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BÜHLMANN’S ECONOMIC PREMIUM PRINCIPLE IN AN INCOMPLETE
MARKET

MASAAKI KIJIMA

ABSTRACT. This paper examines the Bühlmann’s equilibrium pricing model (1980) in an in-
complete market setting and derives the (multivariate) Esscher transform within the framework
under some assumptions. The result reveals that the Esscher transform is an appropriate proba-
bility transform for the pricing of insurance risks whose market is presumably incomplete.

Keywords: Equilibrium pricing, Equilibrium allocation, Incomplete market, Esscher trans-
form, State price density

1. INTRODUCTION

In the finance literature, the theory of asset pricing has been developed; the theory is well-
developed for the so-calledcompletemarket while there are still many blanks forincomplete
markets. The insurance market is presumably incomplete; new attempts are necessary for the
development of economically sound pricing methods.

In the actuarial literature, on the other hand, there have been developed many probability
transforms for the pricing of insurance risks. Such methods include the variance loading, the
standard deviation loading, and the exponential principle. Among them, the most popular pric-
ing method for actuaries seems theEsscher transformgiven by

(1.1) π(Y ) =
E[Y e−θY ]

E[e−θY ]

for random variableY that represents risk, whereθ is a positive constant1 andE is an expectation
operator under the physical probability measureP.

The pricing methods developed in the actuarial literature are often criticized by economic re-
searchers, because they are not based on economic considerations. As pointed out by Bühlmann
(1980), the premiums calculated from the actuarial methods depend only on the risk, while in
economics premiums are not only depending on the risk but also on market conditions.

Bühlmann (1980) considers a pure risk exchange market where there areN agents. Each
agent is characterized by his/her utility function, initial wealth and potential loss, and is willing
to buy/sell a risk exchange so as to maximize the expected utility. An equilibrium price for the
risk is obtained under the market clearing condition. The Esscher transform (1.1) is derived from
the equilibrium price when exponential utilities are assumed. Hence, the Esscher transform is
not just an exponential tilting (or exponential change of measure), but has a sound economic
interpretation. See also Wang (2002), Kijima (2006) and Kijima and Muromachi (2008) for
further discussions on the Esscher transform and their economic interpretations.

Although not mentioned explicitly, the risk exchange market considered in Bühlmann (1980)
is complete, while actual insurance markets are presumablyincomplete. Recall that a market is
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complete if and only if any asset is duplicated by other existing assets in the market (see, e.g.,
Kijima, 2002). In other words, agents can use any assets in order to maximize their expected
utilities. The aim of this paper is to extend the Bühlmann’s result (1980) to an incomplete
market setting, thereby giving a further economic interpretation to the Esscher transform (1.1)
and its variants.

The present paper is organized as follows. In the next section, we review the Bühlmann’s
equilibrium pricing model (1980) under the complete market setting. Section 3 considers the
same problem under an incomplete market setting where the rates of return of all the risks are
normally distributed. It is shown that the Bühlmann’s economic premium principle is derived
when exponential utilities are assumed. Based on the result, the CAPM (capital asset pricing
model) is refined and the pricing of derivative securities is considered. Section 4 discusses
some related topics. In particular, we consider the problem under which conditions the same
equilibrium allocation as B̈uhlmann (1980) holds. Finally, Section 5 concludes this paper by
giving a counterexample that the Bühlmann’s economic premium principle does not hold.

Throughout the paper, we assume that agenti possesses initial riskXi and utility function
ui(x). The riskXi may be a portfolio of assets traded in a market and/or other types of nontraded
assets. As usual, we consider a standard probability space(Ω,F ,P) and assume thatu′

i > 0
andu′′

i < 0. The set of tradable assets in the market is denoted byM.

2. BÜHLMANN ’ S EQUILIBRIUM PRICING MODEL

In this section, we review the B̈uhlmann’s equilibrium pricing model (1980) under thecom-
pletemarket setting.

Suppose that there areN agents in the market characterized by pairs(Xi, ui), i = 1, 2, . . . , N .
We want to derive an equilibrium priceπ(Y ), Y ∈ M, satisfying

Y ∗
i = argmax

Y ∈M
E [ui(Xi + Y − π(Y ))] , i = 1, 2, . . . , N,(2.1) ∑

i

Y ∗
i = 0.(2.2)

The optimalY ∗ = (Y ∗
1 , . . . , Y

∗
N) is called anequilibrium risk exchangeandX + Y ∗ anequi-

librium risk allocation, whereX = (X1, . . . , XN). The condition (2.2) is called themarket
clearingcondition. Note that this paper does not consider budget constraints and initial wealths
for simplicity. Also, the riskfree interest rate is assumed to be zero, unless stated otherwise.

Suppose that the market is arbitrage-free and complete. That is, any assetY is traded in the
market without arbitrage opportunities. Then, there exists a state price densityη > 0 such that
π(Y ) = E[ηY ] andE[η] = 1. The problem is now to derive the state price densityη satisfying

(2.3) Y ∗
i = argmax

Y ∈M
E [ui(Xi + Y − E[ηY ])] , i = 1, 2, . . . , N,

and the market clearing condition (2.2).
The first order condition (FOC for short) of (2.3) with respect toY (ω), ω ∈ Ω, is given by

u′
i(Xi(ω) + Y ∗

i (ω)− E[ηY ∗
i ])(2.4)

= η(ω)E[u′
i(Xi + Y ∗

i − E[ηY ∗
i ])] ≡ Ciη(ω).

Conversely, this condition implies (2.3). To see this, sinceui is concave, we observe that

ui(Xi + Y − E[ηY ]) ≤ ui(Xi + Y ∗
i − E[ηY ∗

i ])

+u′
i(Xi + Y ∗

i − E[ηY ∗
i ])(Y − E[ηY ]− Y ∗

i + E[ηY ∗
i ]),

which can be rewritten using (2.4) as

ui(Xi + Y − E[ηY ]) ≤ ui(Xi + Y ∗
i − E[ηY ∗

i ])

+Ciη(Y − E[ηY ]− Y ∗
i + E[ηY ∗

i ]).
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Taking expectation on both sides and utilizing the factE[η] = 1 yield the desired result.
Now, let us denote the inverse function ofu′

i by Ii = (u′
i)
−1. Then, from the FOC (2.4), we

have
Xi + Y ∗

i − E[ηY ∗
i ] = Ii(ηCi), i = 1, 2, . . . , N.

Summing overi and utilizing the market clearing condition (2.2), we obtain

(2.5)
∑
i

Xi =
∑
i

Ii(ηCi).

Define

(2.6) Z ≡
∑
i

Xi, I(ηC) ≡
∑
i

Ii(ηCi).

Also, denote the inverse function ofI(x) by u′(x).2 It follows from (2.5) and (2.6) that

η =
1

C
u′(Z).

SinceE[η] = 1, we finally obtain the equilibrium price as

(2.7) π(Y ) = E[ηY ] =
E[Y u′(Z)]

E[u′(Z)]
, Z =

∑
i

Xi,

for anyY ∈ M. The equilibrium risk allocation is given by

(2.8) Xi + Y ∗
i = π(Y ∗

i ) + Ii(ηCi), i = 1, 2, . . . , N.

Note that the expressions (2.7) and (2.8) are not explicit, because they involve unknown quan-
titiesCi, i = 1, 2, . . . , N .

2.1. Special case: Exponential utility. When all the agents have exponential utility functions,
the above problem can be solved explicitly. Suppose that

ui(x) = − 1

λi

e−λix, λi > 0, i = 1, 2, . . . , N,

and the rest of the assumptions remains the same. Then, sinceu′
i(x) = e−λix, the FOC (2.4) can

be written as
e−λi(Xi+Y ∗

i ) = ηE
[
e−λi(Xi+Y ∗

i )
]
≡ ηĈi.

It follows thatη = e−λi(Xi+Y ∗
i )/Ĉi, whence we obtain

(2.9) Xi + Y ∗
i =

−1

λi

(log η + log Ĉi), i = 1, 2, . . . , N.

Summing overi and utilizing the market clearing condition (2.2), we have

(2.10) Z = −1

λ
(log η + log Ĉ),

where we put

(2.11)
1

λ
=
∑
i

1

λi

, log Ĉ =
∑
i

λ

λi

log Ĉi.

It is readily checked from (2.10) and the factE[η] = 1 that we haveĈ = E[e−λZ ]. Therefore,
from (2.10), the equilibrium price (2.7) is given by

(2.12) π(Y ) =
E[Y e−λZ ]

E[e−λZ ]
, Z =

∑
i

Xi,

2The inverse function exists under the conditionu′′
i < 0 for all i. The functionu′(x) can be seen as the marginal

utility function of arepresentative agentin the market.
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for anyY ∈ M. The equilibrium pricing formula (2.12) is explicit, becauseZ andλ are defined
only through the given quantitiesXi andλi, respectively.

The equilibrium risk allocation (2.8) can be also obtained explicitly from (2.9) and (2.10).
Namely, we have

Xi + Y ∗
i =

λ

λi

Z +
1

λi

log
Ĉ

Ĉi

.

Taking the pricing functionalπ on both sides, we get

π(Xi + Y ∗
i ) =

λ

λi

π(Z) +
1

λi

log
Ĉ

Ĉi

,

sinceπ is a linear functional. It follows that

Xi + Y ∗
i − π(Xi + Y ∗

i ) =
λ

λi

(Z − π(Z)),

so that the equilibrium risk allocation is given by

(2.13) Xi + Y ∗
i =

λ

λi

Z, i = 1, 2, . . . , N.

Note that the allocationXi+Y ∗
i is proportional to the aggregated riskZ with weightλ/λi > 0,

where
∑

i λ/λi = 1, for the exponential utility case.
Finally, note that, whenZ = Y +ξ with Y andξ being mutually independent, the equilibrium

price (2.12) coincides with the Esscher transform (1.1) for riskY , as claimed by B̈uhlmann
(1980). WhenXi ∈ M, Kijima (2006) called the equilibrium price (2.12) themultivariate
Esscher transform.

3. AN EQUILIBRIUM MODEL FOR INCOMPLETEMARKET

In this section, we propose an equilibrium pricing model in anincompletemarket setting.
While, as before, there areN agents in the marketM characterized by pairs(Xi, ui), i =
1, 2, . . . , N , we assume that onlyK assets are tradable. The time-1 (future) value of assetj,
j = 1, 2, . . . , K, is denoted bySj and its time-0 (present) value bysj. In this setting, any traded
portfolio for agenti is written as

Yi =
K∑
j=1

yijSj, i = 1, 2, . . . , N,

where the quantityyij represents the number of assetj traded by agenti at time0. Of course,
yij > 0 implies that agenti purchases assetj, whereasyij = 0 andyij < 0 mean no trade and a
sell of assetj, respectively.

The initial risksXi consist of tradable assets and nontradable risks. More specifically, we
assume that the initial risk of agenti is given by

(3.1) Xi =
K∑
j=1

xi
jSj + εi, i = 1, 2, . . . , N,

where the quantityxi
j represents the number of assetj held by agenti at time0 andεi denotes

the residual risk. In the following, we denote the total number of assetj issued in the market by

Aj ≡
N∑
i=1

xi
j, j = 1, 2, . . . , K.
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We want to derive an equilibrium pricesj = π(Sj), j = 1, 2, . . . , K, satisfying

yi∗j = argmax
y1,...,yK

E

[
ui

(
Xi +

K∑
j=1

yj(Sj − sj)

)]
, ∀i, j,(3.2)

N∑
i=1

yi∗j = 0, j = 1, 2, . . . , K.(3.3)

The optimal{yi∗ = (yi∗1 , . . . , y
i∗
K), i = 1, . . . , N} is anequilibrium risk exchangeand{Xi +

Y ∗
i , i = 1, 2, . . . , N} anequilibrium risk allocation. The condition (3.3) is themarket clearing

condition for each traded asset. As before, we do not consider budget constraints and initial
wealths for simplicity. Also, the riskfree interest rate is assumed to be zero, unless stated
otherwise.

The FOC of (3.2) with respect toyj is given by

(3.4) E

[
Sju

′
i

(
Xi +

K∑
j=1

yij(Sj − sj)

)]
= sjE

[
u′
i

(
Xi +

K∑
j=1

yij(Sj − sj)

)]
, ∀i, j.

Conversely, sinceui is concave, it can be readily checked that this condition implies (3.2).
Suppose that all the agents have exponential utilities as in Subsection 2.1. Then, from (3.4),

we derive the following system of simultaneous equations:

(3.5) E
[
Sje

−λi(Xi+
∑K

j=1 y
i
jSj)
]
= sjE

[
e−λi(Xi+

∑K
j=1 y

i
jSj)
]
, ∀i, j.

In this section, we consider the case that the rates of return of all the risks are normally dis-
tributed in order to solve the simultaneous equations (3.5). Some other cases are discussed in
Section 4.

In the following, we denote

Rj =
Sj − sj

sj
, j = 1, 2, . . . , K; Ri

ε =
εi − π(εi)

π(εi)
, i = 1, 2, . . . , N,

whereεi are defined in (3.1). Note that the pricing operatorπ must belinear in order to preclude
arbitrage opportunities.

We use the following result repeatedly. See Kijima and Muromachi (2001) for the proof.

Lemma 3.1. Suppose that(X,Z) is normally distributed. Then,

E
[
f(X)e−λZ

]
= E [f(X − λcov(X,Z))]E

[
e−λZ

]
for anyf(x) for which the expectations exist, wherecov denotes the covariance operator.

3.1. The case that the rates of return are normally distributed. In this section, we assume
that the random vector(R1, . . . , RK , R

1
ε, . . . , R

N
ε ) defined above is normally distributed. The

normality assumption on asset returns has been frequently used in the finance literature. In-
deed, the instantaneous rate of returndS(t)/S(t) is usually assumed to follow the stochastic
differential equation

dS(t)

S(t)
= µ(t)dt+ σ(t)dw(t),

whereµ(t) andσ(t) are stochastic processes adapted to the filtration{Ft} generated by the
standard Brownian motionw(t). In this setting, given the historyFt, the instantaneous rate of
returndS(t)/S(t) follows a normal distribution with meanµ(t)dt and varianceσ2(t)dt.

We note from (3.1) that the potential riskXi can be written as

(3.6) Xi = πi

(
1 +

∑
j

wi
jRj +W iRi

ε

)
, i = 1, 2, . . . , N,
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whereπi = π(Xi) =
∑

j x
i
jsj + π(εi) and

wi
j =

sjx
i
j

πi

, j = 1, 2, . . . , K; W i =
π(εi)

πi

= 1−
∑
j

wi
j.

Also, we have ∑
j

yijSj =
∑
j

yijsj(1 +Rj) =
∑
j

yijsjRj +
∑
j

yijsj.

It follows that

Xi +
∑
j

yijSj =
∑
j

sj(x
i
j + yij)Rj + π(εi)R

i
ε + πi +

∑
j

yijsj.

Therefore, the FOC (3.5) can be written as

(3.7) E
[
Rje

−λiΓ
i
]
= 0, Γi ≡

K∑
j=1

sj(x
i
j + yij)Rj + π(εi)R

i
ε,

for all i andj.
A direct application of Lemma 3.1 to (3.7) then yields

µj − λicov(Rj,Γ
i) = 0,

whereµj = E[Rj] denotes the mean rate of return of assetj. It follows from the definition of
Γi that

1

λi

µj = π(εi)σ
ε
ij +

∑
k

sk(x
i
k + yik)σkj,

whereσε
ij = cov(Rj, R

i
ε) andσij = cov(Ri, Rj). Summing overi and utilizing the market

clearing condition (3.3), we obtain

(3.8)
1

λ
µj = ξj +

∑
k

skAkσkj, j = 1, 2, . . . , K,

whereξj =
∑

i π(εi)σ
ε
ij andλ is defined in (2.11).

Now, denotingγk = skAk, Equation (3.8) can be written in matrix form as

1

λ
µ− ξ = Σγ or, equivalently, γ =

1

λ
Σ−1(µ− λξ),

whereµ = (µj), ξ = (ξj) andγ = (γj) areK-dimensional vectors, andΣ = (σij) is aK ×K
symmetric matrix. Here, we have assumed that the covariance matrixΣ is positive definite
(hence, it is invertible). Therefore, we obtain the equilibrium prices as

(3.9) sj =
1

λAj

[
Σ−1(µ− λξ)

]
j
, j = 1, 2, . . . , K,

where[b]j denotes thejth component of vectorb. Note that the pricing formula (3.9) is not
explicit, because the valuesξj contain unknown pricesπ(εi) and covariancesσε

ij.
It remains to show that the prices (3.9) coincide with those calculated from (2.12). To this

end, first note that the aggregated risk is given by

(3.10) Z =
N∑
i=1

Xi =
K∑
j=1

AjSj +
N∑
i=1

εi, Aj =
N∑
i=1

xi
j,

and its rate of return is written as

(3.11) RZ =
K∑
j=1

w̃jRj +
N∑
i=1

w̃iRi
ε; w̃j =

Ajsj
π(Z)

, w̃i =
π(εi)

π(Z)
,
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whereRZ = (Z − π(Z))/π(Z).
Now, from (2.12), we need to calculate

Jj ≡
E[sj(1 +Rj)e

−λπ(Z)(1+RZ)]

E[e−λπ(Z)(1+RZ)]
, j = 1, 2, . . . , N.

Again, thanks to Lemma 3.1, we obtain

Jj = sj (1 + µj − λπ(Z)cov(Rj, RZ)) .

It follows from (3.11) that

Jj = sj

(
1 + µj − λ

[∑
k

Akskσkj +
∑
i

π(εi)σ
ε
ij

])
.

But, from (3.9) or equivalently from (3.8), the square bracket term is equal toµj, whence we
obtainJj = sj. It follows that, when the rates of return of risks are normally distributed, the
equilibrium price of traded assetj is given by (2.12).

Summarizing, we have the following result.

Theorem 3.1. Suppose that the rates of return of all the risks are normally distributed. Then,
the equilibrium price of any traded asset is given by(2.12).

The equilibrium risk allocation is not given by (2.13), because there are residual risksεi in
our incomplete market setting. We shall return this problem later.

3.2. A refined CAPM. In the previous subsection, we show that the multivariate Esscher trans-
form (2.12) holds for the incomplete market setting. In this subsection, we discuss how the
ordinary CAPM (capital asset pricing model) is modified in our setting.3

Suppose that the rates of return of all the risks are normally distributed. Then, from (2.12),
we have

0 = E
[
(Sj − sj)e

−λZ
]
= E

[
Rje

−λπ(Z)(1+RZ)
]
= E

[
Rje

−λπ(Z)RZ
]
.

It follows from Lemma 3.1 that

0 = µj − λπ(Z)cov(Rj, RZ),

which coincides with (3.8). Moreover, if we consider the riskfree interest raterf , the above
expression becomes

(3.12) µj − rf = λπ(Z)cov(Rj, RZ).

Hence, the termλπ(Z)cov(Rj, RZ) is considered to be a risk premium. Similarly, for the
pricing of the market portfolioM , we obtain

µM − rf = λπ(Z)cov(RM , RZ).

It follows that

(3.13) µj − rf =
cov(Rj, RZ)

cov(RM , RZ)
(µM − rf )

for each traded assetj.
However, in the expression (3.13), the role of the market portfolioM is unclear. In order

to considerM explicitly, we assume that the aggregated riskZ is defined as in (3.10), and the
market portfolio and its rate of return are given, respectively, by

(3.14) M =
K∑
j=1

AjSj, RM =
M − π(M)

π(M)
.

3Wang (2002) also discussed the CAPM within the framework of Wang transform.
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Since we then have

Z = M + ε, ε =
N∑
i=1

εi,

it follows from (3.13) that

µj − rf =
σjM + σjε

σ2
M + σMε

(µj − rf ),

whereσjM = cov(Rj, RM), etc. Therefore, denoting

αj =
σjε

σ2
M + σMε

, βj =
σjM

σ2
M + σMε

,

we conclude that

(3.15) µj − rf = αj + βj(µM − rf ).

Note that the ordinary CAPM is a special case of (3.15) when the residualsεi are all zero.
If the market portfolioM is sufficiently diversified, it is plausible to assume thatσMε = 0. In

this case, we have the following result.

Theorem 3.2(Refined CAPM). Suppose that the rates of return of all the risks are normally
distributed and that the market portfolio defined in(3.14)is fully diversified. Then,

(3.16) µj − rf = αj + βj(µj − rf ); αj =
σjε

σ2
M

, βj =
σj

σM

ρjM ,

for any traded assetj, whereρjM denotes the correlation betweenRj andRM .

Note that theβj in Theorem 3.2 coincides with the beta in the ordinary CAPM. However, the
interceptαj does not vanish,4 because the correlation (risk) between each asset and the residuals
cannot be eliminated in general. Note thatαj can be either positive or negative. If it is positive
(negative, respectively), i.e. assetj is positively (negatively) correlated to the residuals, more
(less) premiums are required. We call (3.16) a refined CAPM.

3.3. Pricing of derivative securities. Suppose that derivative securities written on traded as-
sets are introduced in the market and that the equilibrium prices of the derivatives are given
by (2.12). In this subsection, we show that the risk-neutral pricing method holds true for the
pricing of derivative securities.

Consider, as an example, a call option with strike priceK written on assetj. That is, we
denote

Y = (Sj −K)+ = f(Rj), f(x) = (sj(1 + x)−K)+,

where(x)+ = max{x, 0}, and assume that

(3.17) Rj = µj + σjwj,

wherewj follows a standard normal distribution. Here,µj denotes the mean rate of return and
σj the volatility of assetj. According to (2.12) withRZ being normally distributed, the call
option price is then given by

π(Y ) =
E[f(Rj)e

−λπ(Z)RZ ]

E[e−λπ(Z)RZ ]

= E [f(µj + σjwj − λπ(Z)cov(Rj, RZ))] ,(3.18)

where we have used Lemma 3.1 for the second equation. However, since the relation (3.12)
holds in equilibrium, we obtain

(3.19) π(Y ) = E [(sj(1 + σjwj)−K)+]

4The coefficientαj often called Jensen’s alpha (1968) to measure the investment performance in the finance
literature.
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as the call option price. This is so, because the risk premiumλπ(Z)cov(Rj, RZ) in (3.12)
is already reflected in the price of the underlying assetj. This result is important for prac-
tice, because we do not need to estimate the unknown (unobservable) parametersλ, π(Z) and
cov(Rj, RZ) for the pricing of derivative securities.

Moreover, if we adopt the approximation

(3.20) 1 + σjwj ≈ eσjwj−σ2
j /2,

it is readily shown that the call price (3.19) becomes

π(Y ) = sjΦ(d)−KΦ(d− σj), d =
log(sj/K)

σj

+
σj

2
,

the famous Black–Scholes formula (1973) withrf = 0 andT = 1.

Theorem 3.3. Suppose that the rates of return of all the risks are normally distributed. Then,
the price of a call option written on a traded asset is given by the Black–Scholes formula,
provided that the approximation(3.20)is valid.

Next, as in Merton (1976), suppose that there is a jump in the rate of return of assetj with
some probability. That is, instead of (3.17), we assume that

(3.21) Rj =

{
R1 ≡ µj + σjwj, probability 1− p,
R2 ≡ µj + σjwj + µJ + σJwJ , probability p,

wherep stands for the probability of jump. Note that, as in Merton (1976), the jump size
is assumed to be normally distributed with meanµJ and varianceσ2

J , while the correlation
betweenwj andwJ may not be zero.

Suppose that the pricing formula is given by (2.12) withRZ being normally distributed. Then,
as before, we have from (3.21) that

0 = E
[
Rje

−λπ(Z)RZ
]

= (1− p)E
[
R1e

−λπ(Z)RZ
]
+ pE

[
R2e

−λπ(Z)RZ
]

= (1− p) [µj − λπ(Z)cov(R1, Z)] + p [µj + µJ − λπ(Z)cov(R2, Z)] .

After some simple algebra, we then have

(3.22) µj + pµJ = λπ(Z) (σjcov(wj, RZ) + pσJcov(wJ , RZ)) ,

from which we can recover the formula (3.12) withrf = 0, sinceE[Rj] = µj + pµJ .
Now, as before, consider a call option with strike priceK written on the assetj with jump

risk defined in (3.21). Then, similar to (3.18), we obtain

π(Y ) = (1− p)E [f(µj + σjwj − λπ(Z)σjcov(wj, RZ))]

+ pE [f(µj + µJ + σjwj + σJwJ − λπ(Z)(σjcov(wj, RZ) + σJcov(wJ , RZ)))] .(3.23)

Note the difference between (3.19) and (3.23). In (3.23), we have no means to eliminate the
risk premiumsλπ(Z)σjcov(wj, RZ) andλπ(Z)σJcov(wJ , RZ) by using (3.22). This is the
significant difference in the jump model, although the asset price satisfies the relation (3.12).

Whencov(wJ , RZ) = 0, however, we have from (3.22) that

µj + pµJ = λπ(Z)σjcov(wj, RZ),

from which the pricing formula (3.23) is reduced to

π(Y ) = (1− p)E [f(−pµJ + σjwj)] + pE [f((1− p)µJ + σjwj + σJwJ)] .

Hence, if the jump risk premiumλπ(Z)σJcov(wJ , RZ) is known, sayλJ in general, then the call
option price is given by a mixture of the Black–Scholes formulas as in Merton (1976), provided
that the approximation (3.20) is valid. An extension to multiple jumps is straightforward.
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4. SOME DISCUSSIONS

In this section, we discuss some related problems. Namely, of interest are the cases that
risks are themselves normally distributed and that there are no residualsεi in the market. The
meaning of equilibrium risk allocation (2.13) becomes clear by considering these cases.

4.1. The case that risks are normally distributed. The simplest case to solve the problem
(3.5) is to assume that the random vector(Xi, S1, . . . , SK) is normally distributed.5 In this case,
sinceUi ≡ Xi +

∑K
j=1 y

i
jSj follows a normal distribution, a direct application of Lemma 3.1 to

(3.5) yields

(4.1) νj − λi

(
σX
ij +

K∑
k=1

σjky
i
k

)
= sj, j = 1, 2, . . . , K,

whereνj = E[Sj], σX
ij = cov(Sj, Xi) andσij = cov(Si, Sj). It follows that

λi

K∑
k=1

σjky
i
k = νj − sj − λiσ

X
ij , j = 1, 2, . . . , K,

or, in the matrix form,

λiΣyi = ν − s− λiσ
X
i ,

whereΣ = (σij) is aK × K matrix, ν = (νj), s = (sj) andσX
i = (σX

ij ) areK-dimensional
vectors. Assuming that the matrixΣ is invertible, the equilibrium risk exchangeyi∗ is obtained
as

(4.2) yi∗ =
1

λi

Σ−1(ν − s)−Σ−1σX
i .

Summing (4.2) overi, it follows from the market clearing condition (3.3) that

(4.3) 0 =
1

λ
Σ−1(ν − s)−Σ−1σX ,

whereλ is defined in (2.11),0 denotes the zero vector, andσX =
∑N

i=1 σ
X
i . Therefore, we

obtain componentwise

(4.4) sj = νj − λ
N∑
i=1

σX
ij , j = 1, 2, . . . , K.

It is easy to check that (4.4) is equivalent to (2.12) for this case. To see this, using Lemma 3.1,
the equilibrium price (2.12) can be written as

π(Sj) =
E[Sje

−λZ ]

E[e−λZ ]
= E[Sj − λcov(Sj, Z)] = νj − λcov(Sj, Z),

which coincides with (4.4), whereZ =
∑N

i=1Xi.
Next, we consider the equilibrium risk allocation in this setting. To this end, the equilibrium

risk exchange is obtained from (4.2) and (4.3) as(y1∗, y2∗, . . . , yN∗), where

(4.5) yi∗ = Σ−1

(
λ

λi

σX − σX
i

)
, i = 1, 2, . . . , N.

5Note that lognormal distributions do not admit moment generating functions. In other words, the Esscher
transform does not exist for lognormal risks. The normal assumption for asset prices seems strange; however,
economists usually adopt this assumption.
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Recall that each potential riskXi is given by (3.1). Since

σX
ij = cov(Xi, Sj) =

K∑
k=1

xi
kσkj + σε

ij,

whereσε
ij = cov(εi, Sj), we obtain

(4.6) σX
i = Σxi + σε

i or, equivalently, Σ−1σX
i = xi +Σ−1σε

i

with xi = (xi
j) andσε

i = (σε
ij). It follows from (4.5) that

xi + yi∗ =
λ

λi

Σ−1σX −Σ−1σε
i .

Hence, we obtain

Xi + yi∗S = (xi + yi∗)S + εi =
λ

λi

σXΣ−1S − σε
iΣ

−1S + εi,

whereS = (Sj) is theK-dimensional vector. On the other hand, from (4.6), we have

Z =
N∑
i=1

Xi =
N∑
i=1

(xiS + εi) = σXΣ−1S − σεΣ−1S +
N∑
i=1

εi,

whereσε =
∑

i σ
ε
i . Therefore, the equilibrium risk allocation is given by

(4.7) Xi + yi∗S =
λ

λi

Z +Di, i = 1, 2, . . . , N,

where

Di ≡

(
λ

λi

∑
k

σε
k − σε

i

)
Σ−1S −

(
λ

λi

∑
k

εk − εi

)
.

Of course, when the residualsεi are all zero, the equilibrium risk allocation (4.7) coincides with
(2.13), becauseDi = 0 in this case. This is so, because our market isincomplete, we have
no means to duplicate the potential risksXi by using the tradable assetsYj only. Hence, the
equilibrium risk allocation is affected by the residualsεi.

However, an interesting observation is in order. Suppose that

(4.8) εi =
λ

λi

∑
k

εk, i = 1, 2, . . . , N.

That is, even though there are residual risks in the economy, the residual risk allocation is
proportional to the aggregated residual risks

∑
k εk with weightλ/λi > 0. Then, since

σε
ij = cov(εi, Sj) =

λ

λi

∑
k

cov(εk, Sj) =
λ

λi

∑
k

σε
kj,

we conclude thatDi = 0, whence the equilibrium risk allocation (2.13) holds true.

4.2. The case of no residual risks.In this subsection, we assume that the potential risks are
portfolios of traded assets. That is, the potential riskXi of agenti is given by

Xi =
K∑
j=1

xi
jSj, i = 1, 2, . . . , N,

while we impose no assumptions on asset distributions. Although this assumption seems very
restrictive in actual insurance markets, we can solve the nonlinear simultaneous equations (3.5)
explicitly for arbitrarySj.
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Note that, in this case, the time-0 portfolio of agenti before trading isxi = (xi
1, . . . , x

i
K),

and the portfolio of agenti after trading is given byxi + yi = (xi
1 + yi1, . . . , x

i
K + yiK), where

yi = (yi1, . . . , y
i
K).

Suppose that the utilities are exponential as before. In this setting, from (3.5), we derive the
following system of simultaneous equations:

(4.9) E
[
Sje

−λi
∑K

j=1(x
i
j+yij)Sj

]
= sjE

[
e−λi

∑K
j=1(x

i
j+yij)Sj

]
, ∀i, j.

For each assetj, a sufficient condition for (4.9) to hold for any(S1, . . . , SK) is given by

(4.10) λi(x
i
j + yij) = λi+1(x

i+1
j + yi+1

j ), i = 1, 2, . . . , N − 1,

together with the clearing condition (3.3), for each assetj. Since we haveN equations andN
unknownsyij for eachj, we can solve the simultaneous equations. Indeed, the solution of the
simultaneous equations is given by

(4.11) yi∗j =
λ

λi

N∑
i=1

xi
j − xi

j =
λ

λi

Aj − xi
j, i = 1, 2, . . . , N,

whereλ is defined in (2.11) andAj denotes the total number of assetj issued in the market.
Now, from (4.11), we have

λi(x
i
j + yi∗j ) = λAj, i = 1, 2, . . . , N,

whence we obtain

(4.12) λi

K∑
j=1

(xi
j + yi∗j )Sj = λ

K∑
j=1

AjSj = λZ.

It follows from (4.9) that the equilibrium price of assetj is given by

sj =
E[Sje

−λZ ]

E[e−λZ ]
, Z =

K∑
j=1

AjSj.

The equilibrium risk allocation is obtained from (4.12) as

Xi + yi∗S =
∑
j

(
xi
j + yi∗j

)
Sj =

λ

λi

Z,

which coincides with (2.13). Of course, this must be so, because we have no residual risks in
this setting.

Next, consider the case that there are residual risksεi in the economy whose allocation is
given by (4.8). In this case, it is expected that the equilibrium risk exchange remains the same
as (4.11), because the residual risks are already proportional to the equilibrium risk allocation.
In fact, the FOC (3.5) is written as

E
[
Sje

−λi
∑K

j=1(x
i
j+yij)Sj−λiεi

]
= sjE

[
e−λi

∑K
j=1(x

i
j+yij)Sj−λiεi

]
, ∀i, j,

and a sufficient condition for this simultaneous equations to hold for any(S1, . . . , SK) is given
by (4.10), because we haveλiεi = λi+1εi+1 for all i due to the condition (4.8). Equation (4.12)
is modified as

λi

K∑
j=1

(xi
j + yi∗j )Sj + λiεi = λ

K∑
j=1

AjSj + λ
∑
k

εk = λZ,
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where we have used (4.8) for the first equality and (3.10) for the second, respectively. Therefore,
the equilibrium price of assetj is given by

sj =
E[Sje

−λZ ]

E[e−λZ ]
, Z =

K∑
j=1

AjSj +
N∑
i=1

εi,

and the equilibrium risk allocation is obtained as

Xi + yi∗S =
∑
j

(
xi
j + yi∗j

)
Sj + εi =

λ

λi

Z.

That is, the same equilibrium results as in Bühlmann (1980) hold true even in our incomplete
market setting under the stated assumptions.

Summarizing, we have obtained the following result.

Theorem 4.1.Suppose that the residual risksεi in the economy are either all zero or allocated
as in (4.8). Then, the equilibrium price and the equilibrium risk allocation are given by(2.12)
and(2.13), respectively.

5. CONCLUDING REMARKS

In this paper, we examine the Bühlmann’s equilibrium pricing model (1980) in an incom-
plete market setting and derive the multivariate Esscher transform (2.12) within the equilibrium
framework under some assumptions. The result reveals that the (multivariate) Esscher trans-
form is an appropriate probability transform for the pricing of insurance risks whose market is
presumably incomplete. However, we may suspect that the pricing formula (2.12) is not always
true. Indeed, we can provide some counterexamples.

Consider for simplicity the case thatK = 1 andN = 2, and assume that

X1 = x1S + ε1, X2 = x2S + ε2.

Then, the problem (3.5) becomes

(5.1) E
[
Se−λ1(ε1+(x1+y)S)

]
= π(S)E

[
e−λ1(ε1+(x1+y)S)

]
and at the same time

(5.2) E
[
Se−λ2(ε2+(x2−y)S)

]
= π(S)E

[
e−λ2(ε2+(x2−y)S)

]
,

where we have applied the market clearing condition for (5.2).
Suppose thatS follows a standard normal distribution and, givenS, (ε1, ε2) follows a bi-

variate normal distribution with zero means, variancesS and correlationρ. Then, sinceZ =
AS + ε1 + ε2 with A = x1 + x2, we have

E
[
Se−λZ

]
= E

[
E
[
Se−λ(AS+ε1+ε2)|S

]]
= E

[
Se−λASE

[
e−λ(ε1+ε2)|S

]]
= E

[
Se−λASeλ

2(1+ρ)S
]
.

Therefore, from (2.12) and Lemma 3.1, we obtain

(5.3) π(S) = λ2(1 + ρ)− λ(x1 + x2), λ =
λ1λ2

λ1 + λ2

.

On the other hand, we have

E
[
Se−λ1(ε1+(x1+y)S)

]
= E

[
Se−λ1(x1+y)Seλ

2
1S/2
]

=

(
λ2
1

2
− λ1(x1 + y)

)
E
[
eλ

2
1S/2
]
.
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Hence, from (5.1), we obtain

π(S) =
λ2
1

2
− λ1(x1 + y).

Similarly, from (5.2), we have

π(S) =
λ2
2

2
− λ2(x2 − y).

Solving these simultaneous equations, we obtain

1

λ
π(S) =

λ1 + λ2

2
− (x1 + x2).

It follows that

(5.4) π(S) =
λ1λ2

2
− λ(x1 + x2).

Note that the prices (5.3) and (5.4) coincide with each other whenλ1 = λ2 andρ = 1, i.e., the
condition (4.8) holds (see Theorem 4.1).
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