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Abstract

This article investigates an optimal allocation problem of assets under Gaussian
state variables consisting of the risk-free rate and the multi dimensional market price
of risk. The optimal portfolio consisting of a bond and several stocks is derived. The
idea is that the indirect utility as a solution of a partial differential equation is
expressed as a zero-coupon bond price in a different economy having a quadratic
Gaussian short rate by the Feynman-Kac formula, then the bond price is obtained
with an exponentially quadratic state-price density process which is closely related
to some of quadratic term structure models.
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1 Introduction

We investigate an optimal allocation problem of assets under Gaussian state variables
consisting of the risk-free rate and the multi dimensional market price of risk. It is
well known that the indirect utility can be expressed as a zero-coupon bond price in a
different economy having a short rate. The difficulty is that a square of the market price
of risk appears in the short rate. Therefore, the problem is naturally related to quadratic
term structure models (QTSMs). Our contribution is to overcome the optimal allocation
problem with an exponentially quadratic state-price density process and several findings
on QTSMs. This technique is worth discussing in a paper since it will be useful in related
analysis.

Among many interest rate models in the literature, affine term structure models
(ATSMs) have been widely discussed from theoretical, empirical and practical points
of view. The Vasicek model [14] is the simplest ATSM but it has a drawback that
the risk-free rate becomes negative with positive probability. The CIR model [6] is a
popular model yielding positive interest rates in the class of ATSMs. On the other hand,
QTSMs have received less attention than ATSMs due to the nonlinearity. Nevertheless,
the quadratic form easily leads to positive interest rates, and as a result, the study of
QTSMs has progressed gradually. Several specific models in QTSMs are investigated in
Longstaff [8], Beaglehole and Tenny [2][3], Constantinides [5] and others.

1



All assets are priced by the state-price density process in a complete market. The
state-price density processes in QTSMs have special features in the functional form.
Rogers [13] discusses several term structure models with a focus on positive interest rates
via the potential approach. As an example he derives a QTSM by a state-price density
process given in an exponentially quadratic form of state variables. In the SAINTS model
of Constantinides [5], the state-price density process is also an exponentially quadratic
function of the state variables. Ahn et al. [1] characterizes QTSMs with three assump-
tions; (a) the state variables follow a multi-dimensional Ornstein-Uhlenbeck process, (b)
the risk-free rate is a quadratic function of the state variables, and (c) the market prices
of risk are affine functions of the state variables. In the analysis it is shown that the
SAINTS model is a special form of the QTSMs and a special form of CIR model belongs
to QTSMs. Pelsser [12] obtains a zero-coupon bond price under a setting of a squared-
Gaussian risk-free rate by solving a system of ordinary differential equations. Although
the market price of risk is not mentioned in the paper, we find that Pelsser’s model is
implied by a state-price density which is an exponentially quadratic function of the state
variables, similar to Constantinides [5]. Thus, both of Constantinides [5] and Pelsser [12]
are built with exponentially quadratic state-price density processes.

An optimal portfolio problem of Merton [9] has been studied extensively and extended
in several directions. Recently, Liu [7] analyzes the bond portfolio problem under a
QTSM. Chiarella et al. [4] study investment strategies under inflation risk. Munk [10]
studies the problem under habit formation. Seminal papers close to our analysis are
Wachter [15] and Munk et al. [11]. Both papers analyze the optimal portfolio consisting
of a stock and a money market account under a setting of a mean-reverting market price
of stock market risk and Gaussian risk-free rate. Therefore, quadratic functions of the
market price of risk are observed in the indirect utility and the optimal consumption-
wealth ratio. Due to the single dimensionality, the derivation is relatively straightforward.

We extend Wachter [15] and Munk et al. [11] to a case including a bond and several
stocks and derive the optimal allocation. Our idea is that the indirect utility as a solution
of a partial differential equation (PDE) is expressed as a zero-coupon bond price in a
different economy having a quadratic Gaussian short rate via the Feynman-Kac formula,
then we obtain the bond price with an exponentially quadratic state-price density process
which is closely related to Constantinides [5] and Pelsser [12].

This article is organized as follows. In Section 2 we describe the model setup and
obtain the optimal allocation with unknown function to be solved. Section 3 is devoted
to solve the function by making use of the Feynman-Kac formula and techniques related
to quadratic Gaussian model. Then the optimal allocation is shown as a function of the
market prices of risk only. Section 4 concludes this paper.

2 Setup

Let z(t) denote the N -dimensional standard Brownian motion on a probability space
(Ω,F , P ) where P is an objective measure. There are one risk-free asset B(t) and N
risky assets S(t) = (S1(t), · · · , SN (t))�. S1(t) is a bond price with maturity U ≥ T . r(t)
is the risk-free rate and λ(t) = (λ1(t), · · · , λN (t))� is called the vector of the market
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price of risk. These security prices obey the stochastic differential equations (SDEs)

dB(t) = r(t)B(t)dt,

dS(t) = diag[S(t)]N (r(t)1N + σS(t)�λ(t))dt + diag[S(t)]NσS(t)�dz(t), (1)

where σS(t) ∈ R
N×N is an invertible deterministic matrix, and 1N = (1, · · · , 1)�. We

denote by diag[x]N or diag[xi]N an N ×N -diagonal matrix with the element xi of an N -
dimensional vector x = {xi} on the diagonal. Furthermore, [mij ]n×m is meant to be an
n×m matrix with elements of mij. We assume that r(t) and λ(t) are Ornstein-Uhlenbeck
processes

dr(t) = ar(br − r(t))dt + σ�
r dz(t),

dλ(t) = aλ(bλ − λ(t))dt + σ�
λ dz(t),

where ar, br ∈ R are constants, σr, bλ ∈ R
N are constant vectors, and aλ, σλ ∈ R

N×N are
constant matrices, given by

σr =

⎛
⎜⎜⎜⎜⎜⎝

σr

0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠ , aλ =

⎛
⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · aN

⎞
⎟⎟⎟⎟⎟⎠ , σ�

λ =

⎛
⎜⎜⎜⎜⎜⎝

σ1 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · σN

⎞
⎟⎟⎟⎟⎟⎠ .

Due to the form of (1), r(t) and λ(t) jointly describes the structure of the asset prices.
Thus, by getting together them, we call the state variables the (N+1)-dimensional vector

X(t) = (X0(t),X1(t), · · · ,XN (t))� ≡ (r(t), λ(t)�)�.

Obviously the state variables X satisfy a SDE

dX(t) = aX(bX − X(t))dt + σ�
Xdz(t), (2)

where

aX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ar 0 0 0 · · · 0
0 a1 0 0 · · · 0
0 0 a2 0 · · · 0
0 0 0 a3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, σ�
X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σr 0 0 · · · 0
σ1 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · σN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that r(t) and λ1(t) are correlated though other pairs of the state variables are inde-
pendent. As notations throughout the paper, elements of (N + 1)-dimensional matrices
and vectors are indexed with r, 1, 2, · · · , N rather than 1, 2, · · · , N,N + 1 so as to make
it easier to figure out the effects of r(t) and λi(t) (i = 1, 2, · · · , N).

At each time, the investor allocates wealth W (t) between the risk-free asset and the
risky assets. Let α(t) denote the vector of the allocation ratio to the risky securities.
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The investor faces the maximization problem of the expected utility from the terminal
wealth

max
{α(t)}

E

[
e−δT 1

1 − γ
W (T )1−γ

]
, (3)

s.t.
dW (t)
W (t)

=
(
r(t) + α(t)�σS(t)�λ(t)

)
dt + α(t)�σS(t)�dz(t).

Throughout the paper we assume that

γ > 1, σi �= 0, (i = 1, 2, · · · , N),

ar > 0, ar �= 1 − γ

γ
σ1 +

√(
a1 − 1 − γ

γ
σ1

)2

− σ2
1

γ
, (4)

ai >
1 − γ

γ
σi +

√
1 − γ + γ2

γ
|σi|, (i = 1, 2, · · · , N). (5)

Let J(w, x, t) denote the indirect utility associated with (3) when W (t) = w,X(t) =
x ≡ (r, λ�)�. Then the Hamilton-Jacobi-Bellman (HJB) equation is given by

0 = max
{α(t)}

[
Jt +

(
r + α�σ�

S λ
)

Jww +
1
2
α�σ�

S σSαJwww2

+ α�σ�
S σXJwxw + (aX(bX − x))�Jx +

1
2
tr
(
σ�

XσXJxx

)]
, (6)

J(w, x, T ) = e−δT 1
1 − γ

w1−γ ,

where the function J with the subscript of a variable means the partial derivative with
respect to the variable, and the variables are suppressed to save space. The first order
condition

σ�
S λJww + σ�

S σSα∗Jwww2 + σ�
S σXJwxw = 0

implies the optimal allocation

α∗(t) =
−Jw(w, x, t)
wJww(w, x, t)

σS(t)−1λ(t) + σS(t)−1σX
−Jwx(w, x, t)
wJww(w, x, t)

. (7)

The first term −Jw(w,x,t)
wJww(w,x,t)σS(t)−1λ(t) is called the myopic portfolio or the mean-variance

portfolio while the second term σS(t)−1σX
−Jwx(w,x,t)
wJww(w,x,t) is the intertemporal hedging port-

folio for the risk of the state variables.
For further investigation, we conjecture that the indirect utility function is in the

form of

J(w, x, t) = e−δt 1
1 − γ

w1−γF (x, t)1−γ

with some function F satisfying F (x, T ) = 1 for all x. Then the optimal allocation (7)
is reduced to

α∗(t) =
1
γ

σS(t)−1λ(t) +
1 − γ

γ
σS(t)−1σX

Fx(x, t)
F (x, t)

. (8)

It follows that we need to know the function Fx/F in the intertemporal hedging portfolio
in order to characterize the optimal allocation more explicitly.
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3 Optimal allocation

By plugging (8) into the HJB equation (6), we obtain a PDE for F

Ft +
(

aX(bX − x) +
1 − γ

γ
σ�

Xλ

)�
Fx +

1
2
tr
(
σ�

XσXFxx

)

−
(

δ

1 − γ
− r − 1

2γ
λ�λ

)
F = 0, (9)

F (x, T ) = 1.

In order to solve the PDE (9), we can apply the Feynman-Kac formula by following
Chiarella et al. [4]. The Feynman-Kac formula tells us that the solution, if it exists, of
the partial differential equation (9) is given by

F (x, t) = EQ̃

[
exp

(
−
∫ T

t
R(Y (u))du

) ∣∣∣Y (t) = x

]
, (10)

where Q̃ is a reference pricing measure equipped with an N -dimensional standard Brow-
nian motion zQ̃, Y is an (N + 1)-dimensional vector of the state variables

Y (t) = (rY (t), λY (t)�)�, rY (t) ∈ R, λY (t) ∈ R
N ,

whose SDE is implied by the coefficients of Fx and Fxx in (9) as

dY (t) = (aY (bY − Y (t))dt + σ�
Y dzQ̃(t), (11)

aY = aX − 1 − γ

γ

(
0N+1, σ�

X

)
, bY = a−1

Y aXbX , σY = σX ,

where 0N+1 = (0, · · · , 0)� is the (N + 1)-dimensional zero vector,
(

0N+1, σ�
X

)
is the

(N + 1) × (N + 1) matrix stacked with 0N+1 and σ�
X , and R is given by a quadratic

function of the state variable

R(Y (t)) =
δ

1 − γ
− rY (t) − 1

2γ
λY (t)�λY (t), (12)

implied by the coefficient of F in (9). Note that the reference measure Q̃ is different
from the so-called risk-neutral measure. Q̃ should be understood to be the martingale
measure with respect to a numéraire

B̃(t) = exp
(∫ t

0
R(Y (u))du

)
.

Therefore, (10) is the zero-coupon bond price when a pair (Q̃,R) of martingale measure
and risk-free rate is given. The risk-free rate (12) is a quadratic form of the state vector
Y which is an (N +1)-dimensional Ornstein-Uhlenbeck process under a reference pricing
measure Q̃ as shown in (11). Such an interest rate model is studied by Pelsser [12] who
obtains bond prices by solving differential equations. In what follows, we calculate (10)
by making use of the state-price density process studied by Rogers [13]. Although (11)
does not involve the market prices of risk explicitly, we can derive them by assuming
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an exponentially quadratic state-price density process if the drift term of the state-price
density process is consistent with (12) as discussed in Rogers [13].

Suppose, in a different and fictitious economy, the vector Y (t) of (11) is the state
vector and a process

ξ(t) = e−βt f(Y (t))
f(Y (0))

(13)

is the state-price density in a reference objective measure P̃ , where the function f is
given by

f(x) = exp
(

1
2
x�Kx + L�x

)

with some (N + 1) × (N + 1) symmetric matrix K and (N + 1)-dimensional vector L.
Therefore, such a measure P̃ is defined by

dP̃

dQ̃
=

1
ξ(t)B̃(t)

. (14)

It follows that the zero-coupon bond price is obtained as

EQ̃

[
B̃(t)
B̃(T )

∣∣∣Y (t) = x

]
= EP̃

[
ξ(T )
ξ(t)

∣∣∣Y (t) = x

]
. (15)

Since the left hand side of (15) includes an integral of R which is a quadratic form of
Y , the expectation is not easy to obtain. On the other hand, the right hand side of
(15) is an expectation of ξ(T ) that is an exponentially quadratic function of Y (T ). The
expectation may be straightforward because of the normality of Y . This point is the
reason for the introduction of the measure P̃ .

First, we shall identify the state-price density ξ such that (15) is consistent with (12).
In other words, we calculate K and L such that (12) is the risk-free rate implied by the
state-price density ξ in (13). By Ito’s formula we know that the SDE for ξ(t) under Q̃ is

dξ(t)
ξ(t)

= μξ(t)dt + (σY (L + KY (t)))� dzQ̃(t), (16)

where

μξ(t) =
1
2
(L + KY (t))�σ�

Y σY (L + KY (t)) +
1
2
tr
(
σY Kσ�

Y

)
(17)

+ (aY (bY − Y (t)))�(L + KY (t)) − β,

which is a quadratic function of Y (t). By Girsanov theorem for (14) and (16), the process

zP̃ (t) = zQ̃(t) +
∫ t

0
σY (L + KY (u))du

is a Brownian motion under P̃ . Therefore, the state-price density obeys under P̃

dξ(t)
ξ(t)

=
(
μξ(t) − (σY (L + KY (t)))� σY (L + KY (t))

)
dt + (σY (L + KY (t)))� dzP̃ (t).
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Then the coefficient of the drift term of the state-price density under the reference ob-
jective measure P̃ should be equal to the minus of the risk-free rate times ξ(t),

μξ(t) − (σY (L + KY (t)))� σY (L + KY (t)) = −R(Y (t)). (18)

By replacing Y (t) in (18) with x = (rx, (λx)�)�, we have an equation for x from (17)
and (18) as

0 =
1
2
(L + Kx)�σ�

Y σY (L + Kx) +
1
2
tr
(
σY Kσ�

Y

)
+ (aY (bY − x))�(L + Kx)(19)

− β − (σY (L + Kx))� σY (L + Kx) +
δ

1 − γ
− rx − 1

2γ
(λx)�λx.

If (19) holds for all x with some K,L, β, it follows that R given by (12) is actually a
risk-free rate associated with ξ. Namely, matrices K,L and a constant β must satisfy

K�σ�
Y σY K + 2a�Y K = −1

γ

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ , (20)

−L�σ�
Y σY K − L�aY + b�Y a�Y K = (1, 0, · · · , 0),

−1
2
L�σ�

Y σY L +
1
2
tr
(
σY Kσ�

Y

)
+ b�Y a�Y L − β +

δ

1 − γ
= 0.

In addition to the above conditions, we need to impose conditions

ai + kiσ
2
i > 0 for all i = 1, 2, · · · , N (21)

to make a matrix positive definite in the following analysis. By a tedious calculation it
is found that the solution for (20) exists1 and is given by

K =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 k1 0 · · · 0
0 0 k2 · · · 0
...

...
...

. . .
...

0 0 0 · · · kN

⎞
⎟⎟⎟⎟⎟⎠ , (22)

ki =
−ai + 1−γ

γ σi +

√(
ai − 1−γ

γ σi

)2 − σ2
i
γ

σ2
i

, (i = 1, · · · , N), (23)

1Due to the quadratic form of (20) one can find another solution for ki as

−ai + 1−γ
γ

σi −
r“

ai − 1−γ
γ

σi

”2

− σ2
i

γ

σ2
i

.

However, this solution doesn’t satisfy the condition (21). Thus, we disregard this solution.
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L = (lr, l1, · · · , lN )�, (24)

lr = − 1
ar

, l1 =
σr
ar

(−k1σ1 + 1−γ
γ ) + k1a1b1√(

a1 − 1−γ
γ σ1

)2
− σ2

1
γ

,

li =
kiaibi√(

ai − 1−γ
γ σi

)2 − σ2
i
γ

, (i = 2, · · · , N),

β = −1
2

(σrlr + σili)
2 − 1

2

N∑
i=2

(σili)
2 +

1
2

N∑
i=1

kiσ
2
i

+ brlr +
N∑

i=1

bili +
δ

1 − γ
.

The ki in (23) are real numbers due to the assumption (5) and satisfy ai + kiσ
2
i > 0 for

all i.
Once the state-price density price is identified, the SDE of the state vector Y (t) under

P̃ becomes

dY (t) = ãY (b̃Y − Y (t))dt + σ�
Y dzP̃ (t),

where ãY = aY + σ�
Y σY K and ãY b̃Y = aY bY − σ�

Y σY L. We observe that the matrix ãY

is diagonalizable to Λ = U−1ãY U by a matrix U , where

Λ =

⎛
⎜⎜⎜⎜⎜⎝

ar 0 0 · · · 0
0 a1 + k1σ

2
1 0 · · · 0

0 0 a2 + k2σ
2
2 · · · 0

...
...

...
. . .

...
0 0 0 · · · aN + kNσ2

N

⎞
⎟⎟⎟⎟⎟⎠ ,

U =

⎛
⎜⎜⎜⎜⎜⎝

1 −ε 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ , ε =

k1σ1σr

a1 + k1σ2
1 − ar

.

The denominator of ε is not zero due to the assumption (4).
Define τ = T − t, D(x) = (1 − e−xτ )/x, κr = ar, κi = ai + kiσ

2
i , and

Φτ = exp(−Λτ),

[vij ](N+1)×(N+1) = U−1σ�
Y σY

(
U�
)−1

,

Mτ = [vijD(κi + κj)](N+1)×(N+1) .

Ahn et al. [1] show that the increment Y (T ) − Y (t) is normally distributed with the
mean vector μτ and the covariance matrix Vτ such that

μτ = UΛ−1 (IN+1 − Φτ ) U−1ãY b̃Y + UΦτU
−1Y (t), Vτ = UMτU

�.
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It follows that the mean is μτ = μ0τ + μ1τY (t), where d(x) = e−τx,

μ0τ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ

(1 − d(κ1))
(
b1 − σrσ1lr+σ2

1 l1
a1+k1σ2

1

)
(1 − d(κ2))

(
b2 − σ2

2 l2
a2+k2σ2

2

)
...

(1 − d(κN ))
(
bN − σ2

N lN
aN+kNσ2

N

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

μ1τ =

⎛
⎜⎜⎜⎜⎜⎝

d(κr) ε (d(κr) − d(κ1)) 0 · · · 0
0 d(κ1) 0 · · · 0
0 0 d(κ2) · · · 0
...

...
...

. . .
...

0 0 0 · · · d(κN )

⎞
⎟⎟⎟⎟⎟⎠ , (26)

and

φ = (1 − d(κr))
(

br − σ2
r lr + σrσ1lr

ar
− σrk1σ1

ar

(
b1 − σrσ1lr + σ2

1l1
a1 + k1σ2

1

) )

+ (1 − η (d(κr) − d(κ1)))
(

b1 − σrσ1lr + σ2
1l1

a1 + k1σ
2
1

)
,

η =
arε − k1σ1σr

a1 + k1σ
2
1

.

The covariance matrix Vτ is given by

Vτ =

⎛
⎜⎜⎜⎜⎜⎝

mr − 2εmr1 + ε2m1 mr1 − εm1 0 · · · 0
mr1 − εm1 m1 0 · · · 0

0 0 m2 · · · 0
...

...
...

. . .
...

0 0 0 · · · mN

⎞
⎟⎟⎟⎟⎟⎠ ,

where

mr = (σr + εσ1)2D(2ar),
mr1 = σ1(σr + εσ1)D(ar + a1 + k1σ

2
1),

mi = σ2
i D(2(ai + kiσ

2
i )), (i = 1, 2, · · · , N).

Since mi > 0 for all i = r, 1, 2, · · · , N and the function D satisfies D(x)D(y) > D
(x+y

2

)2
for x, y > 0, it holds that

detVτ = (mrm1 − m2
r1)m2 · · ·mN > 0,

thanks to (5) and (21). Hence, all of the eigen values of the symmetric matrix Vτ are
positive and Vτ is positive definite.

For the calculation of an expectation of an exponentially quadratic function of a
normal distribution, the next lemma is useful.
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Lemma 1. If an n-dimensional random variable y is normally distributed with mean μ
and the covariance matrix Σ, then it holds that

E

[
exp

(
1
2
y�ay + b�y

)]
=
(

det
(

In − Σ
a + a�

2

))−1/2

× exp

(
1
2

(μ + Σb)�
(

Σ − Σ
a + a�

2
Σ
)−1

(μ + Σb) − 1
2
μ�Σ−1μ

)

for any b ∈ R
n, a ∈ R

n×n such that a symmetric matrix Σ−1 − 1
2(a + a�) is positive

definite.

We need to confirm the positive definiteness of V −1
τ − 1

2 (K +K�) = V −1
τ −K for the

application of the above lemma. Since the matrix is given by

V −1
τ − K =

⎛
⎜⎜⎜⎜⎜⎜⎝

m1

mrm1−m2
r1

− mr1−εm1

mrm1−m2
r1

0 · · · 0

− mr1−εm1

mrm1−m2
r1

mr−2εmr1+ε2m1

mrm1−m2
r1

− k1 0 · · · 0

0 0 m−1
2 − k2 · · · 0

...
...

...
. . .

...
0 0 0 · · · m−1

N − kN

⎞
⎟⎟⎟⎟⎟⎟⎠

,

we observe that the determinant is det
(
V −1

τ − K
)

= m1

mrm1−m2
r1

∏N
i=1

1−kimi
mi

and the
trace of the first block diagonal matrix is positive

tr

( m1

mrm1−m2
r1

− mr1−εm1

mrm1−m2
r1

− mr1−εm1

mrm1−m2
r1

mr−2εmr1+ε2m1

mrm1−m2
r1

− k1

)
=

m1

(
1 +

(
ε − mr1

m1

)2
)

mrm1 − m2
r1

+
1 − k1m1

m1
> 0.

Then for the positive definiteness of V −1
τ − K, it is enough to show that 1 − kimi > 0

for all i = 1, 2, · · · , N . When ki ≤ 0, then 1 − kimi ≥ 1 because of 1 − kimi = 1 −
kiσ

2
i D(2(ai + kiσ

2
i )) and (21). When ki > 0 it holds that

1 − kimi =
2ai + kiσ

2
i

2(ai + kiσ2
i )

+
kiσ

2
i d(2(ai + kiσ

2
i ))

2(ai + kiσ2
i )

>
2ai + kiσ

2
i

2(ai + kiσ2
i )

=
ai + 1−γ

γ σi +

√(
ai − 1−γ

γ σi

)2 − σ2
i
γ

2(ai + kiσ
2
i )

>
21−γ

γ σi +
√

1−γ+γ2

γ |σi| +
∣∣∣1−γ

γ σi

∣∣∣
2(ai + kiσ2

i )
> 0,

by (5) and (21) regardless of the sign of σi. It follows that V −1
τ − K is positive def-

inite as desired. The determinant of IN+1 − VτK is given by det (IN+1 − VτK) =
(1 − k1m1) · · · (1 − kNmN ) > 0.
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With these preliminary calculations we can obtain the zero-coupon bond price (15)
as

EP̃

[
ξ(T )
ξ(t)

∣∣∣Y (t) = x

]
= EP̃

[
e−β(T−t) exp

(
1
2Y (T )�KY (T ) + L�Y (T )

)
exp

(
1
2Y (t)�KY (t) + L�Y (t)

) ∣∣∣Y (t) = x

]

= (det (IN+1 − VτK))−
1
2 exp

(
−βτ − 1

2
μ�

τ V −1
τ μτ

+
1
2

(μτ + Vτ (L + Kx))� Hτ (μτ + Vτ (L + Kx))
)
,

with Hτ = V −1
τ (IN+1 − VτK)−1. Namely, we reach to the solution of PDE as

F (x, t) = ((1 − k1m1) · · · (1 − kNmN ))−1/2 (27)

× exp
(1

2
x�
(
(VτK + μ1τ )�Hτ (VτK + μ1τ ) − μ�

1τV
−1
τ μ1τ

)
x

+
1
2

(
(VτL + μ0τ )�Hτ (VτK + μ1τ ) − μ�

0τV
−1
τ μ1τ

)
x

+
1
2
x�
(
(VτK + μ1τ )�Hτ (VτL + μ0τ ) − μ�

1τV
−1
τ μ0τ

)
+

1
2
(VτL + μ0τ )�Hτ (VτL + μ0τ ) − 1

2
μ�

0τV
−1
τ μ0τ − βτ

)
.

Therefore, the part of the intertemporal hedging portfolio in (8) is given by

Fx(x, t)
F (x, t)

= Aτ (L + Kx) + Bτ (μ0τ + μ1τx), (28)

where

Aτ = (VτK + μ1τ )�HτVτ (29)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

d(κr) 0 0 · · · 0
Ar1

k1m1+d(κ1)
1−k1m1

0 · · · 0
0 0 k2m2+d(κ2)

1−k2m2
· · · 0

...
...

...
. . .

...
0 0 0 · · · kNmN +d(κN )

1−kN mN

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ar1 = ε (d(κr) − d(κ1)) + k1
1 + d(κ1)
1 − k1m1

(mr1 − εm1),

Bτ = (VτK + μ1τ )�Hτ − μ�
1τV

−1
τ (30)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 k1

1+d(κ1)
1−k1m1

0 · · · 0
0 0 k2

1+d(κ2)
1−k2m2

· · · 0
...

...
...

. . .
...

0 0 0 · · · kN
1+d(κN )
1−kNmN

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Finally, we obtain the following result from (8).
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Theorem 1. The optimal portfolio is given by

α∗(t) =
1
γ

σS(t)−1λ(t)

+
1 − γ

γ
σS(t)−1σX [Aτ (L + KX(t)) + Bτ (μ0τ + μ1τX(t))] ,

where X(t) = (r(t), λ(t)�)�, τ = T − t, the matrices K,L,Aτ , Bτ , μ0τ , μ1τ are given by
(22), (24), (29), (30), (25) and (26), respectively.

Note that the optimal portfolio is linear in X and the intertemporal portfolio consists
of two portfolios; one is a (non-zero) fixed portfolio

1 − γ

γ
σS(t)−1σX [AτL + Bτμ0τ ]

regardless of the state variables. Another one is a sensitive portfolio to the state variables

1 − γ

γ
σS(t)−1σX [AτK + Bτμ1τ ]X(t).

The investor adjusts the intertemporal hedging portfolio according to the state variables
via the portfolio. However, a simple calculation shows

[AτK + Bτμ1τ ]X(t) =

⎛
⎜⎜⎜⎜⎜⎝

0
γ1λ1(t)
γ2λ2(t)

...
γNλN (t)

⎞
⎟⎟⎟⎟⎟⎠ ,

where
γi =

ki(1 + kimi)
1 − kimi

(1 + d(κi)), (i = 1, 2, · · · , N),

which implies that the portfolio depends on the market prices of risk only and it is not
sensitive to the risk-free rate. The seeming independence on the risk-free rate may be
due to our setting (1).

4 Conclusion

We obtain the optimal portfolio with the Feynman-Kac formula and the exponentially
quadratic state-price density for a different fictitious economy. The portfolio is linear
in the state variables and is decomposed into three portfolios. The linearity will hold
under more general settings though further investigations will be required. There are
several directions of the extension of our analysis. The first one is to explore the cases
of correlated prices among security prices, the risk-free rate and the market prices of
risk. As the second one, the extension to more general affine type state variables will be
fruitful. The third one is to apply for the filtering of the unobserved market prices of
risk from the observed security prices. These agendas are left for future research.
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