Then, the sample paths of the hazard rates

hj(s), 0 ≤ s ≤ T, j = 1, · · · , n are determined uniquely, so that the conditional survival

probabilities up to time t, 0 ≤ t ≤ T under the physical probability measure P are given by

Sj(t|GT ) = exp{−Hj(0, t)}

14



where the cumulative hazard rate Hj(t, T ) is defined by

Hj(t, T ) ≡
∫ T

t
hj(s)ds.

Setting vj(T, TM
j ) in (A.10) as Xj(T |GT ) in (7), we have

E
[
esajXj(T |GT )

]
= Sj(t|GT )esajvS

j (T,T M
j ) + (1 − Sj(t|GT ))esajvD

j (T,T M
j )

where vS
j (T, TM

j ) is the time T price of the j-th defaultable discount bond when the bond sur-

vives at T , and vD
j (T, TM

j ) is the time T price when the bond defaults before T , respectively,

and from (A.10), they are given by

vS
j (T, TM

j ) = v0(T, TM
j )

[
δj + (1 − δj)Lj(T, TM

j )PT

{
τj > TM

j

}]
and

vD
j (T, TM

j ) = δjv0(T, TM
j ).

Given GT , the vector (r(T ), h1(T ), · · · , hn(T )) is uniquely determined, and from (A.10)

(vS
j (T, TM

j ), vD
j (T, TM

j )), j = 1, · · · , n are all determined. Therefore, we can calculate the

conditional moment generating function MX(s|GT ) easily, and we can apply the hybrid

method described in Section 2 to KM model.

Notice that given GT , we cannot determine vj(T, TM
j ) because of the lack of the in-

formation about 1{τj>T}, however, we can calculate MX(s|GT ) because we already obtain

Sj(t|GT ), vS
j (T, TM

j ) and vD
j (T, TM

j ). In this model, giving GT corresponds to generating a

random vector (r(T ), h1(T ), · · · , hn(T ), H1(0, T ), · · · , Hn(0, T )) according to the stochastic

model described in Appendix A as a scenario, and taking expectation with respect to GT ,

for example, in (11) and (12), corresponds to taking expectation with respect to all the

generated scenarios (r(T ), h1(T ), · · · , hn(T ), H1(0, T ), · · · , Hn(0, T )).

3.2 The setting for calculation

We calculate the risk of a bond portfolio at the risk horizon T = 1 year. The bond portfolio

consists of 100 corporate discount bonds (n = 100) with maturity 5 years and zero recovery

rates. Each bond is issued from different firms, and these bonds have various credit ratings;

Aaa-rated 10 bonds, Aa-rated 10 bonds, A-rated 10 bonds, Baa-rated 10 bonds, Ba-rated

15



30 bonds, and B-rated 30 bonds. The face values of bonds in Aaa, Aa, A, and Baa are

3, 6, 9, · · · , 30, and those in Ba and B are 1, 2, 3, · · · , 30.

The parameters used here are almost the same as those in Kijima and Muromachi (2000).

For example, parameters of the initial forward rate curves for credit ratings (including the

default-free bonds) and the stochastic differential equations describing the future changes of

the instantaneous default-free spot rate and hazard rates of individual bonds, the recovery

rates, and additionally, the initial term structures of the hazard rates under the physical

probability measure P . If you want to know the parameterization in this model and their

values used in the calculation, see Kijima and Muromachi (2000). Among the parameters, we

set the volatility of the default-free spot rate process σ0 = 0.01 (1%) 11, and the volatilities

of the hazard rate processes σj = 0, j = 1, · · · , n for this article.

We do a Monte Carlo simulation with 500,000 scenarios and calculate VaRs, ESs and

their risk contributions with many confidence levels. In detail, we create ten sets of 50,000

simulation runs, and estimate VaRs, ESs and their risk contributions with many confidence

levels in each set, and calculate the average and the standard deviations from the ten es-

timates. And we set the reference value for calculating VaRs and ESs, c = 1095.959, the

average value of the portfolio at the risk horizon T .

Hereafter, we use the estimates by the Monte Carlo simulation as reference values, and

compare the estimates by the hybrid method with the reference values. Especially, the

estimates of ESs and the risk contributions for ESs are calculated by two methods: the old

methods described before Section 2.6 and the new methods proposed in Section 2.7.

3.3 VaR and ES

First, we compare the VaRs of the future portfolio value X(T ). Figure 1 shows the curve

of VaR with many confidence levels estimated by the hybrid method (“VaR (IS-H)”) 12 and

the range within the standard deviation from the average calculated from ten sets of Monte

Carlo simulations each with 50,000 samples (left thin curve “VaR-SD” and right thin curve

“VaR+SD”). This figure shows that the estimated VaRs are within the standard deviation

range in all confidence levels, and in more detail, they are very close to the average of the

11Due to this setting, the joint density function of all bond prices at T becomes continuous and non-

negative theoretically.
12The notation “(IS-H)” means the hybrid method with importance sampling techniques. This is not a

simple hybrid method, however, more explanation is omitted in this article. See Muromachi (2004) in detail.
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Monte Carlo’s estimates. These results imply that the hybrid method gives us good estimates

for VaRs.

Figure 2 shows the curve of ES with many confidence levels estimated by the hybrid

method (“ES (IS-H)”) and the range within the standard deviation from the average cal-

culated from ten sets of Monte Carlo simulations each with 50,000 samples (left thin curve

“ES-SD” and right thin curve “ES+SD”). In this figure, the estimated ESs are out of the

standard deviation range under 99% confidence level, and in the higher confidence level the

estimated ESs are within the range. We think that this is partly because the accuracy of the

saddlepoint approximation increases with the confidence level, but partly because the stan-

dard deviation becomes larger. Therefore, these results imply that the old hybrid method

described in Section 2.3 does not give us so good estimates for ESs.

On the other hand, it seems that the new hybrid method described in Section 2.7 gives

us good estimates for ESs. Figure 3 shows the curve of ES with many confidence levels

estimated by the new hybrid method (“ES (from VaR)”) and the same range in Figure 2.

This figure shows that the estimated ESs are within the standard deviation range in all

confidence levels, and in more detail, they are close to, but a slightly larger than the average

of the Monte Carlo’s estimates. We think that this slight overestimation derives from the

concavity of the VaR curve in the high confidence level.

3.4 Additivity of risk contributions

Next, we check whether the estimated risk contributions satisfy the additivity precisely or

not. Here, the additivity means (15), that is, the sum of the risk contributions of all assets

is equal to the total risk of the portfolio.

Our numerical example shows that the differences between the VaRs and the sums of the

risk contributions of all assets are less than 0.0031 in all confidence levels, and the differences

become smaller with the increase of the confidence levels, for example, about 0.001 with 99%

confidence level 13. Therefore, we conclude that the estimated risk contributions for VaR by

13Notice that in order to calculate the differences mentioned above, we do not use the estimates by the

Monte Carlo simulation as the VaR estimates. This is because in the hybid method, we give a level (x,

x ∼ 1 × 103), and estimate the distribution function at the level (FX(x)) by the hybrid method. Therefore,

the difference is calculated between the level and the sum of the contributions RCQX

j in (20), that is,∑n
j=1 RCQX

j (FX(x)) − x. The numerical result show that the relative absolute value of the difference to x

is less than 3 × 10−6.
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the hybrid method satisfy the additivity with a significant precision for the practical use.

Based on the conclusion, in Figure 4, we compare (1) the difference between the estimated

VaR and ES, ESX(α)−VaRX(α), and (2) the sum of the differences between the estimated

risk contributions for VaRs and ESs,
∑n

j=1(RCES
j (α) − RCV aR

j (α)), for the old and new

methods, respectively. The figure shows that the risk contributions for ES estimated by the

old method (the sum is “total RC (IS-H)”) is consistent with the ESs estimated by the old

method denoted by “IS-H”, and that the risk contributions for ES estimated by the new

method (the sum is “total RC (from VaR)”) is consistent with the ESs estimated by the

new method denoted by “from VaR”, and that there exist significant differences between the

estimates by the two methods, “IS-H” and “from VaR”.

Moreover, we check the total sum of the risk conrtibutions for ES estimated by the new

method. Figure 5 shows the differences defined by “total RC(from VaR)” minus “from VaR”

in Figure 4. From this figure, we conclude that the risk contributions for ES estimated by

the new method satisfy the additivity with high precisions enough to use in practice.

In Figure 5, notice that the diffecences decrease down (the absolute values of the differ-

ences grow up) sharply in the region where the confidence level is slightly less than 100%.

This is because the estimated values of ES at the highest confidence level is not good. In

calculating the right hand side of (24), we use the simple trapezoidal method. Then, at the

highest confidence level, we use the following approximation:∫ 1

αH

RCV aR
j (p)dp ' (1 − αH) × RCES,old

j (αH) (25)

where αH is the “highest” confidence level in the calculation for (24) and RCES,old
j (αH)

is the risk contribution for ES at 100αH% estimated by the old method 14. Therefore,

as the confidence level approaches to 100%, the precision of the additivity becomes worse

sharply. In order to improve the precision, the VaRs and the risk contributions for VaR

should be calculated in higher confidence levels and used for estimating the ESs and the risk

contributions for ES.

14We cannot use the estimates by the new method to calculate the left hand side of (25) because no VaR

with the confidence level higher than αH is estimated in this calculation.
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4 Concluding remarks

In this article, we summarize the hybrid method for estimating VaR, ES and their risk

contributions generally by assuming the conditional independence and using the saddlepoint

approximation method. According to our numerical studies, the estimates of VaRs and the

risk contributions for VaRs by the hybrid method are much more reliable than the estimates

by the ordinary Monte Carlo simulations. However, we also show that the estimates of ESs in

Section 2.3 are not so much better that those by the ordinary Monte Carlo simulations, and

that the estimates of the risk contributions for ES in Section 2.6 are not so good and does

not satisfy the additivity so precisely. Therefore, we propose new methods for estimating

ESs and the risk contributions for ESs in Section 2.7, and confirm much improvements of

the new methods from the old methods numerically.

Since the concentration risk analysis becomes more important than before in financial in-

stitutions, more precise and robust estimation methods for the risk contributions are needed

in practice, and it is necessary to do much more researches about this topic. We think that

the combination of the saddlepoint approximation method and the conditional independent

risk evaluation model is one of the hopeful technical tools for the concentration risk analysis.

Appendix

A Kijima and Muromachi model

In this section we briefly describe the Kijima and Muromachi model (KM model), which is a

synthetic risk evaluation model for the market and credit risk of a portfolio. In this model,

the processes of the default-free interest rate and hazard rates for default are expressed as

stochastic differential equations (hereafter, abbreviated by SDE) with correlations. Based

on these basic equations, many sample paths are generated up to the risk horizon T by the

Monte Carlo simulation, and the future price of each asset at time T is evaluated by the

arbitrage-free pricing method on each sample path. From the future prices of all assets on all

sample paths, the distribution of the future value of the portfolio is constructed numerically.
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A.1 Basic equations

Consider a filtered probability space (Ω,F , (Ft)t≥0, P ) where P is the physical probability

measure, Ft is a filtration up to time t generated by all the stochastic processes described

below, and F = F∞. We assume that there exists a unique risk-neutral probability measure

P̃ . Here, we show a simple model described as an example in Kijima and Muromachi (2000).

Suppose that there are n different firms. The default-free instantaneous spot rate at time

t is r(t), and the hazard rate for default of the j–th firm at time t is hj(t), j = 1, · · · , n.

Under the physical probability measure P , these stochastic variables follow the SDEs

dr(t) = (b0(t) − a0r(t))dt + σ0dz0(t) (A.1)

dhj(t) = (bj(t) − ajhj(t))dt + σjdzj(t), j = 1, · · · , n (A.2)

where aj, σj, j = 0, · · · , n are positive constants, bj(t), j = 0, · · · , n are deterministic func-

tions of time t, and zj(t), j = 0, · · · , n are (n + 1)–dimensional standard Brownian motions

under P . (A.1) and (A.2) are the extended Vasicek model proposed by Hull and White

(1990).

Under the risk-neutral probability measure P̃ , the default-free instantaneous spot rate

at time t, r(t), follows the SDE

dr(t) = (φ(t) − a0r(t))dt + σ0dz̃0(t) (A.3)

where φ(t) is also a deterministic function of time t and z̃0(t) is a standard Brownian motion

under P̃ . (A.1) and (A.3) imply that the market price of risk for z0(t) is also a deterministic

function of time, given by λ(t) = (b0(t) − φ(t))/σ0.

Let P τ be the forward-neutral probability measure such that the forward price of a risky

asset at time t, denoted by Sτ (t) ≡ S(t)/v0(t, τ), becomes a martingale under P τ where S(t)

is the time t price of the risky asset and v0(t, T ), t ≤ T is the time t price of a default-free

discount bond with maturity T . Under P τ , the hazard rate at time t , denoted by hτ
j (t), is

assumed to be

hτ
j (t) = hj(t) + `j(t), j = 1, · · · , n (A.4)

where `j(t) is a deterministic function of time t and independent of τ .

In this setting, the filtration generated by (n+1)-dimensional standard Brownian motions

z(t) = (z0(t), · · · , zn(t)) is denoted by Gt, that is, Gt = σ(z(s), 0 ≤ s ≤ t), and G = G∞.
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Let τj, j = 1, · · · , n be the default time of the j-th asset, and the filtration generated by the

default process Hj(t) = 1{τj≤t}, j = 1, · · · , n is denoted by Hj
t = σ(Hj(s), 0 ≤ s ≤ t), where

1A designates the indication function, meaing that 1A = 1 if the event A is true and 1A = 0

otherwise. And, define H = H1 ∨ · · · ∨ Hn and F = G ∨ H.

Additionally, we assume that the default times τj, j = 1, · · · , n are conditionally indepen-

dent with respect to the filtration G under P , that is, given GT , T ≥ maxj tj, the following

equation

P{τ1 > t1, · · · , τn > tn|GT} =
n∏

j=1

P{τj > tj|GT} (A.5)

is satisfied. This assumption means that the hazard rates of different firms may correlate

with each other through the information included in G under P , however, the default event

of each firm occurs independently. For further details about the conditional independence,

see Bielecki and Rutkowski (2002).

A.2 Valuation of each asset at present and at future

For simplicity, consider a portfolio with discount bonds only.

According to the risk–neutral valuation method, the time t price of the default-free

discount bond with maturity τ is given by

v0(t, τ) = Ẽt

[
exp

{
−

∫ τ

t
r(s)ds

}]
= A0(t, τ)e−B(a0,t,τ)r(t) (A.6)

where Ẽt is the conditional expectation operator under the risk-neutral probability measure

P̃ , and

A0(t, τ) = exp

{
σ2

0

2a2
0

(τ − t − 2B(a0, t, τ) + B(2a0, t, τ)) −
∫ τ

t
φ(u)B(a0, u, τ)du

}

B(a, t, τ) =
1 − e−a(τ−t)

a
.

Consider a defaultable discount bond with maturity τ issued by firm j. Let δj be the

recovery rate of this bond and δj be constant. We assume that the holder of this bond

receives at τ either δ if it defaults before τ or 1 if it does not 15. Then, according to the

forward-neutral valuation method, the time t price of this defaultable discount bond, vj(t, τ),

15This assumption is consistent with the setting in Jarrow and Turnbull (1995).
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is given by

vj(t, τ) = v0(t, τ)Eτ
t

[
1{τj>τ} + δj1{τj≤τ}

]
= v0(t, τ) [δj + (1 − δj)P

τ
t {τj > τ}]

= v0(t, τ) [δj + (1 − δj)Lj(t, τ)Pt {τj > τ}] (A.7)

where Pt {τj > τ} and P τ
t {τj > τ} are conditional survival probabilities of firm j under P

and P τ given the information up to time t, respectively, and

P τ
t {τj > τ} = Eτ

t

[
exp

{
−

∫ τ

t
hτ

j (s)ds
}]

= Lj(t, τ)Pt {τj > τ} (A.8)

Pt {τj > τ} = Et

[
exp

{
−

∫ τ

t
hj(s)ds

}]
(A.9)

Lj(t, T ) = exp

{
−

∫ T

t
`j(s)ds

}
.

(A.8) is derived from the assumption (A.4).

From (A.6), v0(t, τ) depends on r(t), and (A.9) implies that Pt {τj > τ} depends on hj(t).

Thus, vj(t, τ) depends on r(t) and hj(t) from (A.7).

A.3 Distribution of portfolio’s value at risk horizon

Since (A.6) and (A.7) can be used not only for the present (t = 0) but for the future

(t > 0), the time T (risk horizon) price of the defaultable discount bond issued by firm j

with maturity TM
j , TM

j ≥ T, is given by

vj(T, TM
j ) = v0(T, TM

j )
[
δj + (1 − δj)Lj(T, TM

j )PT

{
τj > TM

j

}
1{τj>T}

]
. (A.10)

Since (A.10) shows that vj(T, TM
j ) is a function of the three stochastic variables r(T ), hj(T )

and 1{τj>T}, the total value of the portfolio at time T , denoted by π(T ), is a function

of stochastic variables (r(T ), h1(T ), · · · , hn(T ), 1{τ1>T}, · · · , 1{τn>T}). Therefore, in order to

obtain the distribution of the future value of the portfolio at the risk horizon T , we have the

following simulation algorithm:

(1) Generate a scenario of (r(T ), h1(T ), · · · , hn(T ), 1{τ1>T}, · · · , 1{τn>T}) under P . 16

16In this model, it is not necessary to generate the detailed paths of the hazard rates to obtain the

default probabilities. Since (r(T ), h1(T ), · · · , hn(T ),H1(0, T ), · · · ,Hn(0, T )) are subject to the (2n + 1)-

variate normal distribution in this model, these scenarios can be easily generated. In each scenario, the

conditional default probability of the j-th asset up to time T is given by 1− e−Hj(0,T ). Since the conditional

independence is assumed, we can generate the realizations of 1{τj>T}, j = 1, · · · , n by using independent

random variables Uj , j = 1, · · · , n subject to the uniform distribution on [0, 1]. If Uj < 1 − e−Hj(0,T ), then

1{τj>T} = 0, otherwise 1{τj>T} = 1.
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(2) Calculate vj(T, TM
j ) using (A.10) for each discount bond, and then calculate the value

of the portfolio, π(T ).

(3) If enough numbers of scenarios are obtained, go to (4). Otherwise, go to (1).

(4) Analyse the obtained scenarios statistically.

Since the joint distribution function of the future prices of all assets are obtained numerically,

the distribution function of the portfolio’s price is estimated, so that any risk measures can

be calculated. For example, VaR and ES with the confidence level 100α% are calculated by

using (1), (2), (5) and (6). If you would like to know more details about this model, see

Kijima and Muromachi (2000).
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Figure 1. Estimated VaR curve of the future value of the portfolio by hybrid method
(“VaR(IS-H)”, thick broken line). The thin lines (left “VaR-SD” and right “VaR+SD”)
show the range within the standard deviation from the average calculated from ten sets of
50,000 simulation runs.
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Figure 1: Estimated VaR curve of the future value of the portfolio by hybrid method.
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Figure 2. Estimated ES curve of the future value of the portfolio by the old method (“ES(IS-
H)”, thick broken line). The thin lines (left “ES-SD” and right “ES+SD”) show the range
within the standard deviation from the average calculated from ten sets of 50,000 simulation
runs.
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Figure 2: Estimated ES curve of the future value of the portfolio by old method.
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Figure 3. Estimated ES curve of the future value of the portfolio by the new method
(“ES(from VaR)”, thick broken line). The thin lines (left “ES-SD” and right “ES+SD”)
show the range within the standard deviation from the average calculated from ten sets of
50,000 simulation runs.
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Figure 3: Estimated ES curve of the future value of the portfolio by new method.
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Figure 4. Differences between ES and VaR, and the sums of the differences between the
risk contributions for ES and VaR by the old and new methods. “IS-H” and “from VaR”
denote the differences between ES and VaR by the old and new methods, respectively. “total
RC(IS-H)” and “total RC(from VaR)” denotes the sums of the differences between the risk
contributions for ES and VaR by the old and new methods, respectively.
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Figure 4: Differences between ES and VaR, and sums of the differences between the risk

contributions for ES and VaR.
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Figure 5. Check of the sum of the risk contributions for ES. The thick curve shows the
differences between “total RC(from VaR)” and “from VaR” estimated by new methods.
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Figure 5: Check of the sum of the risk contributions for ES.
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