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ABSTRACT. This paper examines thelilBlmann’s equilibrium pricing model (1980) in an in-
complete market setting and derives the (multivariate) Esscher transform within the framework
under some assumptions. The result reveals that the Esscher transform is an appropriate proba-
bility transform for the pricing of insurance risks whose market is presumably incomplete.
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1. INTRODUCTION

In the finance literature, the theory of asset pricing has been developed; the theory is well-
developed for the so-callescbmpletemarket while there are still many blanks fimcomplete
markets. The insurance market is presumably incomplete; new attempts are necessary for the
development of economically sound pricing methods.

In the actuarial literature, on the other hand, there have been developed many probability
transforms for the pricing of insurance risks. Such methods include the variance loading, the
standard deviation loading, and the exponential principle. Among them, the most popular pric-
ing method for actuaries seems tgscher transforngiven by

E[Ye ]
Eje—07]

for random variabl@” that represents risk, wheflés a positive constahandE is an expectation
operator under the physical probability measire

The pricing methods developed in the actuarial literature are often criticized by economic re-
searchers, because they are not based on economic considerations. As pointediblrniaynB
(1980), the premiums calculated from the actuarial methods depend only on the risk, while in
economics premiums are not only depending on the risk but also on market conditions.

Buhlmann (1980) considers a pure risk exchange market where theré agents. Each
agent is characterized by his/her utility function, initial wealth and potential loss, and is willing
to buy/sell a risk exchange so as to maximize the expected utility. An equilibrium price for the
risk is obtained under the market clearing condition. The Esscher transform (1.1) is derived from
the equilibrium price when exponential utilities are assumed. Hence, the Esscher transform is
not just an exponential tilting (or exponential change of measure), but has a sound economic
interpretation. See also Wang (2002), Kijima (2006) and Kijima and Muromachi (2008) for
further discussions on the Esscher transform and their economic interpretations.

Although not mentioned explicitly, the risk exchange market consideredimnBann (1980)
is completewhile actual insurance markets are presumaidpmplete Recall that a market is

(1.1) (V) =
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IThis paper treats risk as an asset. A liability with loss varigblean be viewed as a negative asset with gain
Y = —X. See Wang (2002) for details.
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complete if and only if any asset is duplicated by other existing assets in the market (see, e.g.,
Kijima, 2002). In other words, agents can use any assets in order to maximize their expected
utilities. The aim of this paper is to extend thé&iBmann’s result (1980) to an incomplete
market setting, thereby giving a further economic interpretation to the Esscher transform (1.1)
and its variants.

The present paper is organized as follows. In the next section, we reviewitiiem&1n’s
equilibrium pricing model (1980) under the complete market setting. Section 3 considers the
same problem under an incomplete market setting where the rates of return of all the risks are
normally distributed. It is shown that theilBImann’s economic premium principle is derived
when exponential utilities are assumed. Based on the result, the CAPM (capital asset pricing
model) is refined and the pricing of derivative securities is considered. Section 4 discusses
some related topics. In particular, we consider the problem under which conditions the same
equilibrium allocation as Bhimann (1980) holds. Finally, Section 5 concludes this paper by
giving a counterexample that theiBlmann’s economic premium principle does not hold.

Throughout the paper, we assume that agemssesses initial risk(; and utility function
u;(z). The riskX; may be a portfolio of assets traded in a market and/or other types of nontraded
assets. As usual, we consider a standard probability spacg, P) and assume that, > 0
andu! < 0. The set of tradable assets in the market is denotetttby

2. BUHLMANN’S EQUILIBRIUM PRICING MODEL

In this section, we review theiBlmann’s equilibrium pricing model (1980) under ttam-
pletemarket setting.

Suppose that there aléagents in the market characterized by paks u;),i = 1,2,..., N.
We want to derive an equilibrium priegY), Y € M, satisfying

(2.1) Y = argmax E [u;(X; + Y — 7(Y))], i=1,2,...,N,
YeM
(2.2) > vy =o.
The optimalY™ = (Y/*,...,Y}) is called anequilibrium risk exchangand X + Y* anequi-
librium risk allocation whereX = (X3,...,Xy). The condition (2.2) is called thearket

clearingcondition. Note that this paper does not consider budget constraints and initial wealths

for simplicity. Also, the riskfree interest rate is assumed to be zero, unless stated otherwise.
Suppose that the market is arbitrage-free and complete. That is, anyasseaded in the

market without arbitrage opportunities. Then, there exists a state price dgnsitysuch that

©(Y) = E[nY] andE[n] = 1. The problem is now to derive the state price dengisatisfying

(2.3) Y. = argmax E [u;(X; + Y — E[nY])], 1=1,2,..., N,
YeM

and the market clearing condition (2.2).
The first order condition (FOC for short) of (2.3) with respectta), w € €, is given by

(2.4) ui(Xi(w) + Y (w) — EnY;"])
= n(w)Efu;(X; + Y — EY;])] = Cin(w).
Conversely, this condition implies (2.3). To see this, sinces concave, we observe that
ui(X; +Y = E[nY]) < uw(Xi + Y = E[nY;])
+up(Xi + Y7 = EY;NY = E[pY] = Y + ERpY;]),
which can be rewritten using (2.4) as
ui(Xi +Y —E[nY]) < wi(X; + Y — E[nY;])
+Cm(Y = E[pY] =Y + E[RnY;]).
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Taking expectation on both sides and utilizing the fakt] = 1 yield the desired result.

Now, let us denote the inverse functiondfby 7; = (u;)~'. Then, from the FOC (2.4), we
have
Summing overl and utilizing the market clearing condition (2.2), we obtain

(2.5) Z X; = Z I;i(nC;).

Define
(2.6) Z=> X;,  I(nC)=>_L(nC).
Also, denote the inverse function 6fx) by «/(z).? It follows from (2.5) and (2.6) that
n= éu/(Z).
SinceE[n] = 1, we finally obtain the equilibrium price as
E[Yu'(Z)]

(Y) = E[nY] Efw(2)] Z

for anyY € M. The equilibrium risk allocation is given by

Note that the expressions (2.7) and (2.8) are not explicit, because they involve unknown quan-
titiesC;, i =1,2,..., N.

2.1. Special case: Exponential utility. When all the agents have exponential utility functions,
the above problem can be solved explicitly. Suppose that

1
ui(z) = —)\—e_A””, X\ >0, i=1,2,...,N,
and the rest of the assumptions remains the same. Then$i{nge= e=*i*, the FOC (2.4) can
be written as

A

e M) — R [e_’\i(X#Yi*)} = nC;.
It follows thaty = e~ *(XitY7) /¢ whence we obtain
-1
Ai
Summing ovet and utilizing the market clearing condition (2.2), we have

(2.9) X;+Y =—(logn+logC;), i=1,2,...,N.

(2.10) Z = —%(logn +1log C),

where we put
(2.11) l_zi lo O—Zilo C
. )\_ 7; Aiv g — - )\Z g (N

It is readily checked from (2.10) and the fa&l] = 1 that we have”' = E[e—*“]. Therefore,
from (2.10), the equilibrium price (2.7) is given by

ef/\Z
(2.12) m(Y) = %, 7 = ZX

2The inverse function exists under the conditigh< 0 for all i. The function.’ () can be seen as the marginal
utility function of arepresentative agerm the market.
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foranyY € M. The equilibrium pricing formula (2.12) is explicit, becaus@and\ are defined
only through the given quantities; and \;, respectively.

The equilibrium risk allocation (2.8) can be also obtained explicitly from (2.9) and (2.10).
Namely, we have

A 1. C
X, +Y' =7+ —log—.
+ Y; Y + y og c
Taking the pricing functionat on both sides, we get
A 1. C

sincer is a linear functional. It follows that
A
X+ Y —a(Xi+Y]) = (2~ w(2)),

so that the equilibrium risk allocation is given by

(2.13) Xﬁd@*z%Z, i=1,2,...,N.
Note that the allocatioX; + Y;* is proportional to the aggregated rigkwith weight\/\; > 0,
where) . A/\; = 1, for the exponential utility case.

Finally, note that, whe& = Y +¢ with Y and¢ being mutually independent, the equilibrium
price (2.12) coincides with the Esscher transform (1.1) for Fskas claimed by Bhimann
(1980). WhenX; € M, Kijima (2006) called the equilibrium price (2.12) timaultivariate
Esscher transform.

3. AN EQUILIBRIUM MODEL FORINCOMPLETE MARKET

In this section, we propose an equilibrium pricing model inircompletemarket setting.
While, as before, there ar® agents in the markeM characterized by pair€X;, u;), i =
1,2,..., N, we assume that onl){ assets are tradable. The time-1 (future) value of agset
Jj=1,2,..., K,is denoted by, and its time-0 (present) value By. In this setting, any traded
portfolio for agent is written as

K
Yi=> uiS;,  i=12...N,
j=1

where the quantity’ represents the number of asgetaded by agent at time0. Of course,
y: > 0 implies that agent purchases assgf whereag); = 0 andy’ < 0 mean no trade and a
sell of assey, respectively.

The initial risks X; consist of tradable assets and nontradable risks. More specifically, we
assume that the initial risk of agehits given by

K
(3.1) X;=)Y aiSj+e,  i=12...,N,
j=1

where the quantit;cj. represents the number of asgdteld by agent at time0 ande; denotes
the residual risk. In the following, we denote the total number of gsssued in the market by

N
A= j=12... K
=1
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We want to derive an equilibrium priecg = 7(S;), 7 =1,2,..., K, satisfying

K
(3.2) y = argmaxE |u; [ X; + Zyj(Sj —-si) ||, Vi, 7,
Yiseeey YK j=1
N
(3.3) d yr=0  j=12.. K
i=1

The optimal{y™ = (y{*,...,y%),i = 1,..., N} is anequilibrium risk exchangand { X; +
Y:*, 1 =1,2,..., N} anequilibrium risk allocation The condition (3.3) is thenarket clearing
condition for each traded asset. As before, we do not consider budget constraints and initial
wealths for simplicity. Also, the riskfree interest rate is assumed to be zero, unless stated
otherwise.

The FOC of (3.2) with respect tg is given by

K K
Sju; (Xz‘ +) (S, - Sj)>] = 5B |u; (Xi +) (S, - sﬂ)] , Vi,
j=1 j=1

Conversely, since; is concave, it can be readily checked that this condition implies (3.2).
Suppose that all the agents have exponential utilities as in Subsection 2.1. Then, from (3.4),
we derive the following system of simultaneous equations:

(3.5) E [Sje—&(“iﬁwé%)} = s,E [e_)‘i(XiJer:ly;Sf)} .Y,

In this section, we consider the case that the rates of return of all the risks are normally dis-
tributed in order to solve the simultaneous equations (3.5). Some other cases are discussed in
Section 4.
In the following, we denote
S. —s. .
Rj="1"% j—12. . K  R=
Sj (&)
wheres; are defined in (3.1). Note that the pricing operatonust bdinear in order to preclude
arbitrage opportunities.
We use the following result repeatedly. See Kijima and Muromachi (2001) for the proof.

(3.4) E

& —7(e) i=192 . N

Lemma 3.1. Suppose thatX, Z) is normally distributed. Then,
E[f(X)e ] =E[f(X — Acov(X, Z))|E [e ]
for any f(x) for which the expectations exist, wherer denotes the covariance operator.

3.1. The case that the rates of return are normally distributed. In this section, we assume
that the random vectdR,, ..., Rk, R!,..., RY) defined above is normally distributed. The
normality assumption on asset returns has been frequently used in the finance literature. In-
deed, the instantaneous rate of retd(¢)/S(t) is usually assumed to follow the stochastic

differential equation

as(t) _
whereu(t) ando(t) are stochastic processes adapted to the filtratiBy} generated by the
standard Brownian motiow(t). In this setting, given the histor¥;, the instantaneous rate of
returndS(t)/S(t) follows a normal distribution with meamn(¢)d¢ and variancer?(t)dt.

We note from (3.1) that the potential risk; can be written as

(3.6) X, =m <1+Zw§Rj+WiR§), i=1,2,...,N,

J
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wherer; = 7(X;) = Z rhs; + m(e;) and

i . . i ﬂ-(gi)_ i
wi= =2 K W _1—ij.

Also, we have
D v =D yisi(L+ Ry) = D yisiBy + ) uis;.
J j 3 ;
It follows that
Xi+ Y yiS; = siwj + YRy +m(e) RE+mi+ Y yjs,.
J j ;
Therefore, the FOC (3.5) can be written as

K
(37) E [Rjei)\irz} = O, E Z x "‘y] R +7T(61)Ré7

for all 7 andj.
A direct application of Lemma 3.1 to (3.7) then yields

pj — Aicov(R;,T") = 0,

wherey; = E[R;] denotes the mean rate of return of agset follows from the definition of
I that .
Th = mleioi; + > sulh + vi)ows

! k
whereo?; = cov(R;, R!) ando;; = cov(R;, R;). Summing overi and utilizing the market
clearing condition (3.3), we obtain

1 )
(38) XM] = 5] + ZSkAkO-kjv J= ]-727 e '7Ka
k

whereg; = >, m(e;)o5; and ) is defined in (2.11).
Now, denotingy, = s, Ak, Equation (3.8) can be written in matrix form as

1 1
N £ =Xy orequivalently, = XZ_I(M — ),

wherep = (p;), £ = (&) andy = (,) are K-dimensional vectors, aml = (o;;) isak x K
symmetric matrix. Here, we have assumed that the covariance mxatisxpositive definite
(hence, itis invertible). Therefore, we obtain the equilibrium prices as

1 _ )
(39) SJZE[E 1(M_)\€)]]7 ]:1a277K7

where[b]; denotes theth component of vectob. Note that the pricing formula (3.9) is not
explicit, because the valugs contain unknown prices(s;) and covariances;;.

It remains to show that the prices (3.9) coincide with those calculated from (2.12). To this
end, first note that the aggregated risk is given by

N K N
(3.10) 2= "Xi=Y ASi+> e A=) a4l
=1 7j=1 =1 3

and its rate of return is written as

(3.11) R; = Zw]R + Z ~1Rl Wy = Aij - 7T<€i)
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whereR, = (Z — n(2))/7(Z).
Now, from (2.12), we need to calculate

E[s;(1 + Rj)e  (#U+Rz)]
E[e—(Z)(1+R2)] )

J; = j=1,2,...,N.

Again, thanks to Lemma 3.1, we obtain
Jj = Sj (1 + Hi — )\W(Z)COV(R]', Rz)) .
It follows from (3.11) that

Jj =S; (1 —+ My — A ZAkskakj —+ ZW(&‘@)O’%] ) .
k i
But, from (3.9) or equivalently from (3.8), the square bracket term is equal,tethence we
obtainJ; = s;. It follows that, when the rates of return of risks are normally distributed, the
equilibrium price of traded assgis given by (2.12).
Summarizing, we have the following result.

Theorem 3.1. Suppose that the rates of return of all the risks are normally distributed. Then,
the equilibrium price of any traded asset is given(ByL2)

The equilibrium risk allocation is not given by (2.13), because there are residuakyigks
our incomplete market setting. We shall return this problem later.

3.2. Arefined CAPM. Inthe previous subsection, we show that the multivariate Esscher trans-
form (2.12) holds for the incomplete market setting. In this subsection, we discuss how the
ordinary CAPM (capital asset pricing model) is modified in our setting.

Suppose that the rates of return of all the risks are normally distributed. Then, from (2.12),
we have

0=E[(S; - sj)e ]| = E[Rje M AUHE2)] = | [Rje M ARz]

It follows from Lemma 3.1 that

0= p;j — An(Z)cov(R;, Rz),
which coincides with (3.8). Moreover, if we consider the riskfree interestirgtéhe above
expression becomes
(3.12) pj —1ry=Aw(Z)cov(R;, Rz).
Hence, the term\n(Z)cov(R;, Rz) is considered to be a risk premium. Similarly, for the
pricing of the market portfolid/, we obtain

pne — 1 = Am(Z)cov(Rar, Rz).

It follows that
(3.13) =y = —VV(%%M};ZZ )) (sar =)

for each traded assgt

However, in the expression (3.13), the role of the market portfdlias unclear. In order
to considerM explicitly, we assume that the aggregated tsks defined as in (3.10), and the
market portfolio and its rate of return are given, respectively, by

M — n(M)

K
(3.14) M= A8, Ry=
jzl JR0J M W(M)

3Wang (2002) also discussed the CAPM within the framework of Wang transform.
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Since we then have
N
Z=M+z E=) &
=1

it follows from (3.13) that
T L
J f Uzzw T o J )
whereo;; = cov(R;, Ry ), etc. Therefore, denoting
g OiM
JE Bj — J

o = PR e —
J 2 )

o+ one
we conclude that

(3.15) i — 1y =+ Bi(pam — 1)
Note that the ordinary CAPM is a special case of (3.15) when the resigluais all zero.

If the market portfolio) is sufficiently diversified, it is plausible to assume thgt. = 0. In
this case, we have the following result.

Theorem 3.2(Refined CAPM) Suppose that the rates of return of all the risks are normally
distributed and that the market portfolio defined®14)is fully diversified. Then,
0 o
(3.16) pi—rp =+ Bi(uy —rs); =5, Bi=—""pim,
Om oM
for any traded asset, wherep;,, denotes the correlation betweét) and R,.

Note that the3; in Theorem 3.2 coincides with the beta in the ordinary CAPM. However, the
interceptn; does not vanishbecause the correlation (risk) between each asset and the residuals
cannot be eliminated in general. Note thatcan be either positive or negative. If it is positive
(negative, respectively), i.e. asgels positively (negatively) correlated to the residuals, more
(less) premiums are required. We call (3.16) a refined CAPM.

3.3. Pricing of derivative securities. Suppose that derivative securities written on traded as-
sets are introduced in the market and that the equilibrium prices of the derivatives are given
by (2.12). In this subsection, we show that the risk-neutral pricing method holds true for the
pricing of derivative securities.

Consider, as an example, a call option with strike prcevritten on assej. That is, we
denote

V=(5j-K)=[f(R),  [flz)=(s;(1+2)—-K),

where(z), = max{z,0}, and assume that
(317) Rj = Hj + oWy,
wherew, follows a standard normal distribution. Heye, denotes the mean rate of return and
o, the volatility of assetj. According to (2.12) withR; being normally distributed, the call
option price is then given by
E[f(Rj)e—Aw(Z)RZ]

E[e—)\ﬂ'(Z)RZ]
(3.18) = E[f(y + ojw; — An(Z)cov(R;, Rz))],
where we have used Lemma 3.1 for the second equation. However, since the relation (3.12)
holds in equilibrium, we obtain

(3.19) m(Y) = E[(s;(1 + ojw;) — K)4]

“The coefficiento; often called Jensen’s alpha (1968) to measure the investment performance in the finance
literature.

m(Y) =
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as the call option price. This is so, because the risk premiui¥)cov(R;, Rz) in (3.12)
is already reflected in the price of the underlying agsefhis result is important for prac-
tice, because we do not need to estimate the unknown (unobservable) parameteéfs and
cov(R;, Rz) for the pricing of derivative securities.

Moreover, if we adopt the approximation

(3.20) 1+ ojw; ~ 7i7%/2
it is readily shown that the call price (3.19) becomes

g l08(/E) o,

7
O'j 2

the famous Black—Scholes formula (1973) with= 0 and7" = 1.

(YY) = 5;@(d) — K®(d — o),

Theorem 3.3. Suppose that the rates of return of all the risks are normally distributed. Then,
the price of a call option written on a traded asset is given by the Black—Scholes formula,
provided that the approximatiof3.20)is valid.

Next, as in Merton (1976), suppose that there is a jump in the rate of return ofjasght
some probability. That is, instead of (3.17), we assume that

(3.21) o= Bi=pyt o, probability 1 — p,
' 77\ Ro = pj + ojw; + puy + ogwy, probability p,

wherep stands for the probability of jump. Note that, as in Merton (1976), the jump size
is assumed to be normally distributed with meanand variances2, while the correlation
betweenu; andw,; may not be zero.

Suppose that the pricing formulais given by (2.12) withbeing normally distributed. Then,
as before, we have from (3.21) that

0 = E[RjeDEz]
= (1-pE [Rle’M(Z)RZ} + pE [RQe’M(Z)RZ]
= (1—=p)[p; — In(Z)cov(Ry, Z)] + plpj + pg — An(Z)cov(Re, Z)] .
After some simple algebra, we then have
(3.22) wi +ppy = In(Z) (o;cov(w;, Rz) + poycov(wy, Rz)),

from which we can recover the formula (3.12) with= 0, sinceE[R;]| = p; + pp,.
Now, as before, consider a call option with strike pri€ewritten on the asset with jump
risk defined in (3.21). Then, similar to (3.18), we obtain

m(Y) = (1=pE[f(u; + ojw; — Am(Z)o;cov(w;, Rz))]
(3.23) +pE [f(p; + pg + ojw; + oywy — An(Z)(o;cov(w;, Rz) + oycov(wy, Rz)))] -

Note the difference between (3.19) and (3.23). In (3.23), we have no means to eliminate the

risk premiumsAn(Z)o;cov(w;, Rz) and An(Z)ocov(w,, Rz) by using (3.22). This is the

significant difference in the jump model, although the asset price satisfies the relation (3.12).
Whencov(wy, Rz) = 0, however, we have from (3.22) that

1j + ppy = An(Z)ojcov(wy, Rz),
from which the pricing formula (3.23) is reduced to
(V)= (1 =p)E[f(=pus + ojw;)] + pE [f (1 — p)ps + ojw; + o ywy)] .
Hence, if the jump risk premiumr (Z)o jcov(wy, Rz) is known, say\; in general, then the call

option price is given by a mixture of the Black—Scholes formulas as in Merton (1976), provided
that the approximation (3.20) is valid. An extension to multiple jumps is straightforward.
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4, SOME DISCUSSIONS

In this section, we discuss some related problems. Namely, of interest are the cases that
risks are themselves normally distributed and that there are no residualthe market. The
meaning of equilibrium risk allocation (2.13) becomes clear by considering these cases.

4.1. The case that risks are normally distributed. The simplest case to solve the problem
(3.5) is to assume that the random vedts¥, S, . . . , Sk ) is normally distributed. In this case,
sincel; = X, + Zle y;lSj follows a normal distribution, a direct application of Lemma 3.1 to
(3.5) yields

K
(41) l/j—>\i (afj—i—z%kyz,) = Sy, j:l,Z,...,K,
k=1

wherev; = E[S;], 0;; = cov(S;, X;) ando,; = cov(S;, S;). It follows that

K
Aizajkyli:Vj_Sj_)\io-g7 j:1,2,...,K7
k=1

or, in the matrix form,
ANZy =v—s— \o)¥,
whereX = (0;) isaK x K matrix,v = (v;), s = (s;) ando¥ = (o;;) are K-dimensional
vectors. Assuming that the mat¥ is invertible, the equilibrium risk exchangg is obtained
as
1

(4.2) Y = A—zfl(y —s5) — X7 tok

Summing (4.2) ovet, it follows from the market clearing condition (3.3) that
1

(4.3) 0= XZ_I(V —5)— X",

where )\ is defined in (2.11)) denotes the zero vector, and = Zf\;l oX. Therefore, we
obtain componentwise

N
(4.4) szvj—/\ZUf;, i=12...,K.

i=1
It is easy to check that (4.4) is equivalent to (2.12) for this case. To see this, using Lemma 3.1,
the equilibrium price (2.12) can be written as

E[S;e ]
W(Sj) = W = E[Sj — )\COV(SJ‘, Z)] =V — )\COV(SJ‘, Z),
which coincides with (4.4), wherg = >°N | X;.
Next, we consider the equilibrium risk allocation in this setting. To this end, the equilibrium
risk exchange is obtained from (4.2) and (4.3)@s, v**, ..., y"V*), where

(2

(4.5) y* =31 (%ax—a?{), i=1,2,...,N.

SNote that lognormal distributions do not admit moment generating functions. In other words, the Esscher
transform does not exist for lognormal risks. The normal assumption for asset prices seems strange; however,
economists usually adopt this assumption.
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Recall that each potential risk; is given by (3.1). Since
X = cov(X;, S;) Zxko-k]_'_o-z]?

whereo$; = cov(e;, S;), we obtain

(4.6) 0 = 32"+ 0° or,equivalently, X7lgf =2' + 27!
with 2 = (z) ando§ = (oF;). It follows from (4.5) that
A
rt+y" = /\—E‘lax — 210t

Hence, we obtain
4 o A
Xi+y"S=(2"+y")S+e = )\—UXEAS — oIS + gy,
whereS = (5) is the K-dimensional vector. On the other hand, from (4.6), we have

N
Z = ZX Z Zs+gi):aX215—oles+;ei,

=1

whereo® = ). o5. Therefore, the equilibrium risk allocation is given by

. A
(4.7) Xity"S=1Z+D;  i=12...N

A A
D, = (}\—i;a,‘i—05> »ls — ()\—izkjsk—a) )

Of course, when the residualsare all zero, the equilibrium risk allocation (4.7) coincides with
(2.13), becausé®; = 0 in this case. This is so, because our markeh@®mplete we have
no means to duplicate the potential riskKs by using the tradable asséts only. Hence, the
equilibrium risk allocation is affected by the residuals

However, an interesting observation is in order. Suppose that

A ‘
(4.8) 5i:)\—i;5k, 1=1,2,...,N.

where

That is, even though there are residual risks in the economy, the residual risk allocation is
proportional to the aggregated residual ri§@§ £ With weight/\/)\~ > 0. Then, since

1>
0 = cov (e;, S E cov(eg, S E Olj»

we conclude thab; = 0, whence the equmbrlum risk allocation (2.13) holds true.

4.2. The case of no residual risks.In this subsection, we assume that the potential risks are
portfolios of traded assets. That is, the potential ASlof agent: is given by

K
X;=>Y aiS;, i=12... N,

while we impose no assumptions on asset distributions. Although this assumption seems very
restrictive in actual insurance markets, we can solve the nonlinear simultaneous equations (3.5)
explicitly for arbitrary S;.
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Note that, in this case, the time-0 portfolio of agéftefore trading ist’ = (z¢,...,2%),
and the portfolio of agentafter trading is given by’ +y* = (z + ¢}, ..., 2% + yi), where
V=0 _ - |
Suppose that the utilities are exponential as before. In this setting, from (3.5), we derive the
following system of simultaneous equations:

(4.9) E [Sjef)‘i Zf:1(x}+y§)5j} = s, E [ St (@ 4yi)S; , Vi, J.
For each asset a sufficient condition for (4.9) to hold for a1, . . ., Sk) is given by
(4.10) (@ + ) = N (@ ), =12, N~ 1,

together with the clearing condition (3.3), for each agse&lince we havéV equations andv
unknownsy’ for eachj, we can solve the simultaneous equations. Indeed, the solution of the
simultaneoUs equations is given by

A A
(4.11) y}*:xe}—x;:xAj—x;, i=1,2,...,N,
(2 i—1 7
where) is defined in (2.11) and\; denotes the total number of asgessued in the market.
Now, from (4.11), we have

Xi(@h + i) = AA;, i=1,2,...,N,

whence we obtain
K

K
(4.12) Ny (@Y =AY A8 = AZ.

j=1 j=1

It follows from (4.9) that the equilibrium price of assgts given by

E[S;e ] -
S5 = W, 7 = ZAJS]

The equilibrium risk allocation is obtained from (4.12) as

A

X; +y™S = Zx—i—y] =17

which coincides with (2.13). Of course, this must be so, because we have no residual risks in
this setting.

Next, consider the case that there are residual rsks the economy whose allocation is
given by (4.8). In this case, it is expected that the equilibrium risk exchange remains the same
as (4.11), because the residual risks are already proportional to the equilibrium risk allocation.
In fact, the FOC (3.5) is written as

o S 1V G s 0 ST (i) S e .o
E Sje Ai > 5o (@5 4Y5)S; A152i| = S]’E [e Ai 2o (25 +y5)S; AZE%] , VZ,j,

and a sufficient condition for this simultaneous equations to hold fof&ny .., Sk) is given
by (4.10), because we hawes; = \;1¢,,1 for all i due to the condition (4.8). Equation (4.12)
is modified as

Mw

A Y (2 +y)S; +>\51—)\2AS +>\Zsk—)\Z

Jj=1 J=1
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where we have used (4.8) for the first equality and (3.10) for the second, respectively. Therefore,
the equilibrium price of assetis given by

E[Sje ] - .
VSR ST AL

and the equilibrium risk allocation is obtained as

i A
X, +y"S = Z a: —i—y] S +€Z—)\iZ.
That is, the same equilibrium results as ialmann (1980) hold true even in our incomplete
market setting under the stated assumptions.
Summarizing, we have obtained the following result.

Theorem 4.1. Suppose that the residual risksin the economy are either all zero or allocated
as in(4.8). Then, the equilibrium price and the equilibrium risk allocation are giveriz§2)
and(2.13) respectively.

5. CONCLUDING REMARKS

In this paper, we examine thellBImann’s equilibrium pricing model (1980) in an incom-
plete market setting and derive the multivariate Esscher transform (2.12) within the equilibrium
framework under some assumptions. The result reveals that the (multivariate) Esscher trans-
form is an appropriate probability transform for the pricing of insurance risks whose market is
presumably incomplete. However, we may suspect that the pricing formula (2.12) is not always
true. Indeed, we can provide some counterexamples.

Consider for simplicity the case that = 1 and N = 2, and assume that

X1:fL‘15+51, XQZZL’QS—I—EQ.
Then, the problem (3.5) becomes

(5.1) E [Se—A1(61+(x1+y)S)] = 71(S)E [e—)\l(€1+($1+y)5)j|
and at the same time
(5.2) E [Sesz(ser(Iz*y)S)] = 1(S)E [ef/\2(52+(ngy)5)} :

where we have applied the market clearing condition for (5.2).

Suppose thab follows a standard normal distribution and, given(sy,¢,) follows a bi-
variate normal distribution with zero means, varianSesnd correlatiorp. Then, sinceZ =
AS + 1 + g9 With A = 21 + 24, We have

E [Se—)\Z} - F [E [Se—)\(AS+E1+E2)|S:H
|: —XASE [e—/\(61+62)|8:|j|

Se
- E [Se—mseA2(1+p)s] '

Therefore, from (2.12) and Lemma 3.1, we obtain
A1z
AL+ A

(5.3) m(S) = X(1+p) — Aa1 + xa), A=

On the other hand, we have

E [Se—k1(61+(m1+y)s)} ) |:Se—>\1($1+y)se)\%5/2i|

_ (%2 Mzt y)> E [eA?S/Q} .
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Hence, from (5.1), we obtain
)\2

Similarly, from (5.2), we have
2

7(8) = 2~ Males ).

Solving these simultaneous equations, we obtain

1 A+ A
17(8) = % — (@1 + 22).
It follows that
A1 A2

2
Note that the prices (5.3) and (5.4) coincide with each other when X\, andp = 1, i.e., the
condition (4.8) holds (see Theorem 4.1).
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