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Abstract

In this article, we consider options written on yield spreads such as swap spreads
and basis swap spreads under the DLG model developed by Kijima et al. (2009). For
this purpose, we extend the DLG model, by shifting the short rates with deterministic
functions of time, so that the initial yield curves implied by the DLG model are
consistent with the observed curves in the market. This is important not only for
risk management purposes, but also because the drift term of short rates affects the
price of spread options. Some numerical examples are given to discuss the impact
of model parameters, in particular of correlations, on option prices for the quadratic
Gaussian model and the Hull-White model.

1 Introduction

Interest-rate products such as bonds, swaps and basis swaps are frequently traded in the
financial market. However, because of frictions existing in the market, yield spreads such
as swap spreads and basis swap spreads are observed, and market participants need to
watch them carefully in order to manage their exposures to liquidity and credit.

A swap spread is a swap rate minus a bond yield (or a par yield) with the same
maturity, whereas a basis swap spread is a fixed spread to be added on either leg of
a basis swap to exchange LIBORs (London Interbank Offered Rates) of two currencies
with principal exchange. From the pricing point of view, we can regard such a spread
contract as a swap contract between two parties to exchange cash flows that depend on
a yield spread.

These spreads are fluctuating to reflect several frictions and/or conditions of demand
and supply in the market. For example, a swap spread is likely to get wider when
‘flight to quality’ takes place in the bond market. A USD/JPY basis swap often moves
when a company issues a JPY denominated bond and swaps the raised fund into USD.1

Such a yield curve spread implies a different quality of the two yield curves. The DLG
model2 developed by Kijima et al. (2009) allows one to formulate many yield curves with
different quality under the no-arbitrage framework.

For risk management purposes, option contracts written on such spreads are beneficial
to the market participants who pay attention to the movement of yield curve spreads.
Hence, the pricing of spread options becomes important for them, in particular, due

∗Graduate School of Social Sciences, Tokyo Metropolitan University, E-mail: kijima@tmu.ac.jp
†Graduate School of Social Sciences, Tokyo Metropolitan University, E-mail: tanaka-keiichi@tmu.ac.jp
‡Mizuho Securities Co. Ltd., E-mail: sktw813@gmail.com
1The literature and the background of basis swaps are found in Kijima et al. (2009) and references

therein.
2“D” stands for “Discount”, “L” for “LIBOR”, and “G” for “Government”, respectively.
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to the growing concern on credit risk and liquidity risk. See Carmona and Durrleman
(2003) for a survey of the pricing of spread options when the dynamics of underlying
assets follows a geometric Brownian motion.

A spread we focus in this article follows a more complicated dynamics than the
geometric Brownian motion, because swaps and basis swaps involve many cash flows
during their lives. However, the spread contract can be seen as a portfolio of zero-coupon
bonds, and an option on a spread as a swaption with a floating strike rate. Employing
this idea, this article considers an option on a spread contract in one currency under the
DLG model, and derives the option value that is “naturally” quoted in one currency.
Our result is distinct from Brigo and Mercurio (2007) who discussed several quanto
derivatives on two currency curves.

One of crucial issues on interest-rate models for practitioners is the fitting of the
initial yield curves. It is useful for risk management purposes if the initial yield curves
implied by a model are consistent with the yield curves observed in the market. Hull and
White (1994) first showed that it is possible by adding a time dependent function in the
drift term of the short rate in the Vasicek model (1977).3 This is equivalent to shifting
the short rate by a deterministic function. Brigo and Mercurio (2001) applied this idea
to several short rate models.

Note that the drift term of the short-rate processes does affect the price of spread
options, while it does not for bond options in general. This is so, because bonds are
traded assets while spreads are not. Under the risk-neutral measure, any traded asset
has the risk-free short rate as the drift term, and this term will disappear after the change
of measure to the forward measure. See, e.g., Brigo and Mercurio (2007) for details.

In this article, we extend the DLG model so that the initial yield curves implied by
the model are consistent with the observed curves in the market. The idea is based on
the deterministic shift of short rates as in Brigo and Mercurio (2001). To this end, we
carry out bootstrapping of the discount factors and the forward rates from observed yield
curves. Other model parameters can be calibrated from the option prices.

This article is organized as follows. In the next section, we briefly describe the DLG
model and study options written on a swap spread and a basis swap spread. The issue
of initial curve fitting is discussed in Section 3 for two short-rate models, the quadratic
Gaussian model and the Hull-White model. In Section 4, we show some numerical
examples of yield curves and option prices under the two short rate models. Section 5
concludes this article.

2 The DLG Model and Spread Options

In this section, we provide a brief summary of the DLG model developed by Kijima et
al. (2009), and study options written on a swap spread and a basis swap spread. The
DLG model was constructed in order to treat multi-quality of yield curves under multiple
currencies within the no-arbitrage framework.

2.1 The DLG model

Consider a market in which interest-rate swaps, basis swaps and government bonds are
traded among market participants. It is assumed that there exist the three yield curves,
D-curve, L-curve and G-curve, in each currency. The D-curve is used to discount cash

3According to Inui and Kijima (1998), the Hull-White model is a special case of the Heath, Jarrow
and Morton (HJM) model (1992) with Markovian state variables.
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flows. The L-curve determines the LIBORs so that it is related to swap rates and basis
swap rates. The G-curve determines the government bond (“Govt”) rates. Each curve
in each currency is associated with the short rate rk(t) and the zero-coupon bond prices
Pk(t, T ), k = D,L,G.

Roughly speaking, the spread between the D-curve and the L-curve affects the basis
swap spreads, while the spread between the L-curve and the G-curve determines the term
structure of the swap spread that is equal to a swap rate minus a bond yield. Although
we concentrate on the three curves in this article, it is straightforward to extend the
model so as to include other curves such as corporate bonds.

Among currencies, the currency “USD” is supposed to support enough liquidity of
the fund to all market participants, so that USD has no friction between the D-curve
and the L-curve. This assumption is equivalent to saying that any floating rate note
with coupons of USD LIBOR is worth a par.4 Under this setting, it is sufficient to focus
on the three yield curves of the other currency, say “JPY”.

The uncertainty is represented by a probability space (Ω,F , QD) on which the short
rates rk(t), k = D,L,G, are defined by using a three-dimensional standard Brownian
motion W (t) = (WD(t),WL(t),WG(t))�. Here, � stands for transposition of vectors
and matrices. The filtration generated by the Brownian motion is denoted by {Ft}.
The probability measure QD is the risk-neutral measure, since we are interested in the
pricing of financial products. Hence, the short rate rD(t) is regarded as the risk-free
interest rate. The expectation of random variable X conditional on Ft with respect to
probability measure P is denoted by EP

t [X].
The forward rates on the L-curve and the G-curve are important ingredients for the

pricing of swaps and government bonds. The zero-coupon bond price of the k-curve,
k = D,L,G, is defined by

Pk(t, T ) = EQD
t

[
exp

{
−

∫ T

t

(
rk(s) − 1

2
‖λk(s)‖2

)
ds −

∫ T

t
λk(s)�dW (s)

}]
, (1)

where λk(t) = (λD
k (t), λL

k (t), λG
k (t))� represents the market prices of risk of the k-curve

relative to the D-curve. Hence, we assume λD(t) = 0 for the D-curve.
For the period [T1, T2], the time-t forward LIBOR L(t, T1, T2) and forward Govt rate

G(t, T1, T2) are calculated, respectively, by making use of the forward measure QT2
D as

L(t, T1, T2) =
1

T2 − T1

(
E

Q
T2
D

t

[
PL(T1, T2)−1

]− 1
)

(2)

and

G(t, T1, T2) =
1

T2 − T1

(
E

Q
T2
D

t

[
PG(T1, T2)−1

]− 1
)

. (3)

See Kijima et al. (2009) for details.
A swap rate S(t, T0, TN ) is a fixed rate at time t to be exchanged with the floating rate

L(Ti−1, Ti−1, Ti) at time Ti, i = 1, 2, · · · , N , for the period [T0, TN ]. On the other hand,
for a basis swap contract entered at time t, the USD LIBOR is exchanged by the JPY
LIBOR L(Ti−1, Ti−1, Ti) plus a basis swap spread bs(t, T0, TN ) at time Ti, i = 1, 2, · · · , N ,
for the period [T0, TN ], with a principal exchange at both the starting date and the
maturity. A government bond with maturity TN is supposed to pay a coupon C(TN ) for
the period [T0, TN ], and the time-t bond price is denoted by V (t, TN ).

4One can remove the assumption if the price of the floating rate note with any maturity is known and
the dynamics of the foreign exchange rate is formulated in the model.
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In what follows, we assume that the same day-count convention is applied to all the
products, and the relevant dates T0 < T1 < · · · < T = TN are set at regularly spaced
time intervals with δ = Ti − Ti−1 for all i. The current time t is any time on or prior to
T0.

Kijima et al. (2009) obtained the following three fundamental equations:

S(t, T0, TN ) =
∑N

i=1 L(t, Ti−1, Ti)PD(t, Ti)∑N
i=1 PD(t, Ti)

, (4)

bs(t, T0, TN ) =
PD(t, T0) − PD(t, TN )

δ
∑N

i=1 PD(t, Ti)
− S(t, T0, TN ), (5)

and

V (t, TN ) = PD(t, T0) + δ

N∑
i=1

(C(TN ) − G(t, Ti−1, Ti)) PD(t, Ti). (6)

The swap rate (4) is an average of the forward LIBOR’s with the weights of zero-
coupon bond prices implied by the D-curve. The basis swap spread (5) can be viewed
as a difference between the swap rate without frictions implied by the D-curve, i.e.

SD(t, T0, TN ) =
PD(t, T0) − PD(t, TN )

δ
∑N

i=1 PD(t, Ti)
, (7)

and the swap rate S(t, T0, TN ) with frictions implied by both the D-curve and the L-
curve. If the L-curve coincides with the D-curve completely, the difference between the
two swap rates diminishes. Hence, the basis swap spread appears due to such frictions
that are observed as a spread between the D-curve and the L-curve in the market.

The bond price (6) is derived by regarding the bond transaction as a swap contract
to exchange the fixed coupon C(TN ) with the floating Govt rates G(Ti−1, Ti−1, Ti). It
follows that, in the DLG model, the par yield of a government bond is given by

Y (t, T0, TN ) =
∑N

i=1 G(t, Ti−1, Ti)PD(t, Ti)∑N
i=1 PD(t, Ti)

, (8)

in the form of a swap rate as if G(Ti−1, Ti−1, Ti) were the floating rates. See Kijima et
al. (2009) for details.

2.2 Bootstrapping

Bootstrapping is a method to obtain the unobservable variables PD, L,G recursively from
observed rates and prices in (4), (5) and (6). Denoting the observed or implied prices in
the market by superscript M , one can carry out bootstrapping to obtain

PM
D (0, Ti) =

PM
D (0, T0) − δ

(
SM (0, T0, Ti) + bsM (0, T0, Ti)

)∑i−1
j=1 PM

D (0, Tj)
1 + δ (SM (0, T0, Ti) + bsM(0, T0, Ti))

,

(9)

LM (0, Ti−1, Ti) =
SM (0, T0, Ti)

∑i
j=1 PM

D (0, Tj) − SM (0, T0, Ti−1)
∑i−1

j=1 PM
D (0, Tj)

PM
D (0, Ti)

,

(10)

GM (0, Ti−1, Ti) = C(Ti) − 1
δPM

D (0, Ti)

[
V M (0, Ti) − PM

D (0, T0)

− δ

i−1∑
j=1

(
C(Ti) − GM (0, Tj−1, Tj)

)
PM

D (0, Tj)
]
, (11)
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where SM (0, T0, Ti), bsM (0, T0, Ti), V M (0, Ti), i = 1, 2, · · · , N are the observed yield
curves. See Kijima et al. (2009) for details.

Let us compare the above results with the classical bootstrapping of swap rates in
which basis swaps are not taken into consideration. By the classical bootstrapping, one
obtains the ordinary discount factors P̃ (Ti) and forward LIBOR’s L̃(Ti−1, Ti) as

P̃ (Ti) =
P̃ (T0) − δSM (0, T0, Ti)

∑i−1
j=1 P̃ (Tj)

1 + δSM (0, T0, Ti)
(12)

and

L̃(Ti−1, Ti) =
SM (0, T0, Ti)

∑i
j=1 P̃ (Tj) − SM (0, T0, Ti−1)

∑i−1
j=1 P̃ (Tj)

P̃ (0, Ti)
, (13)

respectively. If one regards a swap as an exchange of a fixed coupon bond and a floating
coupon bond, the values of the fixed leg and the floating leg of the swap are both zero,
i.e.

0 = −P̃ (T0) + δ

i∑
j=1

L̃(Tj−1, Tj)P̃ (Tj) + P̃ (Ti)

= −P̃ (T0) + δSM (0, T0, Ti)
i∑

j=1

P̃ (Tj) + P̃ (Ti). (14)

Also, under the classical bootstrapping, the classical forward LIBOR is calculated as

L̃(Ti−1, Ti) = δ

(
P̃ (Ti−1)
P̃ (Ti)

− 1

)
. (15)

Hence, the classical model (14) cannot express a non-zero basis swap spread, because

0 �= −P̃ (T0) + δ
i∑

j=1

(
L̃(Tj−1, Tj) + bsM (0, T0, Ti)

)
P̃ (Tj) + P̃ (Ti)

in general.
On the other hand, bootstrapping of the DLG model (9)–(10) implies that the legs

are not worth zero but the minus of the basis swap multiplied by the annuity, i.e.

−bsM (0, T0, Ti)
i∑

j=1

PM
D (0, Tj)

= −PM
D (0, T0) + δ

i∑
j=1

LM (0, Tj−1, Tj)PM
D (0, Tj) + PM

D (0, Ti)

= −PM
D (0, T0) + δSM (0, T0, Ti)

i∑
j=1

PM
D (0, Tj) + PM

D (0, Ti). (16)

It follows that

0 = −PM
D (0, T0) + δ

i∑
j=1

(
LM (0, Tj−1, Tj) + bsM(0, T0, Ti)

)
PM

D (0, Tj) + PM
D (0, Ti).

Hence, the DLG model is consistent with a non-zero basis swap spread.
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Equation (16) shows that negative basis swap spreads lead to higher discount factors
than the classical ones, i.e. PM

D (0, T ) > P̃ (T ). Nevertheless, the forward LIBOR’s are
similar, i.e. LM (0, Ti−1, Ti) ≈ L̃(Ti−1, Ti), as we shall see later in numerical examples.
These findings have important implications in the DLG model. As Kijima et al. (2009)
stated, on-the-market swap values are always zero, independent of the bootstrapping
method, while off-the-market swap values may be distinct over the two bootstrapping
methods due to the existence of basis swap spreads.

2.3 Options on spread

Let us consider options on a swap spread and a basis swap spread by making use of
the multi-quality curves. Needless to say, an option on a spread is an insurance against
undesired movements of the spread.

In this article, a call option on a swap spread is defined as a contract to give the option
buyer the right to enter into a swap to receive coupons of a swap spread S(T0, T0, TN )−
Y (T0, T0, TN ) prevailing at the option expiry T0 by paying coupons of a fixed spread k,
called the strike spread, for the same period [T0, TN ]. The option buyer will see a benefit
when the swap spread gets wider than the strike spread at the option expiry. Since the
period for the observation to determine the spread at the expiry is matched with the
period of the underlying swap, the call option on a swap spread is clearly equivalent to
a payer swaption to pay a fixed rate of Y (T0, T0, TN ) + k versus to receive LIBOR. This
fact is also confirmed by the following option price formula at time t:

PD(t, T0)E
Q

T0
D

t

⎡
⎣( N∑

i=1

δ (S(T0, T0, TN ) − Y (T0, T0, TN ) − k)PD(T0, Ti)

)
+

⎤
⎦

= PD(t, T0)E
Q

T0
D

t

⎡
⎣( N∑

i=1

δ (L(T0, Ti−1, Ti) − (Y (T0, T0, TN ) + k)) PD(T0, Ti)

)
+

⎤
⎦ ,

where (x)+ = max{x, 0}. Here, equality follows from (4). Recall from (8) that we can
calculate the bond par yield as a swap rate constructed by the D-curve and G-curve.
Thus, in the DLG model, the call option can be calculated as a payer swaption with the
floating strike rate of Govt swap rate plus the strike spread against LIBOR. A put option
on a swap spread is parallel to the call option and equivalent to a receiver swaption with
a floating strike rate.5

A call option on a basis swap spread gives the buyer the right to enter into a swap to
receive coupons of a basis swap spread bs(T0, T0, TN ) prevailing at the option expiry T0

by paying coupons of a fixed spread k for the same period [T0, TN ]. Since the basis swap
spread is a spread between two swap rates by (5), i.e. SD(T0, T0, TN ) − S(T0, T0, TN ),
the option price is written as

PD(t, T0)E
Q

T0
D

t

⎡
⎣( N∑

i=1

δ (bs(T0, T0, TN ) − k)PD(T0, Ti)

)
+

⎤
⎦

= PD(t, T0)E
Q

T0
D

t

⎡
⎣( N∑

i=1

δ ((SD(T0, T0, TN ) − k) − L(T0, Ti−1, Ti)) PD(T0, Ti)

)
+

⎤
⎦ .

5An option to enter into an asset swap can be formulated similarly.
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This implies that the call option is equivalent to a receiver swaption to receive a fixed
rate of SD(T0, T0, TN ) − k versus to pay LIBOR. The same arguments apply to a put
option on a basis swap.

Remark 2.1. The above discussions can be generalized to options with maturity Tm of
the swap period to exchange cash flows that is different from the maturity TN of swaps
and/or bonds. That is, we then have

PD(t, T0)E
Q

T0
D

t

⎡
⎣
(

m∑
i=1

δ (S(T0, T0, TN ) − Y (T0, T0, TN ) − k) PD(T0, Ti)

)
+

⎤
⎦ .

Typical examples are caps and floors on these spreads. The analytical expressions of the
above option prices reveal that it reduces to a calculation of an option on a rate with
convexity adjustment, which has been well studied for CMS (constant maturity swaps).
A Monte Carlo simulation is a simple means to evaluate such options, although it is often
very time-consuming. However, as demonstrated in Tanaka et al. (2007), the usage of
bond moments is efficient when pricing options for a certain class of underlying interest
rate models, including affine term structure models and quadratic Gaussian models. In
Section 4, we present some numerical examples of standard spread options with m = N .

3 Yield Curve Fitting

Following the spirit of Hull and White (1994) and Brigo and Mercurio (2001), this section
extends the results of Kijima et al. (2009) so that the initial curves implied by the DLG
model are consistent with observed rates in the market by using deterministic shifting
functions. Simpler versions of the short rate models studied in this section have been
discussed in Kijima et al. (2009) without the initial curve fitting.

3.1 Quadratic Gaussian model

The first example is a quadratic Gaussian model where the D-curve is constructed by a
quadratic Gaussian model of Pelsser (1997) while each of the L-curve and the G-curve
has a Gaussian spread over the D-curve. Namely, we assume that

rD(t) = (xD(t) + α + βt)2 + ϕD(t),
rL(t) = rD(t) + hL(t), hL(t) = xL(t) + ϕL(t),
rG(t) = rD(t) + hG(t), hG(t) = xG(t) + ϕG(t),

where xk(t) are the Ornstein-Uhlenbeck processes give by

dxk(t) = −akxk(t)dt + σkdWk(t), xk(0) = 0, k = D,L,G,

and where ϕk(t) are deterministic functions of time t that are to be jointly determined
from observed initial curves.6 The Brownian motions WD(t), WL(t), WG(t) are inde-
pendent of each other under QD. The market prices of risk are assumed to be given
by ⎛

⎜⎜⎝
λD

D(t) λL
D(t) λG

D(t)

λD
L (t) λL

L(t) λG
L (t)

λD
G(t) λL

G(t) λG
G(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0

0 λL 0

0 0 λG

⎞
⎟⎟⎠ (17)

6The shifting function ϕD(t) can be negative, so that the short rate rD(t) may become negative,
although rD(t) − ϕD(t) must be nonnegative.
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with some constants λL, λG. For the implementation purpose, it is enough to consider
the integral of ϕk, k = D,L,G, given by

Φk(T ) ≡
∫ T

0
ϕk(t)dt. (18)

According to Pelsser (1997), the zero-coupon bond price of the D-curve is an expo-
nential of the quadratic function of xD. More precisely, we have

PD(t, T ) = exp
{
−

∫ T

t
ϕD(s)ds + AD(t, T ) − BD(t, T )xD(t) − CD(t, T )xD(t)2

}
, (19)

where

γ =
√

a2
D + 2σ2

D,

FD(t, T ) = 2γeγ(T−t)
(
(γ + aD)e2γ(T−t) + γ − aD

)−1
,

CD(t, T ) =
(
e2γ(T−t) − 1

)(
(γ + aD)e2γ(T−t) + γ − aD

)−1
,

BD(t, T ) = 2FD(t, T )
∫ T

t

α + βs

FD(s, T )
ds

and

AD(t, T ) =
∫ T

t

(
1
2
σ2

DBD(s, T )2 − σ2
DCD(s, T ) − (α + βs)2

)
ds.

Explicit formulas for BD and AD are obtained in Kijima et al. (2008). For the reader’s
convenience, they are shown in Appendix. Note that, by setting t = 0 in (19), ΦD must
be given by

ΦD(T ) = − ln PM
D (0, T ) + AD(0, T ). (20)

As to the other curves, we need to calculate the forward rates (2) and (3). To this
end, define for j, k = L,G

Bk(t, T ) = − 1
ak

(
1 − e−ak(T−t)

)
, Bjk(t, T ) = −1 − e−(aj+ak)(T−t)

aj + ak
.

From the dynamics of the Ornstein-Uhlenbeck processes xk(t), k = L,G, we have

∫ T

t
xk(s)ds = −Bk(t, T )xk(t) − σk

∫ T

t
Bk(s, T )dWk(s).

Hence, the integral
∫ T
t xk(s)ds is normally distributed with

EQD
t

[∫ T

t
xk(s)ds

]
= −Bk(t, T )xk(t),

V arQD
t

[∫ T

t
xk(s)ds

]
=

σ2
k

a2
k

(2Bk(t, T ) − Bkk(t, T ) + T − t)

and

CovQD
t

[∫ T

t
xk(s)ds,Wk(T ) − Wk(t)

]
=

σk

ak
(Bk(t, T ) + T − t) .

8



By making use of the independence of Brownian motions, we then obtain from (1) with
k = L that

PL(t, T ) = PD(t, T ) exp {BL(t, T )xL(t) + AL(t, T )} ,

where

AL(t, T ) = −ΦL(T ) + ΦL(t) +
σ2

L

2a2
L

(2BL(t, T ) − BLL(t, T ) + T − t)

− λL
σL

aL
(BL(t, T ) + T − t) . (21)

The forward LIBOR (2) is given by

L(t, Ti−1, Ti) =
1
δ

(
PD(t, Ti−1)
PD(t, Ti)

KL(t, Ti−1, Ti) − 1
)

, (22)

where

KL(t, Ti−1, Ti) = exp
{
−AL(Ti−1, Ti) − σ2

L

2
BL(Ti−1, Ti)2BLL(t, Ti−1)

− e−aL(Ti−1−t)BL(Ti−1, Ti)xL(t)
}

. (23)

By comparing (22) with (15), we find that the function KL represents the effect of
basis swap spreads. On the other hand, by the results of bootstrapping (9)–(10), we
know the initial value of KL implied by the observed rates in the market as

KM
L (0, Ti−1, Ti) =

PM
D (0, Ti)

PM
D (0, Ti−1)

(
1 + δLM (0, Ti−1, Ti)

)
. (24)

Therefore, by plugging (21) into (23) with t = 0, ΦL must satisfy

ΦL(Ti) = ΦL(Ti−1) + ln KM
L (0, Ti−1, Ti)

+
σ2

L

2a2
L

(2BL(Ti−1, Ti) − BLL(Ti−1, Ti) + Ti − Ti−1) (25)

− λL
σL

aL
(BL(Ti−1, Ti) + Ti − Ti−1) +

σ2
L

2
BL(Ti−1, Ti)2BLL(0, Ti−1),

which is a formula to construct ΦL(Ti) with ΦL(0) = 0.
Note that some interpolation method, such as the cubic spline method, should be

applied to calculate ΦL(t) for t ∈ (Ti, Ti+1). However, by construction, ΦD and ΦL

defined in this way can generate initial curves of swap rates and basis swap spreads
which are consistent with the observed rates in the market.

For the evaluation of swaps and swaptions, the following representation may be useful:

PD(t, T ) =
PM

D (0, T )
PM

D (0, t)
exp

{
AD(t, T ) − AD(0, T ) + AD(0, t)

− BD(t, T )xD(t) − CD(t, T )xD(t)2
}

, (26)

L(t, T1, T2) =
1
δ

(PM
D (0, T1)

PM
D (0, T2)

KM
L (0, T1, T2) exp

{
−(BD(t, T1) − BD(t, T2))xD(t)

− (CD(t, T1) − CD(t, T2))xD(t)2 − e−aL(T1−t)BL(T1, T2)xL(t)

+ ML(t, T1, T2)
}
− 1

)
, (27)

ML(t, T1, T2) = AD(t, T1) − AD(0, T1) − AD(t, T2) + AD(0, T2)

− σ2
L

2
BL(T1, T2)2 (BLL(t, T1) − BLL(0, T1)) .

9



One may apply Monte Calro simulation to (26) and (27) under the T0-forward measure
QT0

D . Since the vector process (W T0
D (t),W T0

L (t),W T0
G (t))� defined by

dW T0
D (t) = dWD(t) − σD (BD(t, T0) + 2CD(t, T0)xD(t)) dt,

dW T0
L (t) = dWL(t),

dW T0
G (t) = dWG(t),

follows the three-dimensional standard Brownian motion under T0-forward measure QT0
D

by the Girsanov theorem, the dynamics of xk(t) under QT0
D are given by

dxD(t) = (σDBD(t, T0) + (2σDCD(t, T0) − aD)xD(t)) dt + σDdW T0
D (t),

dxL(t) = −aLxL(t)dt + σLdW T0
L (t),

dxG(t) = −aGxG(t)dt + σGdW T0
G (t).

Hence, xk(T0), k = D,L,G, are again normally distributed under the T0-forward mea-
sure.

Finally, using the same arguments, we can derive an explicit formula for the G-curve
in a completely parallel form. In fact, it is enough to replace the notation L with G. The
only difference is whether the initial curve is calculated in rates in (10) or bond prices in
(11). If the initial yield curve of bond yields is given as the par yields rather than bond
prices, the formula of ΦG is completely the same as ΦL due to the form of (8).

3.2 The Hull-White model

The second example is a correlated Gaussian model at the sacrifice of non-negativity in
the short rate. That is, following the idea of Hull and White (1994), suppose that

rD(t) = xD(t) + ϕD(t),
rL(t) = rD(t) + hL(t), hL(t) = xL(t) + ϕL(t),
rG(t) = rD(t) + hG(t), hG(t) = xG(t) + ϕG(t),

where xk(t) are the Ornstein-Uhlenbeck processes given by

dxk(t) = −akxk(t)dt + σkdWk(t), xk(0) = 0, k = D,L,G,

and where ϕk(t) are deterministic functions of time t. Again, it is sufficient to specify
the integral

Φk(T ) ≡
∫ T

0
ϕk(t)dt, k = D,L,G. (28)

In order to introduce correlations among xk(t) k = D,L,G, we assume that the Brownian
motions Wk(t) are correlated as

dWD(t)dWL(t) = ρDLdt, dWD(t)dWG(t) = ρDGdt, dWL(t)dWG(t) = ρLGdt.

The market prices of risk are assumed to be given by (17).
Define the functions

Bk(t, T ) = − 1
ak

(
1 − e−ak(T−t)

)
, Bjk(t, T ) = −1 − e−(aj+ak)(T−t)

aj + ak

10



for j, k = D,L,G. Then, we obtain

PD(t, T ) = exp
{
− ΦD(T ) + ΦD(t) + BD(t, T )xD(t)

+
σ2

D

2a2
D

(2BD(t, T ) − BDD(t, T ) + T − t)
}

.

Thus, ΦD is given by

ΦD(T ) = − ln PM
D (0, T ) +

σ2
D

2a2
D

(2BD(0, T ) − BDD(0, T ) + T ) . (29)

Next, we consider the forward LIBOR L(t, Ti−1, Ti). Write Equation (1) for k = L
as PL(t, T ) = EQD

t [eX ], where X is a Gaussian random variable given by

X = −
∫ T

t

(
xD(s) + ϕD(s) + xL(s) + ϕL(s) +

1
2
λ2

L

)
ds −

∫ T

t
λLdWL(s)

= BD(t, T )xD(t) + σD

∫ T

t
BD(s, T )dWD(s) + BL(t, T )xL(t) + σL

∫ T

t
BL(s, T )dWL(s)

−ΦD(T ) + ΦD(t) − ΦL(T ) + ΦL(t) − 1
2
λ2

L(T − t) − λL(WL(T ) − WL(t)).

Since the random variable X has the mean

EQD
t [X] = BD(t, T )xD(t) + BL(t, T )xL(t) − ΦD(T ) + ΦD(t)

−ΦL(T ) + ΦL(t) − 1
2
λ2

L(T − t)

and the variance

V arQD
t [X] =

σ2
D

a2
D

(2BD(t, T ) − BDD(t, T ) + T − t) +
σ2

L

a2
L

(2BL(t, T ) − BLL(t, T ) + T − t)

+ λ2
L(T − t) − 2λL

ρDLσD

aD
(BD(t, T ) + T − t) − 2λL

σL

aL
(BL(t, T ) + T − t)

+ 2
ρDLσDσL

aDaL
(BD(t, T ) + BL(t, T ) − BDL(t, T ) + T − t) ,

we can calculate the expectation to yield

PL(t, T ) = PD(t, T ) exp {BL(t, T )xL(t) + AL(t, T ) + ADL(t, T )} ,

where AL and ADL are defined as

AL(t, T ) = −ΦL(T ) + ΦL(t) +
σ2

L

2a2
L

(2BL(t, T ) − BLL(t, T ) + T − t)

− λL
σL

aL
(BL(t, T ) + T − t)

and

ADL(t, T ) =
σ2

D

2a2
D

(2BD(t, T ) − BDD(t, T )) − λL
ρDLσD

aD
(BD(t, T ) + T − t)

+
ρDLσDσL

aDaL
(BD(t, T ) + BL(t, T ) − BDL(t, T ) + T − t) ,
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respectively. Note that AL is the term related to the L-curve only while ADL is the term
related to an interaction between the L-curve and the D-curve.

The forward LIBOR is calculated as

L(t, Ti−1, Ti) =
1
δ

(
PD(t, Ti−1)
PD(t, Ti)

KL(t, Ti−1, Ti) − 1
)

,

where

KL(t, Ti−1, Ti) = exp
{
−AL(Ti−1, Ti) − ADL(Ti−1, Ti) − 1

2
BL(Ti−1, Ti)2σ2

LBLL(t, Ti−1)

−BL(Ti−1, Ti)
(

xL(t)e−aL(Ti−1−t) − ρDLσDσL

aD
(BL(t, Ti−1) − BDL(t, Ti−1))

)}
.

It follows that ΦL must satisfy

ΦL(Ti) = ΦL(Ti−1) + ln KM
L (0, Ti−1, Ti)

+
σ2

L

2a2
L

(2BL(Ti−1, Ti) − BLL(Ti−1, Ti) + Ti − Ti−1)

− λL
σL

aL
(BL(Ti−1, Ti) + Ti − Ti−1)

+ ADL(Ti−1, Ti) +
1
2
BL(Ti−1, Ti)2σ2

LBLL(0, Ti−1)

− ρDLσDσL

aD
BL(Ti−1, Ti) (BL(0, Ti−1) − BDL(0, Ti−1)) , (30)

where KM
L is given by (24). The remaining calculations are carried out in the same way

as the quadratic Gaussian case.
At last, similar to the quadratic Gaussian case, the following expressions will be useful

for the evaluation of swaps and swaptions:

PD(t, T ) =
PM

D (0, T )
PM

D (0, t)
exp {AD(t, T ) + BD(t, T )xD(t)} ,

AD(t, T ) =
σ2

D

2a2
D

(
2BD(t, T ) − BDD(t, T ) − (2BD(0, T ) − BDD(0, T ))

+ 2BD(0, t) − BDD(0, t)
)
.

L(t, T1, T2) =
1
δ

(PM
D (0, T1)

PM
D (0, T2)

KM
L (0, T1, T2) exp

{
−(BD(t, T1) − BD(t, T2))xD(t)

− e−aL(T1−t)BL(T1, T2)xL(t) + ML(t, T1, T2)
}
− 1

)
ML(t, T1, T2) = AD(t, T1) − AD(t, T2) − σ2

L

2
BL(T1, T2)2 (BLL(t, T1) − BLL(0, T1))

+
ρDLσDσL

aD
BL(T1, T2) (BL(t, T1) − BDL(t, T1) − (BL(0, T1) − BDL(0, T1))) .

4 Numerical examples

In this section, we present some numerical examples of option evaluation implied by the
DLG model whose initial curve is consistent with observed market rates.

Suppose that at time t = 0 we observe swap rates S(T ), basis swap spreads bs(T )
and bond par yields Y (T ) for several maturities T in the market as indicated in Table 1.

12



Throughout the numerical examples, swaps and bonds are assumed to have semi-annual
coupon payments. Using the classical bootstrapping (12)–(13), we calculate the zero
rate Z̃(T ) = − ln P̃ (T )/T , the forward LIBOR L̃(T ) = L̃(T − 0.5, T ), and the forward
Govt rate G̃(T ) = G̃(T − 0.5, T ) by assuming that the bond par yield is a swap rate.
For a comparison with the DLG bootstrapping (9)–(11), we give the adjusted zero rate
Z̃(T ) + bs(T ) that reflects the basis swap spread in the last column of Table 1.

The model parameters of the quadratic Gaussian model (QG model) and the Hull-
White model (HW model) discussed in the previous section are set as shown in Table
2. σL is set higher than σG in each model. The correlations of the HW model ρ =
(ρDL, ρDG, ρLG) will be specified later in each example.

Given these information, we can calculate the shifting functions ΦD,ΦL and ΦG in
each model. Results for the QG model are shown in Table 3. Using the DLG boot-
strapping (9)–(11), we obtain the initial zero rate Z(T ) = − lnPM

D (0, T )/T , the forward
LIBOR L(T ) = LM

D (0, T − 0.5, T ) and the forward Govt rate G(T ) = GM
D (0, T − 0.5, T ).

It is interesting to note that Z(T ) ≈ Z̃(T ) + bs(T ), L(T ) ≈ L̃(T ), G(T ) ≈ G̃(T ). In par-
ticular, the differences in the forward rates are within 0.2 basis points. Roughly speaking,
the zero rate Z(T ) is lower than the classical zero rate Z̃(T ) by the basis swap spread,
although the forward rates are kept to be the same. Therefore, as explained in Section
2.2, there exists a difference in the evaluation of off-the-market swaps by the annuity of
the basis swap spreads between the two bootstrapping methods. For example, the value
of annuity for 10 years is 1

2

∑20
i=1 PD(0, i/2) = 9.3407 in bootstrapping of the QG model,

while it is 1
2

∑20
i=1 P̃ (i/2) = 9.2630 in the classical bootstrapping.

The shifting functions in the HW model are shown in Table 4. Note that ΦD is
independent of the correlations by (29), while ΦL and ΦG depend on the correlation ρDL

and ρDG, respectively, due to (30); but they are independent of ρLG. The bootstrapped
rates Z(T ), L(T ), G(T ) in these models are very close to the results obtained in the QG
model (see Table 3) and are omitted.

Prices of swaptions and bond options struck at the ATMF (at-the-money-forward)
rate are calculated by Monte Carlo simulation with 100,000 runs. In these numerical
examples of bond options, we consider options on fictitious bonds. Namely, an ATMF
bond option means an option on a bond whose coupon is equal to the ATMF yield with
a strike price of a par, not an option on a bond with a strike price of the ATMF price
of the bond. It is a benefit of the DLG model that such a bond option is equivalent to
a swaption against Govt rates constructed by the G-curve.

There are two types of the implied volatility for a price of swaption or bond option;
the yield volatility and the absolute volatility. The absolute volatility is the annual
standard deviation of movements of a particular forward swap rate (or bond yield). The
yield volatility is the Black-Scholes type volatility or the relative volatility that equals
the absolute volatility divided by the ATMF rate. Thus, the absolute volatility assumes
a normal distribution for the underlying rates, while the yield volatility assumes a log-
normal distribution.

Prices and volatilities of ATMF receiver’s swaptions and ATMF call bond options
are shown in Table 5 for the QG model and Tables 6–8 for the HW model. At the
first glance of the volatility term structure in the QG model, we observe a decreasing
volatility along the underlying maturities. Options on short-dated underlyings have high
volatilities compared with options on long-dated underlyings with the same expiry. The
HW model exhibits flatter term structures of volatility than the QG model.

Let us compare the prices of swaptions with those of bond options, where the corre-
lations ρDL and ρDG play an important role for option prices but ρLG does not. In the
case of non-negative correlations (see Tables 6 and 7), the prices of swaptions are slightly
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higher than those of bond options with the same expiry and underlying maturity, since
the volatility σL is set higher than σG. Therefore, in this case, the absolute volatilities
of swaptions are slightly higher than those of bond options, while the yield volatilities
of swaptions are lower than those of bond options due to relatively higher ATMF rates
of swaps than ATMF yields of bonds. On the other hand, negative correlations produce
lower absolute volatilities of swaptions than those of bond options (see Table 8). By
comparing Table 6 with Tables 7 and 8 in the HW model, higher correlation ρDL (or
ρDG) between the L-curve (or G-curve) and the D-curve yields higher volatilities.

In Tables 9–13, we show prices of spread options and the absolute volatilities.7 Re-
gardless of different levels of volatilities of the D-curves between the QG model and the
HW model, Tables 9 (QG model) and 10 (HW model) show very close prices of spread
options, since the dynamics of xL and xG are the same. By comparing Tables 11 and
12, it is evident that the prices of options on basis swaps are the same because of the
same correlation ρDL, while the prices of swap spread options are quite different due to
different correlation ρLG. Positive ρLG yields low prices of swap spread options. Positive
(or negative) ρDL makes high (or low) prices of options on basis swap as shown in Tables
10–13.

5 Conclusion

The DLG model allows us to formulate many yield curves with different quality under the
no-arbitrage setting. This article demonstrates the usefulness of our model, especially in
the pricing of spread options, and how to construct a short rate model whose initial curves
are consistent with the observed curves in the market. The construction of these yield
curves is carried out by deterministic shifting functions of short rates and bootstrapping
of the discount factors of the cash flows and the forward rates. Other model parameters
can be calibrated from the option prices. It becomes clear that correlations between
curves play a crucial role for the pricing of spread options.

7The yield volatilities do not bring meaningful information due to the small numbers of the ATMF
rates in these spread options.
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Table 1: Initial yield curve (percent)

Maturity Swap Basis swap Bond Swap spread Classical bootstrapping
T (years) S(T ) bs(T ) Y (T ) S(T ) − Y (T ) Z̃(T ) L̃(T ) G̃(T ) Z̃(T ) + bs(T )

1 1.000 -0.400 0.700 0.300 0.998 1.050 0.770 0.598
2 1.100 -0.350 0.850 0.250 1.098 1.252 1.093 0.748
3 1.190 -0.300 0.960 0.230 1.188 1.419 1.240 0.888
4 1.280 -0.250 1.060 0.220 1.279 1.604 1.420 1.029
5 1.355 -0.210 1.145 0.210 1.355 1.706 1.542 1.145
6 1.430 -0.170 1.230 0.200 1.432 1.863 1.721 1.262
7 1.500 -0.140 1.310 0.190 1.504 1.983 1.862 1.364
8 1.570 -0.120 1.390 0.180 1.577 2.134 2.035 1.457
9 1.635 -0.100 1.465 0.170 1.645 2.237 2.159 1.545
10 1.690 -0.090 1.530 0.160 1.702 2.267 2.211 1.612
12 1.785 -0.070 1.635 0.150 1.804 2.404 2.319 1.734
15 1.905 -0.060 1.765 0.140 1.934 2.592 2.509 1.874
20 2.060 -0.050 1.930 0.130 2.109 2.834 2.754 2.059
25 2.160 -0.040 2.040 0.120 2.226 2.839 2.787 2.186
30 2.220 -0.030 2.110 0.110 2.296 2.750 2.728 2.266

Table 2: Model parameters

Quadratic Gaussian (QG) model Hull-White (HW) model
aD = 0.07, σD = 0.0750, α = β = 0 aD = 0.07, σD = 0.0090,
aL = 0.04, σL = 0.0020, λL = 0 aL = 0.04, σL = 0.0020, λL = 0
aG = 0.04, σG = 0.0010, λG = 0 aG = 0.04, σG = 0.0010, λG = 0

Table 3: Bootstrapping of the QG model (percent)

Maturity Shifting function Bootstrapping
T ΦD(T ) ΦL(T ) ΦG(T ) Z(T ) L(T ) G(T )
1 0.331 0.398 0.100 0.599 1.050 0.770
2 0.478 0.696 0.199 0.749 1.251 1.092
3 0.489 0.893 0.208 0.890 1.419 1.239
4 0.444 0.989 0.116 1.031 1.603 1.419
5 0.280 1.032 -0.008 1.148 1.704 1.541
6 0.130 0.993 -0.193 1.265 1.862 1.720
7 -0.069 0.942 -0.369 1.368 1.982 1.861
8 -0.283 0.912 -0.502 1.462 2.134 2.034
9 -0.463 0.838 -0.658 1.551 2.237 2.159
10 -0.763 0.828 -0.727 1.619 2.267 2.211
12 -1.321 0.741 -0.998 1.741 2.405 2.320
15 -2.189 0.777 -1.236 1.882 2.592 2.509
20 -3.118 0.831 -1.631 2.067 2.834 2.754
25 -3.787 0.751 -2.027 2.195 2.840 2.788
30 -4.573 0.527 -2.424 2.278 2.751 2.730
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Table 4: Shifting functions of the HW model (percent)

Maturity ρ = (0, 0, 0) ρ = (0.4, 0.4,−0.4)
T ΦD(T ) ΦL(T ) ΦG(T ) ΦD(T ) ΦL(T ) ΦG(T )
1 0.600 -2.906 -3.205 0.600 -2.906 -3.205
2 1.508 -5.913 -6.410 1.508 -5.914 -6.411
3 2.701 -9.021 -9.706 2.701 -9.023 -9.707
4 4.195 -12.231 -13.104 4.195 -12.236 -13.106
5 5.870 -15.492 -16.532 5.870 -15.502 -16.537
6 7.808 -18.836 -20.022 7.808 -18.854 -20.031
7 9.904 -22.192 -23.502 9.904 -22.220 -23.516
8 12.157 -25.527 -26.941 12.157 -25.568 -26.962
9 14.585 -28.905 -30.401 14.585 -28.963 -30.430
10 17.012 -32.220 -33.775 17.012 -32.297 -33.814
12 22.193 -38.916 -40.655 22.193 -39.043 -40.719
15 30.451 -48.795 -50.808 30.451 -49.023 -50.921
20 45.620 -65.265 -67.728 45.620 -65.734 -67.962
25 61.751 -81.869 -84.648 61.751 -82.664 -85.045
30 78.228 -98.618 -101.568 78.228 -99.817 -102.167

Table 5: Yields and volatilities in the QG model

Swaption Bond option
Option
Expiry Swap Maturity (years) Bond Maturity (years)
(years) 1 3 5 10 1 3 5 10
ATMF rate (percent)
1 1.201 1.375 1.519 1.817 1.001 1.182 1.340 1.678
3 1.557 1.680 1.812 2.038 1.367 1.511 1.664 1.919
5 1.822 1.952 2.055 2.222 1.675 1.826 1.950 2.122
10 2.268 2.340 2.409 2.521 2.169 2.244 2.316 2.428
Option price (basis point)
1 24.2 61.6 87.2 121.3 23.4 59.0 82.4 109.3
3 58.6 146.1 202.7 269.6 57.8 143.5 198.0 257.9
5 79.6 196.2 270.2 355.1 78.8 193.5 265.2 343.2
10 96.9 236.1 322.7 420.7 96.0 233.1 317.3 407.4
Yield volatility (percent)
1 51.6 38.6 30.1 18.2 60.1 43.0 32.2 17.8
3 59.0 45.4 35.4 20.8 67.1 49.9 37.7 22.2
5 56.0 42.7 33.8 21.4 61.0 45.2 35.0 21.6
10 43.7 34.2 27.5 17.9 45.6 35.4 28.1 18.0
Absolute volatility (basis point)
1 62.0 53.1 45.7 33.1 60.2 50.9 43.1 29.9
3 91.9 73.3 64.1 44.4 91.7 75.3 62.7 42.5
5 102.1 83.4 69.4 47.5 102.2 82.6 68.2 45.9
10 99.2 80.1 66.2 45.0 98.9 79.4 65.2 43.6
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Table 6: Volatilities in the HW model with ρ = (0, 0, 0)

Swaption Bond option
Option Swap Maturity Bond Maturity
Expiry 1 3 5 10 1 3 5 10
Yield volatility (percent)
1 73.6 59.7 50.4 36.0 87.4 68.3 56.1 38.0
3 54.0 46.4 40.0 30.4 60.7 50.7 42.7 31.4
5 43.7 37.8 33.5 26.4 46.7 39.5 34.4 26.9
10 30.5 27.5 24.9 20.4 31.1 27.9 25.2 20.5
Absolute volatility (basis point)
1 88.4 82.1 76.6 65.4 87.5 80.8 75.1 63.8
3 84.0 77.9 72.5 61.9 83.0 76.6 71.0 60.3
5 79.6 73.8 68.8 58.7 78.1 72.1 67.1 57.1
10 69.2 64.3 60.1 51.4 67.5 62.6 58.3 49.7

Table 7: Volatilities in the HW model with ρ = (0.4, 0.4,−0.4)

Swaption Bond option
Option Swap Maturity Bond Maturity
Expiry 1 3 5 10 1 3 5 10
Yield volatility (percent)
1 80.2 65.1 55.2 39.7 91.7 71.7 59.0 40.1
3 59.4 51.2 44.3 33.9 63.9 53.4 45.1 33.3
5 48.4 42.1 37.4 29.9 49.3 41.8 36.5 28.7
10 34.5 31.3 28.5 23.6 33.2 29.9 27.1 22.2
Absolute volatility (basis point)
1 96.3 89.6 83.9 72.1 91.8 84.8 79.0 67.4
3 92.4 86.0 80.3 69.1 87.4 80.7 75.0 64.0
5 88.3 82.1 76.9 66.3 82.6 76.4 71.2 60.9
10 78.2 73.2 68.7 59.5 72.1 67.1 62.7 53.9

Table 8: Volatilities in the HW model with ρ = (−0.4,−0.4, 0)

Swaption Bond option
Option Swap Maturity Bond Maturity
Expiry 1 3 5 10 1 3 5 10
Yield volatility (percent)
1 66.9 54.0 45.4 32.1 83.5 65.2 53.4 36.0
3 48.4 41.4 35.6 26.6 57.7 48.0 40.4 29.5
5 38.5 33.1 29.2 22.7 44.0 37.2 32.3 25.0
10 26.5 23.7 21.3 17.1 28.9 25.8 23.2 18.7
Absolute volatility (basis point)
1 80.3 74.3 69.0 58.3 83.6 77.1 71.6 60.4
3 75.4 69.5 64.4 54.3 78.9 72.6 67.2 56.6
5 70.2 64.7 59.9 50.4 73.7 67.9 65.3 53.1
10 60.0 55.4 51.3 43.1 62.6 57.9 53.7 45.4
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Table 9: Spread options in the QG model

Option on swap spread Option on basis swap
Option Maturity Maturity
Expiry 1 3 5 10 1 3 5 10
ATMF rate (basis point)
1 20.0 19.3 17.9 13.9 -30.0 -19.9 -12.2 -4.5
3 18.9 16.9 14.8 11.9 -9.6 -3.5 -0.5 1.2
5 14.8 12.7 10.6 10.0 3.9 4.0 4.1 2.6
10 9.9 9.6 9.3 9.3 3.2 2.2 1.0 0.0
ATMF Option price (basis point)
1 8.5 24.3 38.5 67.2 7.6 21.8 34.5 60.3
3 13.9 39.4 62.0 107.8 12.4 35.1 55.3 96.0
5 16.6 47.0 73.9 128.1 14.9 42.1 66.2 114.6
10 19.4 54.6 85.6 147.5 17.3 48.8 76.5 131.8
Absolute volatility (basis point)
1 21.6 20.8 20.1 18.4 19.4 18.7 18.0 16.5
3 20.8 20.0 19.3 17.7 18.6 17.9 17.2 15.7
5 20.0 19.2 18.5 17.0 17.9 17.2 16.6 15.2
10 18.4 17.7 17.0 15.6 16.4 15.8 15.2 13.9

Table 10: Spread options in the HW model with ρ = (0, 0, 0)

Option on swap spread Option on basis swap
Option Maturity Maturity
Expiry 1 3 5 10 1 3 5 10
ATMF Option price (basis point)
1 8.6 24.6 38.8 67.9 7.6 21.6 34.1 59.7
3 14.0 39.8 62.8 109.1 12.4 35.2 55.4 96.4
5 16.9 47.7 75.0 129.8 14.9 42.3 66.5 115.1
10 19.5 55.0 86.3 148.7 17.3 48.8 76.5 131.9
Absolute volatility (basis point)
1 21.8 21.0 20.3 18.5 19.2 18.5 17.8 16.3
3 21.1 20.3 19.5 17.9 18.6 17.9 17.3 15.8
5 20.3 19.5 18.8 17.2 18.0 17.3 16.7 15.3
10 18.5 17.8 17.2 15.7 16.4 15.8 15.2 13.9
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Table 11: Spread options in the HW model with ρ = (0.4, 0.4,−0.4)

Option on swap spread Option on basis swap
Option Maturity Maturity
Expiry 1 3 5 10 1 3 5 10
ATMF Option price (basis point)
1 9.9 28.1 44.3 77.0 7.6 21.9 35.0 62.0
3 16.0 45.1 70.8 122.1 12.7 36.6 58.3 103.6
5 19.0 53.5 83.7 143.5 15.7 45.1 71.8 127.5
10 21.4 60.0 93.5 159.2 19.4 55.6 88.5 157.2
Absolute volatility (basis point)
1 25.1 24.0 23.1 21.0 19.4 18.8 18.2 16.9
3 24.0 23.0 22.0 20.0 19.1 18.6 18.1 17.0
5 22.9 21.9 21.0 19.0 18.9 18.5 18.0 16.9
10 20.3 19.4 18.6 16.8 18.4 18.0 17.6 16.6

Table 12: Spread options in the HW model with ρ = (0.4, 0.4, 0.4)

Option on swap spread Option on basis swap
Option Maturity Maturity
Expiry 1 3 5 10 1 3 5 10
ATMF Option price (basis point)
1 7.0 19.8 31.3 54.3 7.6 21.9 35.0 62.0
3 11.3 32.0 50.1 86.1 12.7 36.6 58.3 103.6
5 13.4 37.7 58.9 100.6 15.7 45.1 71.8 127.5
10 15.1 42.1 65.4 110.7 19.4 55.6 88.5 157.2
Absolute volatility (basis point)
1 17.7 17.0 16.3 14.8 19.4 18.8 18.2 16.9
3 17.0 16.3 15.6 14.1 19.1 18.6 18.1 17.0
5 16.2 15.4 14.8 13.3 18.9 18.5 18.0 16.9
10 14.3 13.6 13.0 11.7 18.4 18.0 17.6 16.6

Table 13: Spread options in the HW model with ρ = (−0.4,−0.4, 0)

Option on swap spread Option on basis swap
Option Maturity Maturity
Expiry 1 3 5 10 1 3 5 10
ATMF Option price (basis point)
1 8.6 24.5 38.9 68.4 7.5 21.3 33.4 57.6
3 14.0 39.9 63.3 111.0 12.1 33.9 52.8 89.8
5 17.0 48.5 76.7 134.3 14.2 39.5 61.3 103.3
10 20.4 57.9 91.4 159.8 15.4 42.6 65.7 109.5
Absolute volatility (basis point)
1 21.7 21.0 20.3 18.7 19.1 18.2 17.4 15.7
3 21.0 20.3 19.7 18.2 18.2 17.3 16.4 14.7
5 20.5 19.8 19.2 17.8 17.1 16.2 15.4 13.7
10 19.3 18.7 18.2 16.9 14.6 13.8 13.1 11.6
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A Formulas

We have

BD(t, T ) = 2FD(t, T )
∫ T

t

α + βs

FD(s, T )
ds =

2B1(t, T )
γ2A5(t, T )

and

AD(t, T ) =
∫ T

t

(
1
2
σ2

DBD(s, t)2 − σ2
DCD(s, T ) − (α + βs)2

)
ds

= −σ2
D

(
A4(t, T )

γ5A5(t, T )
+ A6(t, T )

)
− α2(T − t) − αβ(T 2 − t2) − 1

3
β2(T 3 − t3),

where

Γa = γ − aD,
Γb = γ + aD,

A1a(t, T ) = −eγ(T−t) + 4 − e−γ(T−t)(3 + 2γ(T − t)),

A1b(t, T ) = e−γ(T−t) − 4 + eγ(T−t)(3 − 2γ(T − t)),

A2a(t, T ) = eγ(T−t)(1 − γT ) − 2(1 − γ(t + T )) + e−γ(T−t)(1 − γ(2t + T ) + γ2(t2 − T 2)),

A2b(t, T ) = e−γ(T−t)(1 + γT ) − 2(1 + γ(t + T )) + eγ(T−t)(1 + γ(2t + T ) + γ2(t2 − T 2)),

A3a(t, T ) = −4γt(1 − γT ) − eγ(T−t)(1 − γT )2

+ e−γ(T−t)

(
1 + 2γt − γ2(2t2 + T 2) +

2
3
γ3(t3 − T 3)

)
,

A3b(t, T ) = −4γt(1 + γT ) + e−γ(T−t)(1 + γT )2

+ eγ(T−t)

(
−1 + 2γt + γ2(2t2 + T 2) +

2
3
γ3(t3 − T 3)

)
,

A4(t, T ) = Γa

(
α2γ2A1a(t, T ) + 2αβγA2a(t, T ) + β2A3a(t, T )

)
+ Γb

(
α2γ2A1b(t, T ) + 2αβγA2b(t, T ) + β2A3b(t, T )

)
,

A5(t, T ) = Γae−γ(T−t) + Γbeγ(T−t),

A6(t, T ) = −1
2
(T − t)

(
Γ−1

a − Γ−1
b

)
+

1
2γ

(
Γ−1

a + Γ−1
b

)
ln

A5(t, T )
2γ

and

B1(t, T ) = −αγ
(
e−γT − e−γt

) (
Γaeγt + ΓbeγT

)
+ β

(
Γae−γ(T−t)(1 − γt) + Γbeγ(T−t)(1 + γt) − Γa(1 − γT ) − Γb(1 + γT )

)
.

21


