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Abstract. This paper shows that the one-factor Gaussian copula model, the

standard market model for valuing CDO’s, can be derived from the multivariate

Wang transform, which is consistent with Bühlmann’s equilibrium pricing model,

whence it has a sound economic interpretation. The Gaussian model is then ex-

tended within the Bühlmann’s framework to fit market prices of CDO tranches

better. Unlike the existing modes, we calibrate the parameters associated with

risk aversion index of investors, not the correlation parameter. Through numeri-

cal experiments, we show that our model provides a better fit to the market data

compared with the existing models.

Keywords: Bühlmann’s economic premium principle, multivariate Wang trans-

form, One-factor Gaussian copula model, Structural model, Student t distribu-

tion

∗ A previous version of this paper was presented at the Third Bachelier Colloquium held at Metabief,

France on January 7, 2008. The authors are grateful to participants of the workshop for helpful discussions.

The first author is also grateful to the financial support by the Ministry of Education, Science, Sports and

Culture (MEXT), Grand-in-Aid for Scientific Research (B) #18310104, 2006.

1



1 Introduction

The one-factor Gaussian copula model has become the standard market model for valuing

collateralized debt obligations (CDO’s) and other basket-type credit derivatives. The Gaus-

sian copula approach is very convenient to model default time correlation given the marginal

default probabilities, and allows the semi-analytical form1 for the pricing and hedging of

such products.

Despite the popularity of the model in practice, however, the copula approach is often

criticized due to a couple of reasons.2 Among them, it is claimed that the copula approach is

difficult to interpret and the dependence structure is exogenously given without a theoretical

justification. Also, it is well known that the model cannot explain the market prices of CDO

tranches, i.e., it exhibits the so-called correlation smile.3 As a result, it cannot price non-

standard credit derivatives such as bespoke CDO’s to be consistent with market quotes for

tranches of standard CDO’s.

The aim of this paper is twofold. First, contrary to the criticism, we show that the

one-factor Gaussian copula model is consistent with Bühlmann’s equilibrium pricing model

(1980),4 whence it has a sound economic interpretation. Second, the Gaussian model is

extended within the Bühlmann’s framework to fit market prices of CDO tranches better by

taking the well-recognized facts in the credit derivatives market into consideration.

Namely, we introduce the risk aversion index for each tranche to be calibrated from the

market prices of CDO tranches, while keeping the correlation structure as given under the

actual probability measure,5 since the CDO market is segmented into tranches according to

1 See, e.g., Hull and White (2004) and Laurent and Gregory (2005) for details of the one-factor Gaussian

copula model.
2 Given these problems, Mortensen (2006) used a multivariate version of the intensity-based approach to

develop a semi-analytical valuation method for CDO’s. However, this approach involves many parameters

to be estimated and/or calibrated and seems to be computationally difficult and instable to apply for actual

markets, compared with the copula approach. See also Duffie and Garleanu (2001) for the intensity-based

approach.
3 If the Gaussian copula model fitted market prices well, the implied base correlation would be approxi-

mately constant across tranches. In order to overcome the deficiency, a number of researchers look for copulas

that fit market prices better than the Gaussian copula. See, e.g., Hull and White (2006) and Burtschell,

Gregory and Laurent (2007) for such extensions.
4 Bühlmann’s model (1980) has been developed for the pricing and hedging of insurance risk. Insurance

market is incomplete, in the sense that risks in the market cannot be replicated by other assets in the market,

and so is the CDO market.
5 This is consistent with Girsanov’s theorem for the Gaussian case that, when changing the measures

from the actual measure to the risk-neutral measure, the mean is adjusted to represent the risk preference
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investor’s preference against risks. Also, we apply the Student t copula for the risk-adjusted

model, because some empirical studies suggest to use t distributions with ν = 3 to 7 degrees

of freedom for return distributions of financial and insurance products.6

This paper is organized as follows. In the next section, we briefly describe the fact that

the multivariate Wang transform is consistent with Bühlmann’s economic premium principle

(1980). It is then shown in Section 3 that the one-factor Gaussian copula model is derived

from the multivariate Wang transform, whence it has a sound economic interpretation. Sec-

tion 4 is devoted to propose an alternative to the standard Gaussian copula model within

the Bühlmann’s framework, which is further extended in Section 5 to accommodate the Stu-

dent t copula. Numerical examples show that our model fit market quotes for tranches of

standard SDO’s better than the existing models in the literature. Section 6 concludes this

paper.

Throughout this paper, we shall denote the actual probability measure by P and the

risk-neutral probability measure by Q. The normal distribution with mean μ and variance

σ2 is denoted by N(μ, σ2).

2 The Multivariate Wang Transform

In the actuarial literature, there have been developed many probability transforms for pricing

financial and insurance risks. Recently, Wang (2000, 2002) proposed a pricing method based

on the following transformation from G(x) to GQ(x):

GQ(x) = Φ[Φ−1(G(x)) + θ], (2.1)

where Φ denotes the standard normal cumulative distribution function (CDF for short) and θ

is a constant. The transform is now called the Wang transform and produces a risk-adjusted

CDF GQ(x) under Q. The mean value evaluated under GQ(x) will define a risk-adjusted

“fair value” of risk X with CDF G(x) under P at some future time, which can be discounted

to time zero using the risk-free interest rate. The parameter θ is considered to be a risk

premium.

The Wang transform not only possesses various desirable properties as a pricing method,

but also has a sound economic interpretation. For example, as Wang (2003) observed, the

transform (2.1) is consistent with Bühlmann’s economic premium principle.

of investors, but the variance-covariance structure is not changed. See, e.g., Kijima (2002) for details.
6 See, e.g., Platen and Stahl (2003) and Wang (2004) for such empirical studies.
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More precisely, Bühlmann (1980) considered risk exchanges among a set of agents. Each

agent is characterized by his/her exponential utility function ui(x) = −e−λix, i = 1, 2, . . . , n,

and faces a risk of potential loss Xi. In a pure risk exchange model, Bühlmann (1980) derived

the following equilibrium pricing formula for risk X:

π(X) = E[ηX], η =
e−λZ

E[e−λZ ]
, (2.2)

where E denotes the expectation operator under P , Z =
∑n

i=1 Xi is the aggregate risk, and

λ is given by

λ−1 =
n∑

i=1

λ−1
i , λi > 0.

The parameter λ is thought of the risk aversion index of the representative agent in the

market.

Unfortunately, however, the actuarial pricing functional is not linear, whence admits

an arbitrage opportunity.7 In order to develop a linear pricing method while maintaining

probability distortions, Kijima (2006) derived a multivariate version of the Wang transform

(2.1) from the Bühlmann’s equilibrium pricing formula (2.2).

Suppose that the underlying risks are described by an n-dimensional random vector,

(X1, X2, . . . , Xn) say. Suppose further that the underlying risks are formulated by a Gaussian

copula under P . That is, define

Zi ≡ Φ−1[Gi(Xi)], i = 1, 2, . . . , n,

where Gi(x) is the marginal CDF of Xi.
8 A Gaussian copula assumes that (Z1, Z2, . . . , Zn)

follows an n-variate standard normal distribution with correlation matrix Σ = (ρij).

Now, suppose that the aggregate risk Z consists of many individual risks Xi so that it

can be approximated by a normal distribution. Let Z0 = (Z − μZ)/σZ be the standardized

normal random variable, where μZ = E[Z] and σ2
Z = V [Z] denote the mean and the variance

of Z under P , respectively. Next, suppose that the standard normal variable Z0 is related

to the Gaussian copula as

Z0
d
= ξ +

n∑
i=1

wiZi, Zi = Φ−1[Gi(Xi)], (2.3)

7 See, e.g., Harrison and Kreps (1979) for details. The pricing functional π is said to be linear if π(aX +

bY ) = aπ(X) + bπ(Y ) for all risks X, Y and constants a, b.
8 Throughout the paper, it is assumed for the sake of simplicity that all the CDF’s under consideration

are strictly increasing.
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for some constants wi and a random variable ξ, which is independent of Zi, where
d
= stands

for equality in law. Using the assumption (2.3), Kijima (2006) obtained the following mul-

tivariate transformation from the Bühlmann’s equilibrium pricing formula (2.2):

GQ(x) = Φn:Σ

(
Φ−1[G1(x1)] +

n∑
i=1

λiρ1i, . . . , Φ−1[Gn(xn)] +
n∑

i=1

λiρni

)
, (2.4)

where x = (x1, . . . , xn) and Φn:Σ denotes the CDF of the n-variate standard normal distri-

bution with correlation matrix Σ. Note that, when n = 1, (2.4) coincides with the Wang

transform (2.1) since ρ11 = 1.

In particular, when (X1, X2, . . . , Xn) is normally distributed with correlation matrix Σ =

(ρij) under P , we have Gi(x) = Φ((x−μi)/σi), where μi = E[Xi] and σ2
i = V [Xi]. It follows

that the multivariate Wang transform (2.4) becomes

GQ(x) = Φn:Σ

(
x1 − μ1

σ1

+ λC1, . . . ,
xn − μn

σn

+ λCn

)
, Ci ≡ Cov(Xi, Z), (2.5)

since
n∑

j=1

λjρji = λCov(Xi, Z).

Here, Cov(X, Z) is the covariance between X and Z, λ is the risk aversion index, and Z

denotes the aggregated market risk. We note that, in the normal case, the transform (2.5)

can be derived directly from the Bühlmann’s formula (2.2) without the assumption (2.3).9

3 The One-Factor Gaussian Copula Model

Consider an asset pool consisting of n defaultable assets whose default epochs are denoted

by τi, i = 1, 2, . . . , n. Let Ni(t) = 1{τi≤t} be the default indicator process and Mi the loss

given default of name i. Then, the time-t cumulative loss of the asset pool is defined by

L(t) =
n∑

i=1

MiNi(t), 0 ≤ t ≤ T, (3.1)

where T denotes the maturity of the CDO.

3.1 The multivariate Merton model

In order to model the joint distribution of (τ1, τ2, . . . , τn), we follow the structural model of

Merton (1974). That is, consider the firm value Vi of name i, and assume that default occurs

9 Kijima (2006) also developed a multivariate version of the Esscher transform and showed that the

multivariate Wang transform (2.5) agrees with the Esscher counterpart for the normal case.
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before time t, i.e. τi ≤ t, if and only if the firm value Vi is less than some default threshold.

In other words, denoting Xi = log Vi, we assume that

{τi ≤ t} = {Xi < x} (3.2)

for some x. It is easier to model the joint distribution of (X1, X2, . . . , Xn) rather than to

model that of (τ1, τ2, . . . , τn) directly. This is the basic idea adopted by CreditMetrics (1997)

to evaluate the portfolio credit risk.

CreditMetrics (1997) assumes that (X1, X2, . . . , Xn) follows an n-variate standard normal

distribution with correlation matrix Σ = (ρij). However, it is computationally very time

consuming to obtain the distribution of the cumulative loss L(t) given by (3.1) for the

general correlation case. Hence, CreditMetrics (1997) uses the Monte Carlo simulation to

approximate the distribution of L(t) given the correlation structure. Note that CreditMetrics

(1997) works under the actual measure P , not under the risk-neutral probability measure

Q, for the purpose of credit risk management.10

The industry convention to model the joint distribution of (X1, X2, . . . , Xn) is to employ

the one-factor model.11 More specifically, let U and Ui, i = 1, 2, . . . , n, be independent and

follow the standard normal distribution N(0, 1), and suppose

Xi = ρiU +
√

1 − ρ2
i Ui, i = 1, 2, . . . , n, (3.3)

where −1 < ρi < 1 are constants. It is readily seen that Xi also follow N(0, 1) with

correlation ρij = ρiρj , i �= j. In the following, we denote the correlation matrix for this

special case by Σρ. Also, from (3.2), we assume that

Fi(t) = Φ(x) ⇐⇒ x = Φ−1(Fi(t)), i = 1, 2, . . . , n, (3.4)

where Fi(t) denotes the marginal CDF of τi.

Given the common factor U in (3.3), it is readily shown that the conditional default

probability of name i is given by

qi(t|U) ≡ P{τi ≤ t|U} = P{Xi ≤ x|U} = Φ

⎛
⎝Φ−1(Fi(t)) − ρiU√

1 − ρ2
i

⎞
⎠ . (3.5)

Since τi are conditionally independent, the joint CDF of (τ1, τ2, . . . , τn), denoted by F (t),

t = (t1, . . . , tn), under the actual probability measure P is obtained as

F (t) =
∫ ∞

−∞

⎡
⎣ n∏

i=1

Φ

⎛
⎝Φ−1(Fi(ti)) − ρiu√

1 − ρ2
i

⎞
⎠
⎤
⎦φ(u)du, (3.6)

10 While the actual measure is used for risk management, the risk-neutral measure is needed only for the

pricing of financial and insurance products. See Kijima and Muromachi (2000) for details.
11 An extension of the model to the multi-factor case is straightforward.

6



where φ(u) is the probability density function (PDF for short) of the standard normal dis-

tribution N(0, 1).

3.2 Change of measures from P to Q

In this subsection, we apply the change of measure formula (2.5) to obtain the distribution

of the cumulative loss L(t) under the risk-neutral probability measure Q. Recall that, in

Girsanov’s theorem for the Gaussian case, the variance-covariance structure is not changed,

but the mean is adjusted to represent the risk preference of investors under the change of

measures from P to Q.

Consider the multivariate risks (X1, X2, . . . , Xn), each Xi being defined by (3.3). We

denote the joint CDF of (τ1, τ2, . . . , τn) under the risk-neutral probability measure Q by

F Q(t), t = (t1, t2, . . . , tn). Since Xi follows N(0, 1), we have from (2.5) that

GQ(x) = Φn:Σρ(x1 + λC1, . . . , xn + λCn), (3.7)

where Σρ = (ρij) with ρij = ρiρj , GQ(x) is the joint CDF of (X∗
1 , X

∗
2 , . . . , X

∗
n), the trans-

formed risks under Q, and

Ci ≡ Cov(Xi, Z) = 1 − ρ2
i + ρi

n∑
j=1

ρj .

Note that (X∗
1 , X

∗
2 , . . . , X

∗
n) also follows an n-variate normal distribution with means −λCi

and the same correlation matrix Σρ. Hence, we conclude that

(X∗
1 , X∗

2 , . . . , X∗
n)

d
= (X1 − λC1, X2 − λC2, . . . , Xn − λCn), (3.8)

where Xi are given by (3.3).

Now, we have from (3.2) and (3.8) that

F Q
i (t) = Q{τi ≤ t} = Q{X∗

i ≤ x} = Φ(x + λCi), i = 1, 2, . . . , n, (3.9)

or, equivalently,

x = Φ−1(F Q
i (t)) − λCi, i = 1, 2, . . . , n. (3.10)

It follows from (3.7) and (3.8) that the joint CDF F Q(t) of (τ1, τ2, . . . , τn) under the risk-

neutral measure Q is given by

F Q(t) = Φn:Σρ

(
Φ−1(F Q

1 (t1)), . . . , Φ−1(F Q
n (tn))

)
. (3.11)
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But, given the common factor U in (3.3), the conditional default probability of name i under

Q is obtained as

qQ
i (t|U) ≡ Q{τi ≤ t|U} = Q{X∗

i ≤ x|U} = Φ

⎛
⎝Φ−1(F Q

i (t)) − ρiU√
1 − ρ2

i

⎞
⎠ , (3.12)

where we have used (3.10) in the second equality. The joint CDF F Q(t) under Q is then

given by

F Q(t) =
∫ ∞

−∞

⎡
⎣ n∏

i=1

Φ

⎛
⎝Φ−1(F Q

i (ti)) − ρiu√
1 − ρ2

i

⎞
⎠
⎤
⎦φ(u)du. (3.13)

Hence, we recover the one-factor Gaussian copula model, the standard market model for the

pricing of CDO’s, first developed by Li (2000). Note that, in the joint CDF F Q(t), the risk

aversion index λ is embedded in the marginal default CDF F Q
i (t) given by (3.9), and the

joint CDF F Q(t) under Q is similar to that under P ; cf. (3.6). The CDF F Q
i (t) can be

calibrated from the market quotes for, e.g., credit default swaps (CDS’s).

The distribution of the cumulative loss L(t) under Q (and also under P ) can be obtained

relatively easily. Let ϕ(s|t) be the characteristic function of L(t). Since τi are conditionally

independent given the common factor U , we obtain

ϕ(s|t) ≡ EQ
[
eisL(t)

]
= EQ

[
EQ

[
eisL(t)

∣∣∣U]] = EQ

[
n∏

i=1

ϕi(s|t, U)

]
,

where EQ denotes the expectation operator under Q and the conditional characteristic func-

tion ϕi(s|t, U) is given by

ϕi(s|t, U) ≡ EQ
[
eisMiNi(t)

∣∣∣U] = qQ
i (t|U)eisMi + (1 − qQ

i (t|U)).

Here, qQ
i (t|U) is the conditional default probability given by (3.12). The distribution of L(t)

can then be numerically inverted back from ϕ(s|t) using, e.g., the fast Fourier transform.12

4 A Risk-Adjusted Gaussian Copula Model

We have seen that the one-factor Gaussian copula model (3.13) has a sound economic inter-

pretation within the Bühlmann’s equilibrium pricing framework. However, it is also very well

known that the model cannot explain the market prices of CDO tranches. In this section,

we modify the standard model (3.13) to include risk aversion indices for tranches of CDO’s.

The risk aversion indices are calibrated from market quotes for tranches of standard CDO’s.

12 Alternatively, we can apply the bucketing method developed by Hull and White (2004).
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4.1 Risk adjustment

It is often said that the CDO market is segmented into tranches according to investor’s

preference against risks. Hence, it is natural to assume that the risk aversion index differs

over tranches. More precisely, for a tranche with detachment point D, which we call tranche

D for short, we assume that the risk aversion index is given by λ + λD and the transformed

risks X∗
i in (3.8) are rewritten as

(X∗
1 , X∗

2 , . . . , X∗
n)

d
= (X1 − (λ + λD)C1, X2 − (λ + λD)C2, . . . , Xn − (λ + λD)Cn), (4.1)

when evaluating the tranche D. The parameter λD can be negative, because it represents

the risk adjustment for tranche D.

Recall that the CDF’s FQ
i (t) are calibrated from market quotes for CDS’s. In other

words, the default boundary x remains the same as in (3.10). It follows from (3.11) that the

joint CDF F Q(t) of default times τi under Q is given by

F Q(t) = Φn:Σρ

(
Φ−1(F Q

1 (t1)) + λDC1, . . . , Φ−1(F Q
n (tn)) + λDCn

)
, (4.2)

where λD is the risk adjustment parameter for tranche D.

4.2 Parameter estimation and calibration

Our model (4.2) involves parameters λD, ρi and the marginal CDF’s F Q
i (t), i = 1, 2, . . . , n

to be estimated or calibrated from the market data.

Calibration is necessary for parameters that reflect the risk attitude of investors. In

our model, this role is taken by the risk adjustment parameters λD and the CDF’s F Q
i (t)

of default times τi under Q. Recall that the CDF’s F Q
i (t) can be calibrated from market

quotes for CDS’s.

On the other hand, since we start from Merton’s structural model with the assumption

that

Xi = log Vi = ρiU +
√

1 − ρ2
i Ui,

it is natural to estimate the parameters ρi using the conventional regression with the (stan-

dardized) stock return Xi, if name i issues a stock, to the (standardized) return of the market

index.

Given the CDF’s F Q
i (t) of default times and the correlation parameters ρi, the risk

adjustment parameters λD are calibrated from the market quotes for tranches of standard

CDO’s. Non-standard credit derivatives such as bespoke CDO’s are then priced using, e.g.,

appropriate interpolation of the risk adjustment parameters.
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We note that, for the standard market models including the one-factor Gaussian copula

model, default correlation among the underlying names is the only unobservable element

and, as a result, the correlation plays a role of risk preference of investors. The industry

convention for this purpose is to assume that ρi = ρ for all i, and the parameter ρ implied by

the market prices is used as in much the same way as implied volatilities for the Black–Scholes

model. In contrast, our model involves risk adjustment parameters λD of the representative

agent in the market and the correlation structure remains the same after the change of

measures.

4.3 A numerical example

In this numerical example, we consider 5 data sets consisting of market quotes on synthetic

CDO’s and underlying CDS’s for the most liquid 5 year maturity. The CDO quotes are

available on the five benchmark tranches trading on the Dow Jones iTraxx index, consisting

of 125 European investment grade companies, with 0-3%, 3-6%, 6-9%, 9-12% and 12-22%

tranches, and iTraxx Japan index, consisting of 80 Japanese investment grade companies,

with the same tranches. All quotes are obtained from Bloomberg. The market quotes for

the tranches are listed in Table 1.

The calibrated risk adjustment parameters λD are also listed in Table 1. It is interesting

to see that, while λD are all positive on July 30, 2007 in the iTraxx Japan index, they are all

negative on December 14, 2007. This is so, because the CDO spreads were relatively wide

compared to the CDS spreads on July 30, 2007, while the CDS spreads became wider on

December 14, 2007. Recall that the parameter λ represents the risk aversion index for CDS

in our Gaussian copula model, and λ + λD does for CDO tranche D.

5 A Risk-Adjusted Model with t Copula

The risk-adjusted Gaussian copula model (4.2) has an apparent advantage to the existing

models, because it can perfectly fit market quotes for all tranches of standard CDO’s by

calibrating the risk adjustment parameters λD. A non-standard basket credit derivative such

as a bespoke CDO can then be priced by using an appropriate risk adjustment parameter.

However, the model may be difficult to interpret economically, because we have considered

λ + λD as the risk aversion index for tranche D of the representative agent in the market.

Hence, it makes sense economically to assume that the parameter λD is increasing in D,

because more risk averse investors will invest higher tranches. For example, a plausible

10



Table 1: Market and model prices for CDO tranches

Index Tranches 0-3% 3-6% 6-9% 9-12% 12-22%

DJ iTraxx Mid Price 25.5% 146.0 60.3 36.3 19.3

8/23/2004 Bid/Ask Spread 1.3% 10.0 5.5 5.5 3.5

Calibrated λD 0.0012 −0.0009 −0.0013 −0.0014 −0.0016

DJ iTraxx Mid Price 26.3% 80.6 23.1 10.3 5.8

12/05/2005 Bid/Ask Spread 0.6% 3.3 2.6 2.0 1.3

Calibrated λD 0.0031 −0.0002 −0.0012 −0.0016 −0.0020

iTraxx Japan Mid Price 12.2% 40.0 11.0 6.5 3.5

7/05/2007 Bid/Ask Spread 1.5% 10.0 4.0 5.0 3.0

Calibrated λD 0.0023 −0.0003 −0.0011 −0.0014 −0.0014

iTraxx Japan Mid Price 32.0% 164.0 51.0 31.0 19.8

7/30/2007 Bid/Ask Spread 2.0% 20.0 10.0 10.0 2.0

Calibrated λD 0.0066 0.0032 0.0019 0.0015 0.0016

iTraxx Japan Mid Price 24.5% 192.5 62.5 30.5 16.5

12/14/2007 Bid/Ask Spread 3.5% 45.0 29.0 15.0 9.0

Calibrated λD −0.0042 −0.0043 −0.0046 −0.0047 −0.0042

The market prices were obtained from Bloomberg. The risk adjustment parameters λD are
calibrated from the market quotes based on the joint CDF given by (4.2). Interest rates are
constant at 3%, and the recovery rate is 40%.
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choice for λD will be

λD = a + b log D (5.1)

and the parameters a and b are to be calibrated. In this section, we accommodate the

Student t copula to the risk-adjusted model (4.2) to overcome this deficiency.

5.1 Fat-tail distribution

It is often said that a drawback of the Wang transform (and its extension to the multivariate

setting) is the normal CDF Φ(x) appeared in (2.1) (Φn:Σ(x) in (2.4), respectively), that

never matches the fat-tailness observed in the actual markets. In fact, some empirical studies

suggest to use t distributions, whose CDF is denoted by tν(x), with ν = 3 to 7 degrees of

freedom for return distributions of financial and insurance assets (see, e.g., Platen and Stahl

(2003) and Wang (2004)). Hence, in order to overcome this deficiency, Wang (2002) proposed

the following two-parameter transformation:

GQ(x) = tν [Φ
−1(G(x)) + θ], θ > 0, (5.2)

and reported that (5.2) is much better to fit, although the two-parameter transform is not

consistent with the economic premium principle (2.2).

In our multivariate setting, we also adopt this idea to the joint CDF (4.2) and propose

the following multivariate extension of the two-parameter Wang transform:13

F Q(t) = tn:ν,Σρ

(
Φ−1(F Q

1 (t1)) + λDC1, . . . , Φ−1(F Q
n (tn)) + λDCn

)
, (5.3)

where tn:ν,Σρ(x) denotes the CDF of the n-variate standard t distribution with ν degrees of

freedom and correlation matrix Σρ for the underlying standard normal random variables.

Remark 5.1 Hull and White (2004) suggested to use the Student t distribution for U and

Ui in (3.3) under the risk-neutral measure Q, and reported that the model fits to the market

data very well. The good performance of the model is reported in other papers as well. See,

e.g., Burtschell, Gregory and Laurent (2005) for details. In this model, however, explicit

form for the CDF of Xi is not known.
13 Alternatively, we can apply this idea to the joint CDF (3.7). However, the resulting joint CDF

FQ(t) = tn:ν,Σρ

(
t−1
ν (FQ

1 (t1)) + λDC1, . . . , t−1
ν (FQ

n (tn)) + λDCn

)
does not have a fatter tail than the Gaussian counterpart. In fact, Kijima and Muromachi (2008) found from

numerical experiments that the risk-adjusted distribution FQ(t) has a fatter tail when the inside distribution

is less fat-tailed. That is, the two-parameter transformation (5.3) is justified for practical use when the risk-

adjusted distribution is fat-tailed.
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The joint CDF (5.3) can be expressed as follows. Let the default boundary x be given

by (3.10), and define the transformed risks X∗
i as

X∗
i =

Xi

Y (ν)
− (λ + λD)Ci, Y (ν) =

√
χ2

ν/ν, (5.4)

where Xi are given by (3.3) and χ2
ν denotes a random variable that follows the chi-square

distribution with ν degrees of freedom, independent of other random variables. It is readily

checked that the joint CDF (5.3) of default times τi is given by

F Q(t) = Q{X∗
1 ≤ x1, X

∗
2 ≤ x2, . . . , X

∗
n ≤ xn}.

Now, given the common factor U in (3.3) and Y (ν) in (5.4), the conditional default

probability of name i under Q is obtained as

qQ
i (t|U, Y (ν)) ≡ Q{τi ≤ t|U, Y (ν)} = Q{X∗

i ≤ x|U, Y (ν)}
= Q

{
ρiU +

√
1 − ρ2

i Ui ≤
(
Φ−1(F Q

i (t)) + λDCi

)
Y (ν)

∣∣∣U, Y (ν)
}

= Φ

⎛
⎝(Φ−1(F Q

i (t)) + λDCi)Y (ν) − ρiU√
1 − ρ2

i

⎞
⎠ . (5.5)

The joint CDF F Q(t) under the risk-neutral measure Q is then obtained as

F Q(t) =
∫ ∞

−∞

∫ ∞

0

⎡
⎣ n∏

i=1

Φ

⎛
⎝(Φ−1(F Q

i (ti)) + λDCi)y − ρiu√
1 − ρ2

i

⎞
⎠
⎤
⎦χν(y)dyφ(u)du, (5.6)

where χν(y) is the PDF of Y (ν).

5.2 Single integral formula

In order to avoid the double integral in (5.6),14 we employ the following approximation

instead of (5.4):

X∗
i =

Xi

Yi(ν)
− (λ + λD)Ci, Yi(ν) =

√
χ2

i:ν/ν, (5.7)

where χ2
i:ν are independent, identically distributed chi-square random variables with ν de-

grees of freedom. Then, we can consider the conditional default probability (5.5) given the

common factor U only.

More specifically, we define random variables

ξi(u) =
Ui + δi(u)

Yi(ν)
, δi(u) =

ρiu√
1 − ρ2

i

, i = 1, 2, . . . , n. (5.8)

14 The double integral is computationally time consuming when the parameters are calibrated to the market

data. We aim to derive a simple model for practical use.
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It is well known that ξi(u) follows a non-central t distribution with ν degrees of freedom and

non-centrality parameter δi(u). In the following, we denote the CDF of ξi(u) by Pν:δ(u)(x).

Now, given the common factor U in (3.3), we have from (5.7) and (5.8) that

{X∗
i < x} =

⎧⎨
⎩ξi(U) <

x + (λ + λD)Ci√
1 − ρ2

i

⎫⎬
⎭ ,

where x is defined by (3.10). It follows that, given the common factor U , the conditional

default probability of name i under Q is obtained as

qQ
i (t|U) ≡ Q{τi ≤ t|U} = Q{X∗

i < x|U}

= Q

⎧⎨
⎩ξi(U) <

Φ−1(F Q
i (t)) + λDCi√
1 − ρ2

i

∣∣∣U
⎫⎬
⎭

= Pν:δi(U)

⎛
⎝Φ−1(F Q

i (t)) + λDCi√
1 − ρ2

i

⎞
⎠ . (5.9)

The joint CDF F Q(t) of default times τi under the risk-neutral measure Q is then obtained

as

F Q(t) =
∫ ∞

−∞

⎡
⎣ n∏

i=1

Pν:δi(u)

⎛
⎝Φ−1(F Q

i (ti)) + λDCi√
1 − ρ2

i

⎞
⎠
⎤
⎦φ(u)du,

δi(u) =
ρiu√
1 − ρ2

i

.

(5.10)

The distribution of the cumulative loss L(t) under Q can be obtained by using, e.g., the

bucketing algorithm of Hull and White (2004).15

5.3 Empirical application

The model (5.10) involves new parameters a and b in (5.1) and ν, the degree of freedom in

the Student t distribution. Given the marginal CDF’s F Q
i (t) and the correlation parameters

ρi, these parameters are calibrated from market quotes for CDO tranches by minimizing the

following root mean square price errors (RMSE) relative to bid/ask spreads:

RMSE =

√√√√√1

5

5∑
j=1

(
Sj:mid − Sj

Sj:ask − Sj:bid

)2

,

where Sj is the spread of tranche j calculated by the model, Sj:mid the market mid-spread,

Sj:ask the market ask spread, and Sj:bid the market bid spread; see Mortensen (2006) for

details.
15 The CDF Pν:δi(x) can be evaluated easily with enough accuracy using the algorithm developed by Lenth

(1989). See Kijima and Muromachi (2008) for details.
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The calibrated results are shown in Tables 2 and 3, where the calibration results for other

models are taken from Mortensen (2006). Our risk-adjusted t copula model fits the market

prices very well, or at least comparable with the existing models. It is interesting to note

that the mid price in equity tranche on December 5, 2005 is higher than than on August 23,

2004, while the mid prices in higher tranches on December 5, 2005 are smaller than those

on August 23, 2004. In our model, this tranche structure of mid prices is captured by the

degree of freedom ν of t distribution as well as the slpe b of the risk adjustment function λD

in (5.1). More specifically, the slope b on December 5, 2005 is steeper than that on August

23, 2004, whereas the degree of freedom ν on December 5 is bigger than that on August 23,

2004.

6 Conclusion

This paper showed that, contrary to the criticism, the one-factor Gaussian copula model

is consistent with Bühlmann’s equilibrium pricing model, whence it has a sound economic

interpretation. Based on this finding, we then develop an alternative within the Bühlmann’s

framework to the Gaussian copula to fit market quotes for tranches of standard CDO’s better

by taking the well-recognized facts in the credit derivatives market into consideration.

Namely, in our model, we introduce the risk aversion index for each tranche to be cali-

brated from the market quotes for CDO tranches, while keeping the correlation structure as

given under the actual probability measure, since the CDO market is segmented into tranches

according to investor’s preference against risks. We also apply the Student t copula for the

multivariate Wang transform, because some empirical studies suggest to use t distributions

with ν = 3 to 7 degrees of freedom for return distributions of financial and insurance assets.

Numerical experiments reveal that our model provide a better fit than the existing models

in the literature.
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