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Abstract

In this paper, we provide the sufficient conditions for a Markov perfect equilibrium in

pure strategies to exist for a class of stochastic games with finite horizon, in which any stage

game has strategic complementarities. In contrast to previous studies (e.g., Curtat (1996)

and Amir (2002)), we assume herein that the sets of actions and the set of states is finite and

do not assume dominant diagonal conditions for payoffs and the transition probability, which

yield the uniqueness of equilibria. The greatest equilibrium is monotonically increasing in

the state. The main result is applied to a model of a Bertrand competition with investment.
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1 Introduction

A stochastic game is a collection of strategic form games indexed by a state variable. The

players choose their actions relying on a state, which changes from one period to the next

according to a stochastic process that depends on the actions of all of the players. Stochastic

games were introduced in Shapley (1953) and Markov games, which provide the most typical

and practical models in stochastic games, have been developed in the field of economics and

operations research. A number of models of Markov games have been applied to a number

of interesting problems, such as an oligopolistic industry with investment (Ericson and Pakes

(1995)), political economics (Acemoglu and Robinson (2001)), and competition with inventory

control or supply chain management (Hong, McAfee, and Nayyar (2002)).

In this paper, we establish the existence of a Markov perfect equilibrium in pure strategies for

a class of Markov games with finite horizons, in which each stage game has strategic complemen-

tarities. In general, the existence of stationary equilibria in Markov games with infinite horizons

is complex, as indicated by several studies. For example, Shapley (1953) proved the existence

of a stationary Markov equilibrium for each zero-sum discounted game with an infinite horizon.

Also, Federgruen (1978) extended the existence result for non-zero-sum discounted games with

a finite or countable state space. Finally, Nowak (1985) presented a condition for the existence

of ϵ−equilibrium with an uncountable state space and compact metric action spaces.

The Markov games with finite horizons and finite states are included in the class of finite

games in extensive form which always have equilibria if we allow the mixed strategies or assume

that the sets of actions are compact metric spaces.

However, the existence of Markov equilibria in pure strategies for the finite sets of actions still

remains to be solved. Several of the applications described above considered the pure strategy

equilibrium in their models, and numerical results were computed for the data set in discretized

actions and states. Thus, the proof of the existence of Markov equilibria in pure strategies with

finite actions and states is a critical problem.

In general, even a one-shot game in strategic form may not have a pure strategy equilib-

rium. Hence, additional conditions are required in order to ensure the existence of equilibria

in pure strategies. Games with strategic complementarities, which have been investigated by

Topkis (1978, 1979, 1998) Vives (1990), Milgrom and Roberts (1990), and Milgrom and Shannon
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(1994), provide a class of games in strategic form that guarantees the existence of pure strategy

equilibria1. However, Vives (2007) showed that multi-stage games, including Markov games,

may not preserve strategic complementarities, even if each stage game has a strategic comple-

mentarity. Hence, additional assumptions are necessary for the existence of a Markov perfect

equilibrium in pure strategies even if a horizon of the Markov game is finite. Echenique (2004)

also reported that the extension of strategic complementarities to dynamic games in extensive

form is very restrictive.

The remarkable conditions for the existence of a pure strategy equilibrium were investigated

by Curtat (1996) and Amir (2002). Curtat (1996) considered games with strategic comple-

mentarities that have infinite horizons and the compact metric spaces of actions and states

and showed a sufficient condition for the existence of a stationary equilibrium in pure strate-

gies. Amir (2002) presented another proof for the results of Curtat (1996) and showed that the

condition also ensures the equilibrium in pure strategies for a Markov game with a finite horizon.

The purpose of this paper is to extend the results of Amir (2002) to discrete action spaces.

Curtat (1996) and Amir (2002) assumed dominant diagonal conditions for the payoffs and the

transition probability. However, the dominant diagonal conditions requires twice differentiability

for the payoff functions and the transition probability and so cannot be applied to a game with

finite actions.

In Curtat (1996) and Amir (2002), the dominant diagonal conditions ensure the uniqueness

of the equilibrium and induce Lipschitz continuity of the Bellman mappings. This implies that

the Bellman mappings satisfy the conditions for Schauder’s fixed point theorem, which derives

the existence of the stationary equilibrium.

This paper examines that the greatest equilibrium stile exists in the game with a finite

horizon even if the uniqueness of the equilibrium may not hold. This is established by showing

that the monotonicities and supermodularities for the payoffs and the transition probability are

sufficient for the existence of the greatest equilibrium of reduced games.

Recently, Amir (2009) independently obtains the similar results to this paper for the Markov

games in which the set of actions are compact metric spaces. Amir (2009) shows the existence

of the equilibrium in pure strategies with both finite and infinite horizons if the payoff func-

tions and the transition probability are continuous and they satisfy the conditions for strategic

1Elementary surveys are given by Amir (2005) and Vives (2005).
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complementarities and monotonicities.

In contrast to the results of Amir (2009), the purpose of this paper is to establish the

existence of the equilibria for games in which the sets of both actions and states are finite. As

we stated above, a number of applications of Markov games analyze the numerical examples

for the data set in discretized actions and states. Our motivation is to ensure the existence of

the equilibrium for the computation of the Markov equilibria for such applications. In addition,

we examine multi-dimensional states taking such applications into account while Amir (2009)

treats one dimensional states. Since Amir (2009) assumes that the set of states and the sets

of actions are compact metric spaces, several mathematical tools for both functional analysis

(for example, Schauder’s fixed point theorem, the compactness and convergence of the set of

continuous functions, the Arzera-Ascoli theorem, etc.) and lattice theory are required. On the

other hand, our proof is simple and requires only knowledge of lattice theory by restricting

the sets to be finite. To provide these simple and elementary proofs of the results with this

discretized settings is another contirbution of this paper.

The remainder of the paper is organized as follows. In Section 2, Markov games and the

equilibrium concepts are defined. In Section 3, we show the sufficient conditions for the existence

and monotonicity of the equilibrium. In Section 4, we apply the condition to a model of a

Bertrand oligopoly with investment. In Appendix, we summarize the definitions and properties

of lattice theory.

2 Model

2.1 Markov Games with Finite Actions and States

We consider a stochastic game in discrete time with a finite horizon indexed by parameter t in

{0, 1, 2, · · · , T}. The set of players is denoted by N = {1, 2, · · · , n}. In the following, for any

n-dimensional vectors x = (x1, . . . , xn), we denote x−i = (x1, . . . , xi−1, xi+1, . . . , xn) as x−i. The

set of actions for player i, denoted by Ai, is assumed to be an integer interval of a Euclidean

space Rm:

Ai = {ai ∈ Zm|ai ≤ ai ≤ ai}

for some ai, ai ∈ Zm. The set of profiles of actions is given by A = A1 × · · · × An.
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The set of states, denoted by S ⊂ Zk is also an integer interval of a Euclidean space Rk:

S = {s ∈ Zk|s ≤ s ≤ s}.

A transition probability from state s ∈ S to s′ ∈ S when all players take actions a ∈ A is

denoted by f(s′|s, a). A state of actions at time t is denoted by st. Also, δ ∈ (0, 1) denotes a

discount factor. A single-period payoff function of player i is denoted by ui : S × A → R. We

assume that ui is bounded on S × A, so there exists M such that |ui(s, a)| ≤ M for any i ∈ N ,

s ∈ S and a ∈ A.

In stochastic games with observable actions, the action of each player at time t can generally

depend on time t, state st, and the history of action profiles and states until time t − 1. In

this paper, we restrict the strategies of any player to Markovian strategies, in which the action

of each player at time t depends only on time t and the state at time t. Here, σt
i : S → Ai is

referred to as the strategy of player i at time t, where σt
i(s) specifies the action of player i at time

t and state s. The strategy of player i is denoted by σi = (σ0
i , σ

1
i , . . . , σ

T
i ). We use the notation

σt = (σt
1, σ

t
2, . . . , σ

t
n) which is a profile of all players at time t. Let σ = (σ0, σ1, . . . , σT ) be a

strategy profile. σ>t and σ>t
i denote the subsequence from t of σ and that of σi, respectively,

i.e., σ>t = (σt, σt+1, . . . , σT ), and σ>t
i = (σt

i , σ
t+1
i , . . . , σT

i ).

2.2 Definitions of Payoffs and Equilibria

For a Markov game with finite horizon and any strategy profile σ, the payoff of player i at time

t and the realized state st = s, U t
i (σ

>t)(s) is given by

U t
i (σ

>t)(s) = E[
T∑

τ=t

δτ−tui(sτ , στ (sτ ))|st = s].

The payoff of player i in a Markov game with a finite horizon is calculated recursively. In

the following, we describe the recursive formula and define the notion of equilibria using the

recursive formula.

For a given strategy profile, U t
i (σ

>t) is regarded as a function from S to R. We denote

U t
i (σ

>t) by vi(s), which is referred to as the continuation value of player i at state s. The set

of these functions is denoted by V.

Let v be the profile of continuation values, which is a function from S to Rn, as denoted by

v(s) = (v1(s), . . . , vn(s)).
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For any s ∈ S and vi ∈ V, let φ̄i(s, vi) be the function from A to R defined as follows:

φ̄i(s, vi)(a) = ui(s, a) + δ
∑
ŝ∈S

vi(ŝ)f(ŝ|s, a).

Then, payoff at time t for strategy profile σ is calculated recursively as follows:

t = T ∀s ∈ S UT
i (σ>T )(s) = ui(s, σT (s)),

0 ≤ t ≤ T − 1 ∀s ∈ S U t
i (σ

>t)(s) = φ̄i(s, U t+1
i (σ>t+1))(σt(s)).

Thus, if the profile of continuation values v ∈ Vn and any state s ∈ S are given, a game

for players can be regarded as a one-shot game in which the payoff of player i is φ̄i(s, vi). The

n-person game (N, (Ai)n
i=1, (φ̄i(s, vi))n

i=1), denoted by Γ̄(s, v), is referred to as a reduced game

for (s, v).

A Markov perfect equilibrium is defined as follows.

Definition 2.1 (Markov perfect equilibrium with a finite horizon). A strategy profile

σ∗ is said to be a Markov perfect equilibrium if for any t ≤ T , i ∈ N and s ∈ S,

∀σ′
i U t

i (σ
∗>t)(s) ≥ U t

i (σ
′>t
i , σ∗>t

−i )(s).

By the definition of a reduced game, the strategy profile σ∗ is a Markov perfect equilibrium,

if and only if for any t ≤ T , i ∈ N and s ∈ S,

t = T UT
i (σ∗>T )(s), = maxai∈Ai ui(s, ai, σ

∗T
−i (s))

0 ≤ t ≤ T − 1 U t
i (σ

∗>t)(s) = maxai∈Ai φ̄i(s, U t+1
i (σ∗>t+1))(ai, σ

∗t
−i(s)).

(1)

3 Results

In this section, we investigate the sufficient conditions for the existence and monotonicity of the

equilibrium. To obtain the results of this study, we use some of the properties and definitions of

supermodular games on lattice theory, which were established by Milgrom and Roberts (1990),

Milgrom and Shannon (1994), and Topkis (1998). The definitions and properties are stated in

the Appendix.

First, we consider the following four conditions.

(U1) ui(s, ai, a−i) is supermodular in ai for any s ∈ S and a−i ∈ A−i:

∀a′i, ai ∈ Ai ui(s, a′i ∨ ai, a−i) + ui(s, a′i ∧ ai, a−i) ≥ ui(s, a′i, a−i) + ui(s, ai, a−i).
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(U2) ui(s, ai, a−i) has increasing differences in (ai, a−i) for any s ∈ S:

∀a′i ≥ ai ∀a′−i ≥ a−i ui(s, a′i, a
′
−i) − ui(s, ai, a

′
−i) ≥ ui(s, a′i, a−i) − ui(s, ai, a−i).

(C1)
∑

ŝ∈S vi(ŝ)f(ŝ|s, a) is supermodular in ai for any s ∈ S and a−i ∈ A−i:

∀a′i, ai ∈ Ai
∑

ŝ∈S vi(ŝ)f(ŝ|s, a′i ∨ ai, a−i) +
∑

ŝ∈S vi(ŝ)f(ŝ|s, a′i ∧ ai, a−i)

≥ ∑
ŝ∈S vi(ŝ)f(ŝ|s, a′i, a−i) +

∑
ŝ∈S vi(ŝ)f(ŝ|s, ai, a−i).

(C2)
∑

ŝ∈S vi(ŝ)f(ŝ|s, a) has increasing differences in (ai, a−i) for any s ∈ S:

∀a′i ≥ ai ∀a′−i ≥ a−i
∑

ŝ∈S vi(ŝ)f(ŝ|s, a′i, a′−i) −
∑

ŝ∈S vi(ŝ)f(ŝ|s, ai, a
′
−i)

≥ ∑
ŝ∈S vi(ŝ)f(ŝ|s, a′i, a−i) −

∑
ŝ∈S vi(ŝ)f(ŝ|s, ai, a−i)

Now we can observe that the above four conditions yield a supermodularity of each reduced

game.

Proposition 3.1. If φ̄i(s, vi) for any i ∈ N satisfies (U1), (U2), (C1), and (C2), then the game

Γ̄(s, v) is a supermodular game for any s ∈ S.

Proof. (U1) and (C1) imply that

∀a′i, ai ∈ Ai φ̄i(s, vi)(s, a′i ∨ ai, a−i) + φ̄i(s, vi)(s, a′i ∧ ai, a−i)

≥ φ̄i(s, vi)(s, a′i, a−i) + φ̄i(s, vi)(s, ai, a−i)

and (U2) and (C2) imply that

∀a′i ≥ ai ∀a′−i ≥ a−i φ̄i(s, vi)(s, a′i, a
′
−i) − φ̄i(s, vi)(s, ai, a

′
−i)

≥ φ̄i(s, vi)(s, a′i, a−i) − φ̄i(s, vi)(s, ai, a−i)

Since Ai is a finite lattice, we conclude that Γ̄(s, v) is a supermodular game.

Many applications in economics and operations research, such as price competition games,

search games, and investment games, are supermodular games (see Vives (2005) and Amir

(2005)). Since a Markov game, in which each stage game is a supermodular game satisfies (U1)

and (U2), Proposition 3.1 shows that an extension of the application to a Markov game with a

finite horizon has a pure strategy of equilibrium, if the Markov game satisfies (C1) and (C2).

However, since (C1) and (C2) include continuation values that are obtained only by recursive
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calculation, the condition cannot be confirmed by the initial settings. Then, the goal is to replace

(C1) and (C2) with some conditions for payoff functions and the transition probability.

By Topkis (1998) (shown as Proposition A.3 in Appendix), stochastic supermodularity and

stochastically increasing differences of the transition probability imply (C1) and (C2), respec-

tively, if continuation values vi are increasing in s.

Next, we define stochastic supermodularity and stochastically increasing differences.

For fixed y ∈ Y , let Pf (Ŝ|s, a) be the probability of the set Ŝ ⊆ S occurring with respect to

f(s′|s, a), i.e.,

Pf (Ŝ|s, a) =
∑
z∈Ŝ

f(z|s, a).

Here, Ŝ ⊆ S is said to be an increasing set if s′ ∈ Ŝ and s′′ ≥ s′ imply s′′ ∈ Ŝ.

(T1) f(s′|s, a) is stochastically supermodular in ai for any s ∈ S and a−i ∈ A−i:

∀a′i, ai ∈ Ai Pf (Ŝ|s, a′i ∨ ai, a−i) + Pf (Ŝ|s, a′i ∧ ai, a−i)

≥ Pf (Ŝ|s, a′i, a−i) + Pf (Ŝ|s, ai, a−i),

for any increasing set Ŝ ⊆ S.

(T2) f(s′|s, a) has stochastically increasing differences in (ai, a−i) for any s ∈ S:

∀a′i ≥ ai ∀a′−i ≥ a−i Pf (Ŝ|s, a′i, a′−i) − Pf (Ŝ|s, ai, a
′
−i)

≥ Pf (Ŝ|s, a′i, a−i) − Pf (Ŝ|s, ai, a−i),

for any increasing set Ŝ ⊆ S.

Lemma 3.2. Suppose that f satisfies (T1) and (T2) for given s ∈ S and vi ∈ V. If vi is

increasing in s, then φ̄i(s, vi) satisfies (C1) and (C2).

Proof. This lemma is directly implied by Proposition A.3.

Lemma 3.2 means that if (U1), (U2), (T1), and (T2) hold and vi is increasing in s, then

Γ̄(s, v) is a supermodular game and so has the greatest equilibrium. Moreover, if the following

two conditions hold, then the greatest equilibrium is increasing in s by a property of monotone

comparative statics for supermodular games by Milgrom and Roberts (1990) (shown as Theorem

A.1).
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(U3) ui(s, ai, a−i) has increasing differences in (ai, s) for any a−i ∈ A−i:

∀a′i ≥ ai ∀s′ ≥ s ui(s′, a′i, a−i) − ui(s′, ai, a−i) ≥ ui(s, a′i, a−i) − ui(s, ai, a−i).

(T3) f(s′|s, a) has stochastically increasing differences in (ai, s) for any a−i ∈ A−i:

∀a′i ≥ ai ∀s′ ≥ s Pf (Ŝ|s′, a′i, a−i) − Pf (Ŝ|s′, ai, a−i)

≥ Pf (Ŝ|s, a′i, a−i) − Pf (Ŝ|s, ai, a−i),

for any increasing set Ŝ ⊆ S.

Lemma 3.3. Suppose that ui satisfies (U1)–(U3) and f satisfies (T1)–(T3) for any i ∈ N . If

vi is increasing in s, then the game Γ̄(s, v) has the greatest equilibrium a∗(s, v) and a∗(s, v) is

increasing in s.

Proof. By Lemma 3.2, Γ̄(s, v) is a supermodular game and so has the greatest equilibrium

a∗(s, v). Since φ̄i(s, vi)(a) has increasing differences in (s, ai) by (U3) and (T3), we find that

a∗(s, v) is increasing in s by Theorem A.1.

Lemma 3.2 and Lemma 3.3 also require the condition for the increase of continuation values.

Hence, we need conditions that imply the increase of the continuation values. The following

two conditions leads the value of the equilibrium is increasing in state (Lemma 3.4), which

inductively implies the increase of the continuation values (Theorem 3.5).

(U4) For any i ∈ N and ai ∈ Ai, ui(s, a) is increasing in (s, a−i):

∀s′ ≥ s ∀a′−i ≥ a−i ui(s′, ai, a
′
−i) ≥ ui(s, ai, a−i).

(T4) f(·|s, a) is stochastically increasing in (s, a−i):

∀s′ ≥ s ∀a′−i ≥ a−i Pf (Ŝ|s′, ai, a
′
−i) ≥ Pf (Ŝ|s, ai, a−i)

for any increasing set Ŝ ⊆ S.

Lemma 3.4. Suppose that ui satisfies (U1)–(U4) and f satisfies (T1)–(T4) for any i ∈ N . If

vi is increasing in s, then

(1) the game Γ̄(s, v) has the greatest equilibrium a∗(s, v) = (a∗1(s, v), . . . a∗n(s, v)),
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(2) a∗(s, v) is increasing in s, and

(3) φ̄i(s, vi)(a∗(s, v)) is increasing in s.

Proof. By Lemma 3.3, the game Γ̄(s, v) has the greatest equilibrium a∗(s, v) that is increasing

in s. Suppose that s′ ≥ s. To simplify the notation, let a′i = a∗i (s
′, v), a∗i = a∗i (s, v)

a∗−i = (a∗1(s, v), . . . , a∗i−1(s, v), a∗i+1(s, v), . . . , a∗n(s, v)), and

a′−i = (a∗1(s′, v), . . . , a∗i−1(s
′, v), a∗i+1(s

′, v), . . . , a∗n(s′, v)).

Since a′i is an equilibrium strategy of player i for game Γ̄(s′, v), we have

φ̄i(s′, vi)(a∗(s′, v)) = ui(s′, a′i, a
′
−i) + δ

∑
ŝ∈S vi(ŝ)f(ŝ|s′, a′i, a′−i)

≥ ui(s′, a∗i , a
′
−i) + δ

∑
ŝ∈S vi(ŝ)f(ŝ|s′, a∗i , a′−i)

a∗(s′, v) ≥ a∗(s, v) yields a′−i ≥ a∗−i. In conjunction with (U4), this imply that ui(s′, a∗i , a
′
−i) ≥

ui(s, a∗i , a
∗
−i). Similarly, a′−i ≥ a∗−i and (T4) implies

Pf (Ŝ|s′, a∗i , a′−i) ≤ Pf (Ŝ|s, a∗i , a∗−i)

for any increasing set Ŝ ⊆ S. Then, for any increasing function vi,∑
ŝ∈S

vi(ŝ)f(ŝ|s′, a∗i , a′−i) ≥
∑
ŝ∈S

vi(ŝ)f(ŝ|s, a∗i , a∗−i)

because of a property of the first-order stochastic dominance.

This implies that

ui(s′, a∗i , a
′
−i) + δ

∑
ŝ∈S vi(ŝ)f(ŝ|s′, a∗i , a′−i) ≥ ui(s, a∗i , a

∗
−i) + δ

∑
ŝ∈S vi(ŝ)f(ŝ|s, a∗i , a∗−i)

= φ̄i(s, vi)(a∗(s, v)).

Hence, we conclude that φ̄i(s′, vi)(a∗(s′, v)) ≥ φ̄i(s, vi)(a∗(s, v)).

Theorem 3.5. If a Markov game with a finite horizon satisfies (U1)–(U4) and (T1)–(T4), then

(1) the game has a Markov perfect equilibrium σ∗,

(2) σt(s) is increasing in state s, for any 0 ≤ t ≤ T , and

(3) U t
i (σ

∗>t)(s) is also increasing in state s for any i ∈ N and for any 0 ≤ t ≤ T .
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Proof. The proof is given by induction based on the terminal period T .

First, suppose T = 0 and fix a state s. Then, the game is a one-shot n-person game in

which the payoff of a player is given by φ̄i(s,0)(a) = ui(s, a), where 0 means that vi(s′) = 0 for

any state s′ ∈ S. Then, noting that 0 is increasing in s, Lemma 3.4 implies that there exists

an equilibrium σ∗0(s) = a∗(s), which is increasing in s. Since σ∗ = (σ∗0(s)), (1) and (2) hold

for T = 0. Moreover, by Lemma 3.4, U t
i (σ

∗>0)(s) = φ̄i(s,0)(a∗(s)) is increasing in s. Hence,

(1)–(3) hold for T = 0.

Next, suppose that T ≥ 1 and (1)–(3) hold for the terminal period T − 1. Since a subgame

following to t = 1 is a Markov game with T−1 periods, there exists a Markov perfect equilibrium,

according to an induction hypothesis of (1). Hence, we denote the Markov perfect equilibrium

of the subgame following to t = 1 by σ∗>1 = (σ1∗, σ2∗, . . . , σT∗). Induction hypotheses of (2)

and (3) also imply that σ∗>1 and U1
i (σ∗>1)(s) are increasing in s. Let vi(s) = U1

i (σ∗>1)(s)

for any i ∈ N and consider the reduced game Γ̄(s, v) = (N, (Ai)n
i=1, (φ̄i(s, vi))n

i=1). Lemma 3.4

implies that

(r1) Γ̄(s, v) has the greatest equilibrium a∗(s, v),

(r2) a∗(s, v) is increasing in state s, and

(r3) φ̄i(s, vi)(a∗(s, v)) is increasing in state s for any i ∈ N .

Let σ0∗(s) = a∗(s, v). Then, (r1) and induction hypothesis (1) imply that

σ∗ = (σ0∗, σ1∗, σ2∗, . . . , σT∗) is a Markov perfect equilibrium. Since σ0∗(s) is increasing in s by

(r2), σ∗ is increasing in s. Finally, U1
i (σ∗>1)(s) = φ̄i(s, vi)(a∗(s, v)) is increasing in s by (r3).

Hence (1)–(3) hold for T . This concludes the proof.

4 An Application: Bertrand Oligopoly with Investment

One of the applications satisfying (U1)–(U4) and (T1)–(T4) is a Bertrand oligopoly game with

investments, which is stated as follows. Firm i (i = 1, · · · , n) sells product i with price pi ∈
[0, p̄]Z . The demand of product i is decided by the prices of all types of products, (p1, . . . , pn)

and the accumulation of the investment si. At time t, firm i decides the price of product i and

the amount of the investment Ii ∈ [0, Ī]Z . The accumulation of the investment increases the

appeal of product i, thereby increasing the demand of the product. The accumulation of the
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investment of player i at time t is denoted by st
i and is given by st+1

i = st
i + hi(Ii), where hi(Ii)

is an increment of the accumulation of the investment. Thus, we assume that the accumulation

of the investment of firm i depends only on the associated amount of investment, Ii. We also

assume that hi(Ii) is a random variable according to distribution function Fi defined by

Fi(x|Ii) = Prob[hi(Ii) ≤ xi].

The payoff of player i is defined by

ui(s, a) = (pi − ci)Di(si, p1, . . . , pn) − kiIi

where ci ≥ 0 is the marginal cost of product i and ki ≥ 0 is the marginal cost of the investment

of i. Di(si, p1, . . . , pn) is the demand of product i for an accumulation of the investment si and

prices (p1, . . . , pn).

If Di is a linear function of the prices, i.e.,

(D1)

Di(si, p1, . . . , pn) = α(si) − βiipi +
∑

j ̸=i βijpj

s′i ≥ si → α(s′i) ≥ α(si),

βii ≥ 0, βij ≥ 0, α(si) > p̄βii for any si,

then we find that ui(s, a) satisfies (U1)–(U4).

Moreover, if the probability distribution of the increment of the investment of each player i

satisfies the following:

(F1) Fi(x|I ′i) ≤ Fi(x|Ii) for any x and I ′i ≥ Ii, and

(F2) Fi(x′|I ′i) − Fi(x′|Ii) ≤ Fi(x|I ′i) − Fi(x|Ii) for any I ′i ≥ Ii and x ≥ x′,

then the transition probability satisfies (T1)–(T4).

To demonstrate this, we introduce the following notation. An action of player i, ai, consists

of two components, the price of product i, pi, and the amount of investment, Ii. Therefore, let

ai = (pi, Ii) and a′i = (p′i, I
′
i).

If Ŝ ⊆ S is an increasing set, then there exists ŝ(Ŝ) = (ŝ1(Ŝ) . . . ŝn(Ŝ)) such that

Ŝ = [ŝ1(Ŝ), s1] × · · · × [ŝn(Ŝ), sn].

Let F̄j(ŝj |sj , Ij) = 1 − Fj(ŝj − sj |Ij). Then, for any increasing set Ŝ, we have

Pf (Ŝ|s, a) = Πj∈N F̄j(ŝj(Ŝ)|sj , Ij)
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, which is the probability that the subsequent state is greater than ŝ. For any increasing set Ŝ,

j ∈ N and a′j ≥ aj , (F1) implies that

F̄j(ŝj(Ŝ)|sj , I
′
j) ≥ F̄j(ŝj(Ŝ)|sj , Ij), (2)

and (F2) implies that

F̄j(ŝj(Ŝ)|s′j , I ′j) − F̄j(ŝj(Ŝ)|s′j , Ij) ≥ F̄j(ŝj(Ŝ)|sj , I
′
j) − F̄j(ŝj(Ŝ)|sj , Ij), (3)

for any s′j ≥ sj . Moreover, if s′j ≥ sj , then

F̄j(ŝj(Ŝ)|s′j , Ij) ≥ F̄j(ŝj(Ŝ)|sj , Ij). (4)

for any increasing set Ŝ , j ∈ N and Ij because Fj(ŝj(Ŝ) − s′j |Ij) ≤ Fj(ŝj(Ŝ) − sj |Ij).

Next, we show that (T1)–(T4) hold if the probability distribution of the increment of the

investment accumulation of each player satisfies (F1) and (F2). (T1) holds in the equality

because, for any a′i, ai ∈ Ai, s and increasing set Ŝ,

Pf (Ŝ|s, a′i ∨ ai, a−i) + Pf (Ŝ|s, a′i ∧ ai, a−i)

= F̄i(ŝi(Ŝ)|si, max{I ′i, Ii})Πj ̸=N F̄j(ŝj(Ŝ)|sj , Ij) + F̄j(ŝi(Ŝ)|si, min{I ′i, Ii})Πj ̸=N F̄j(ŝj(Ŝ)|sj , Ij)

= F̄i(ŝi(Ŝ)|si, I
′
i)Πj ̸=N F̄j(ŝj(Ŝ)|sj , Ij) + F̄j(ŝi(Ŝ)|si, Ii)Πj ̸=N F̄j(ŝj(Ŝ)|sj , Ij)

= Pf (Ŝ|s, a′i, a−i) + Pf (Ŝ|s, ai, a−i).

Next, we will show that (T2) is satisfied. For any s, a′i ≥ ai, a′−i ≥ a−i, and any increasing

set Ŝ,

Pf (Ŝ|s, a′i, a′−i) − Pf (Ŝ|s, ai, a
′
−i)

= F̄i(ŝi(Ŝ)|si, I
′
i)Πj ̸=iF̄j(ŝj(Ŝ)|sj , I

′
j) − F̄i(ŝi(Ŝ)|si, Ii)Πj ̸=iF̄j(ŝj(Ŝ)|sj , I

′
j)

≥ F̄i(ŝi(Ŝ)|si, I
′
i)Πj ̸=iF̄j(ŝj(Ŝ)|sj , Ij) − F̄i(ŝi(Ŝ)|si, Ii)Πj ̸=iF̄j(ŝj(Ŝ)|sj , Ij)

= Pf (Ŝ|s, a′i, a−i) − Pf (Ŝ|s, ai, a−i),

where the second inequality is obtained by (2).

Similarly, for any s′ ≥ s, a′i ≥ ai, a−i and any increasing set Ŝ,

Pf (Ŝ|s′, a′i, a−i) − Pf (Ŝ|s′, ai, a−i)

= F̄i(ŝi(Ŝ)|s′i, I ′i)Πj ̸=iF̄j(ŝj(Ŝ)|s′j , Ij) − F̄i(ŝi(Ŝ)|s′i, Ii)Πj ̸=iF̄j(ŝj(Ŝ)|s′j , Ij)

= (F̄i(ŝi(Ŝ)|s′i, I ′i) − F̄i(ŝi(Ŝ)|s′i, Ii))Πj ̸=iF̄j(ŝj(Ŝ)|s′j , Ij)

≥ (F̄i(ŝi(Ŝ)|si, I
′
i) − F̄i(ŝi(Ŝ)|si, Ii))Πj ̸=iF̄j(ŝj(Ŝ)|s′j , Ij)

≥ (F̄i(ŝi(Ŝ)|si, I
′
i) − F̄i(ŝi(Ŝ)|si, Ii))Πj ̸=iF̄j(ŝj(Ŝ)|sj , Ij)

= Pf (Ŝ|s, a′i, a−i) − Pf (Ŝ|s, ai, a−i),
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where the first and second inequality are implied by (3) and (4), respectively. Hence, (T3) is

satisfied.

Finally, it is easily shown that (T4) is true. For any s′ ≥ s, a′ ≥ a and any increasing set Ŝ,

Pf (Ŝ|s′, a′i) = Πj∈N F̄j(ŝj(Ŝ)|s′j , I ′j)
≥ Πj∈N F̄j(ŝj(Ŝ)|sj , Ij)

= Pf (Ŝ|s′, a′i)

where the inequality is implied by (4).

5 Conclusions

The present paper gives the sufficient conditions for a Markov perfect equilibrium in pure strate-

gies to exist for a class of stochastic games with a finite horizon and finite states, in which any

stage game has strategic complementarities for finite actions. We show the class of a Bertrand

competition with investment, which satisfies the conditions.

The results for finite states and actions have advantages for numerical computation. Indeed,

computation of equilibrium of Markov games has attracted a great deal of attention in the mod-

eling of industrial dynamics, e.g., Ericson and Pakes (1995) and Doraszelski and Satterthwaite

(2008). It would be useful to extend the results of this study to these models.

Appendix: Summary of Lattice Theory: Definitions and Results

In this appendix, we summarize some of the properties of lattice theory that were used herein.

A.1 A Partially Ordered Set and a Lattice

A binary relation ≥ on a nonempty set X is a partial order if ≥ is reflexive, transitive, and

anti-symmetric.

For a subset Y of X, ŷ ∈ X is referred to as an upper (lower) bound on Y if ŷ ≥ y (ŷ ≤ y)

for all y ∈ Y . ŷ ∈ Y is the greatest (least) element of Y if ŷ ≥ y (ŷ ≤ y) for any y ∈ Y . A

supremum (infimum) of Y ⊆ X is a least upper bound (greatest lower bound) and is denoted by

supX Y (infX Y ). If a supremum (infimum) of Y belongs to Y , then it is the greatest element

of Y .
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For any two elements x′ and x in a partially ordered set (X,≥), x′ ∨ x and x′ ∧ x is defined

by sup{x′, x} and inf{x′, x}, respectively. A partially ordered set (X,≥) is said to be a lattice if

for any x′, x ∈ X, both x′ ∨ x and x′ ∧ x also belong to X.

A.2 Supermodularity and Increasing Differences

A function g : X → R on a lattice X is said to be supermodular if for any x, x′ ∈ X, g(x′ ∨ x) +

g(x′ ∧ x) ≥ g(x′) + g(x).

Let (X,≥X) be a lattice, and let (Y,≥Y ) be a partially ordered set. The function g : X×Y →
R has increasing differences in (x, y) if g(x′, y) − g(x, y) is increasing in y for x′ >X x, namely:

g(x′, y′) − g(x, y′) ≥ g(x′, y) − g(x, y) ∀x′ >X x and ∀y′ >Y y. (5)

A.3 Supermodular Games

An n-person game Γ is a three tuple Γ = (N, {Ai}n
i=1, {γi}n

i=1), where

• N = {1, · · · , n} is the set of players,

• Ai is the set of actions for player i, and

• γi : A → R is the payoff function of player i, where A = A1 × · · · × An.

An n-person game is said to be supermodular if the set of actions for each player i is a compact

lattice and the payoff function γi(ai, a−i) is supermodular in ai ∈ Ai for fixed a−i ∈ A−i and

satisfies increasing differences in (ai, a−i), where A−i = A1 × · · ·Ai−1 × Ai+1 · · · × An.

Theorem A.1 (Milgrom and Roberts (1990), Topkis (1998) and Echenique (2002)).

Let Y be a partially ordered set, and let {Γ(x) = (N, (Ai)n
i=1, (γi(y)}n

i=1))|y ∈ Y } be a family

of a supermodular game in which payoff functions {γi(y)}n
i=1) are parameterized by y ∈ Y . If

γi(y)(ai, a−i) has increasing differences in (y, ai) for any i ∈ N and a−i ∈ A−i, then there exists

the greatest equilibrium a∗(y) of Γ(y) for any y ∈ X and a∗(y) is increasing in y.

A.4 Monotonicity of Probability Functions

Let X = {x ∈ Zk|x ≤ s ≤ x} be a k-dimensional integer interval, and let Y be a partially

ordered finite set. Suppose that f(x, y) is a probability function on X parameterized by y ∈ Y :

f that satisfies
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(1) f(x, y) ≥ 0 for any x ∈ X,

(2)
∑

x∈X f(x, y) = 1,

for any y ∈ Y .

For fixed y ∈ Y , let Pf (X ′, y) be a probability of the set X ′ ⊆ X occurring with respect to

f(x, y), which is defined by

Pf (X ′, y) =
∑
z∈X′

f(z, y).

X ′ ⊆ X is said to be an increasing set if x ∈ X ′ and x′ ≥ x imply x′ ∈ X ′.

f(x, y) is said to be stochastically increasing in y, if for any y′ ≥ y, Pf (X ′, y′) ≥ Pf (X ′, y)

for any increasing set X ′.

The following proposition is known as the theory of multivariative stochastic orders (Topkis

(1998) and Müller and Stoyan (2002)).

Proposition A.2 (Multivariative Stochastic Dominance). Let v(x) be an increasing func-

tion in x, and suppose that f(x, y) is stochastically increasing in y. Then, the expectation∑
x∈X v(x)f(x, y) is increasing in y.

Topkis (1998) showed that Proposition A.2 implies that, if the function is increasing, su-

permodularity and increasing differences of an expectation of a function for some parameters

are derived from submodularity and decreasing differences of a distribution function for the

parameters.

f(x, y) is said to be stochastically supermodular in y, if for any increasing set X ′ ⊂ X and

y′ ≥ y,

Pf (X ′, y′ ∨ y) + Pf (X ′, y′ ∧ y) ≥ Pf (X ′, y′) + Pf (X ′, y).

Consider a probability function f(x, y, z) on X parameterized by (y, z) ∈ Y ×Z where y and Z

are partially ordered sets. Here, f(x, y, z) is said to represent stochastically increasing differences

in (y, z), if for any increasing set X ′ ⊂ X, y′ ≥ y and z′ ≥ z,

Pf (X ′, y′, z′) − Pf (X ′, y, z′) ≥ Pf (X ′, y′, z) − Pf (X ′, y, z).

Proposition A.3 (Topkis (1998) ). Let v : X → R be an increasing function of x ∈ X, and

let f(x, y, z) be a probability function on X parameterized by (y, z) ∈ Y ×Z. Then, the following

three properties hold:
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(1) If f is stochastically supermodular in y ∈ Y for any (x, z) ∈ X × Z, then the expectation∑
x∈X v(x)f(x, y, z) is supermodular in y ∈ Y , and

(2) If f has stochastically increasing differences in (y, z) for any x ∈ X, then the expectation∑
x∈X v(x)f(x, y, z) has increasing differences in (y, z).
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