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Abstract

We consider a consistent pricing model of government bonds, interest-rate swaps

and basis swaps in one currency within the no-arbitrage framework. To this end, we

propose a three yield-curve model; one for discounting cashflows, one for calculating

LIBOR deposit rates and one for calculating coupon rates of government bonds. The

derivation of the yield curves from observed data is presented, and the option prices

on a swap or a government bond are studied. A one-factor quadratic Gaussian model

is proposed as a specific model, and shown to provide a very good fit to the current

Japanese low interest-rate environment.

1 Introduction

Risk management of interest rates is becoming more important than ever due to growing

economic activities by individuals, corporate firms, institutional investors and governments,

since interest rates reflect demand for money to support their business lives. Many transac-

tions of interest-rate products in financial markets determine the consensus of interest rates.

Interest rates are not “local” but “global” in the sense that interest rates of one currency

are affected by those of other currencies and other financial products with the globalization

of business activities.
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Interest-rate products frequently traded in the market include bonds, swaps, basis swaps,

and other interest-rate derivatives. An interest-rate (plain vanilla) swap is an exchange of

a fixed-coupon bond and a floating-coupon bond, whereas a basis swap is a cross-currency

swap to exchange a floating-coupon bond in the US dollar (USD) and a floating-coupon

bond in another currency, e.g. Japanese yen (JPY).1 If the market were frictionless, the

swap rate would coincide with the bond yield with the same maturity and the basis swap

spread would diminish. However, several yield spreads are observed in the actual market

due to some frictions.

It is understood that swap spreads between swap rates and bond yields are caused by

credit risk, a preference for government bonds that can be used as a collateral,2 and other

reasons. On the other hand, basis swap spreads emerge due to uneven demands in one

currency against another currency as a result of economic activities or credit issues of the

governments. For example, suppose that a Japanese bank needs a USD fund. It will raise

a fund in JPY in the home market and enters into a basis swap on which it pays USD

LIBOR and receives JPY LIBOR plus the basis swap spread so that it borrows USD with

a collateral in JPY. If it is very aggressive in the USD funding, the basis swap spread will

become negative and further.3 The aim of this paper is to construct a consistent pricing

model for the interest-rate products that are traded with frictions.

There exists a vast literature for the term-structure models of interest rates. A seminal

paper by Vasicek (1977) used the Ornstein–Uhlenbeck process to model the short-rate dy-

namics. Since then, many short-rate models have been proposed, including the square-root

model by Cox, Ingersoll and Ross (1985), the quadratic-Gaussian model by Pelsser (1997),

and the affine term structure model by Duffie and Kan (1996).4 On the other hand, Heath,

Jarrow and Morton (1992) developed the forward-rate model to preclude arbitrage oppor-

tunities among bonds of different maturities. Flesaker and Hughston (1996) proposed the

potential approach to model directly the bond prices, and showed that they actually consider

a class of positive HJM models.

1More precisely, a basis swap exchanges interests of the USD 3-month LIBOR and interests in a different

currency, say JPY, of the 3-month LIBOR with some spread, in addition to the principal exchanges at the

starting date and the maturity.
2Government bonds are excessively demanded compared to swaps, because the bonds are the objective

of investment of many funds, while swaps are not.
3If the funds in any currencies are equally available to all market participants, the basis swap spreads

will diminish.
4The Vasicek model as well as the CIR model belongs to the class of one-factor affine models, while the

quadratic Gaussian model does not.
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While the literature of swap spreads is also huge,5 academic researchers have paid little

attention to the basis swap spread, although these two spreads are carefully watched by

practitioners in the actual market, with the exception of Fruchard, Zammouri and Willems

(1995) and Boenkost and Schmidt (2005). In particular, Boenkost and Schmidt (2005)

proposed two models for the basis swap spread by using two different curves, the one for

discounting cashflows and the other for calculating forward LIBOR rates. The first model

being widely used in practice is inconsistent to the traditional bootstrapping model,6 whence

admitting an arbitrage opportunity. The second model is consistent, but mark-to-market

valuation differs from the results of the standard method.

This paper adopts and extends the idea of Boenkost and Schmidt (2005) to model three

different curves (D, L, G-curves) in one currency under a stochastic interest-rate economy

within the no-arbitrage paradigm.7 More specifically, we assume that market participants

trade government bonds, interest-rate swaps, and basis swaps, and use the D-curve to dis-

count all the cashflows. The LIBOR as a reference rate of the floating rate on a swap contract

is a deposit rate whose yield curve is called the L-curve. The difference between the L-curve

and the D-curve reflects the unequal demands to currencies. The G-curve is constructed

similar to the L-curve. The key idea here is to regard the purchase of a government bond as

a swap contract on the floating rates determined by the G-curve. Hence, excessive demands

on government bonds to swaps are reflected in the difference between the L-curve and the

G-curve. By making use of these ideas, it is shown that a bootstrapping method calculates

zero-coupon bond prices from observed swap rates and bond prices.

This paper is organized as follows. After describing the model setup in the next section,

we obtain valuation formulas of the interest-rate products in Section 3. Section 4 is devoted

to constructing specific models for the dynamics of the D-curve and the two spreads, L−D

and G − D. Namely, while the spreads are modelled by one-factor Vasicek models, we

consider a one-factor quadratic Gaussian model and a one-factor Vasicek model for the risk-

free short rate process. In either case, the three curves (D, L, G-curves) are derived in

closed form. Section 5 considers the pricing of options such as swaptions and bond options.

The option prices are approximated by the Gram–Charlier expansion that decomposes the

density function of the value of the underlying asset at the expiry. In Section 6, we show

5Among them, we refer to Collin-Dufresne and Solnik (2001), Feldhütter and Lando (2006) and references

therein.
6The model proposed by Fruchard, Zammouri and Willems (1995) is a special case of this model.
7We call our model the DLG model, where “D” stands for “Discount”, “L” for “LIBOR”, and “G” for

“Government”, respectively, that is a direct extension of the LG model previously studied by Kijima and

Tanaka (2007). Note that any interest-rate model can be applied to construct each curve.
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some empirical results. After showing the historical rates, we present some calibration results

and approximation accuracy of the Gram–Charlier expansion for option prices. Section 7

concludes this paper.

2 Model Setup

Throughout the paper, we assume that the denominated currency of both interest-rate swaps

and government bonds is in JPY, and the basis swap is an exchange of JPY LIBOR plus the

basis swap spread with USD LIBOR.8 A government bond is priced with a premium due to

several risk resources and/or the convenience yield, i.e. a benefit of holding the government

bond. An interest-rate swap is priced also with a premium due to several risk resources

including credit risk.9

Since interest-rate swaps and government bonds in the actual market are traded with

different yields and since a non-zero spread in the basis swap exists, it is justified to use

a different discounting curve for each trade. In this paper, we consider the three curves,

“D-curve”, “L-curve” and “G-curve” for this purpose. The short rate associated with the

k-curve, k = D, L,G, is denoted by rk(t).

Market participants observe the interest rates determined by these curves. For exam-

ple, LIBOR deposit rates are implied by the L-curve, and we assume that the participants

evaluate any claim by discounting all cashflows along the D-curve. Similarly, government

bonds are priced by using the G-curve for coupons and the D-curve for discounting cash-

flows. Hence, all transactions of swaps and bonds are priced based on the short rates rk(t),

k = D, L,G, of JPY under the risk-neutral probability measure. We shall derive three fun-

damental equations for the three products in the next section. Note that our discussion is

similar to, but different from those in Boenkost and Schmidt (2005), since our framework is

based on the no-arbitrage paradigm. Also, we consider a stochastic interest-rate economy.

The uncertainty is represented by a probability space (Ω,F , QD) on which the short

rates rk(t), k = D, L,G, are defined using a three-dimensional standard Brownian motion

(WD(t), WL(t), WG(t)).10 The filtration generated by the Brownian motion is denoted by

{Ft}. The probability measure QD is the risk-neutral measure, since we are interested in

8As in Boenkost and Schmidt (2005), we assume that there exist no frictions in the USD currency.
9According to Collin-Dufresne and Solnik (2001), whereas corporate bonds carry default risk, swap con-

tracts are free of default risk.
10In this paper, we take the short rate approach rather than the market model (or forward rate) approach

simply because calibration becomes simpler.
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the pricing of financial products.11 Hence, the short rate rD(t) is regarded as the risk-free

interest rate. The expectation of random variable X with respect to probability measure P

is denoted by EP [X].

Associated with the short rate rk(t) is the money market account defined by

Bk(t) = e
� t
0 rk(s)ds, k = D, L, G.

Recall that any price process discounted by BD(t) is a martingale under QD.

Before proceeding, we introduce a useful pricing kernel Zk(t) associated with the short

rate rk(t) by

dZk(t)

Zk(t)
= −rk(t)dt −

∑
j=D,L,G

λj
k(t)dWj(t), Zk(0) = 1, k = D, L,G, (2.1)

where λD
D = λL

D = λG
D = 0,12 which implies ZD(t) = 1/BD(t). Here, we call (λD

k , λL
k , λG

k )

the market price of risk associated with the k-curve. The zero-coupon bond price Pk(t, T ),

t ≤ T , on the k-curve can then be evaluated by

Pk(t, T ) = EQD

[
Zk(T )

Zk(t)

∣∣∣Ft

]
, k = D, L,G. (2.2)

Of course, we have Pk(T, T ) = 1 for all k = D, L,G.

For the valuation purpose, it is also useful to introduce measures Q� equivalent to the

risk-neutral measure QD by

dQ�

dQD

∣∣∣
Ft

= ζ�(t) ≡ B�(t)Z�(t), � = L,G. (2.3)

The probability measure Q� is the equivalent martingale measure with respect to the numéraire

of the money market account B�. Similarly, we define the T -forward measure QT
D with the

numéraire of PD(t, T ).

3 Valuation of Interest-Rate Products

In the ordinary interest-rate swaps, a swap rate is the fixed rate to be exchanged with the

floating rate LIBOR for a certain period. Similarly, as we shall show, both basis swaps and

11Other measures such as QL defined later can be chosen as a reference pricing measure. Our choice of QD

as a reference measure is based on the intuition that all cashflows should be discounted along the D-curve,

and L-curve is used for the derivation of the forward LIBOR rates.
12This form of pricing kernel is consistent with a result in Cuoco (1997). He proves that a pricing kernel

Zν(t) in an incomplete market due to a portfolio constraint ν satisfies a stochastic differential equation

similar to (2.1).
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government bonds can be regarded as swap contracts. Using this idea, we formulate a swap

rate, a basis swap spread and a government bond price in this section. To this end, we define

the deposit rate under the k-curve for period [Ti−1, Ti] observed at time t as

ck(t, Ti−1, Ti) =
1

Ti − Ti−1

(
Pk(t, Ti−1)

Pk(t, Ti)
− 1

)
, k = L,G. (3.1)

Whereas cL is called the LIBOR, we call cG the Govt rate.

In the following, for the sake of simplicity, we assume that the same day-count convention

is applied to all the products, and the relevant dates T0 < T1 < · · · < T = TN are set at

regularly spaced time intervals with δ = Ti − Ti−1 for all i, and the time t is any time on or

prior to T0.

3.1 Interest-Rate Swaps

Let us denote the time-t swap rate for period [T0, TN ] by S(t, T0, TN). An interest-rate swap

is equivalent to an exchange at the same price of a fixed-coupon bond with rate S(t, T0, TN)

and a floating-coupon bond with the LIBOR rates cL(Ti−1, Ti−1, Ti), i = 1, 2, . . . , N .

By our assumption, market participants evaluate at time t the value of the floating coupon

cL(Ti−1, Ti−1, Ti) as

EQD

[
ZD(Ti)

ZD(t)
cL(Ti−1, Ti−1, Ti)

∣∣∣Ft

]
=

1

δ
EQD

[
ZD(Ti)

ZD(t)

(
1

PL(Ti−1, Ti)
− 1

) ∣∣∣Ft

]
. (3.2)

Using the Ti-forward measure QTi
D , it follows that

EQD

[
ZD(Ti)

ZD(t)
cL(Ti−1, Ti−1, Ti)

∣∣∣Ft

]
=

1

δ
PD(t, Ti)E

Q
Ti
D

[
1

PL(Ti−1, Ti)
− 1
∣∣∣Ft

]
. (3.3)

In the following, we denote

L(t, Ti−1, Ti) =
1

δ

(
EQ

Ti
D

[
1

PL(Ti−1, Ti)

∣∣∣Ft

]
− 1

)
. (3.4)

Let us regard a swap contract as an exchange of a fixed-coupon bond and a floating-

coupon bond. While the value of the fixed leg at time t is given by

−PD(t, T0) + δS(t, T0, TN)

N∑
i=1

PD(t, Ti) + PD(t, TN ),

the value of the floating leg at time t is given by

−PD(t, T0) + δ

N∑
i=1

L(t, Ti−1, Ti)PD(t, Ti) + PD(t, TN ), (3.5)
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where we have used (3.3) and (3.4). Since the values of the both legs must be equal, we

obtain the first fundamental equation

S(t, T0, TN) =

∑N
i=1 L(t, Ti−1, Ti)PD(t, Ti)∑N

i=1 PD(t, Ti)
. (3.6)

Note, however, that the value of each leg may not be zero. This implies that the valuation of

an off-the-market swap under this method is different from a traditional bootstrapping result

(see Remark 3.1 below), which is a well-known fact for international financial institutions,

as pointed out by Boenkost and Schmidt (2005).

3.2 Basis Swaps

Let bs(t, T0, TN) denote the basis swap spread for period [T0, TN ], originated at time t.

Namely, coupons of USD LIBOR are exchanged with those of JPY LIBOR plus bs(t, T0, TN)

in addition to the principal exchanges at the starting date and the maturity.

Since we have assumed that there exist no frictions in the USD currency, the USD-

denominated floating bond is priced at par13 . Then, on the JPY leg to be exchanged with

the USD leg on the basis swap, we must have

0 = −PD(t, T0) + δ

N∑
i=1

(L(t, Ti−1, Ti) + bs(t, T0, TN)) PD(t, Ti) + PD(t, TN), (3.7)

which implies the second fundamental equation

bs(t, T0, TN) =
PD(t, T0) − PD(t, TN)

δ
∑N

i=1 PD(t, Ti)
− S(t, T0, TN). (3.8)

Remark 3.1. When the L-curve and the D-curve are identical as in Kijima and Tanaka

(2007), we have from (3.2) that

EQD

[
ZD(Ti)

ZD(t)
cL(Ti−1, Ti−1, Ti)

∣∣∣Ft

]
=

1

δ
[PD(t, Ti−1) − PD(t, Ti)].

It follows from (3.5) that the value of the floating leg is given by

−PD(t, T0) +

N∑
i=1

[PD(t, Ti−1) − PD(t, Ti)] + PD(t, TN) = 0,

13In the case of the presence of some frictions in the USD market, the USD floating bond is not a par.

Hence, the right-hand side of equation (3.7) is not equal to zero. The following discussion can be modified

by considering the JPY-value of the USD leg with the process of the foreign exchange rate, D- and L-curves

of USD.
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and the swap rate is determined as

S(t, T0, TN) =
PD(t, T0) − PD(t, TN )

δ
∑N

i=1 PD(t, Ti)
.

Therefore, we have bs(t, T0, TN ) = 0 in this case. The converse statement is also true; i.e.,

zero basis swap spreads along all the maturities implies that the L-curve and the D-curve

are identical in the DLG model.

3.3 Government Bonds

The swap spread will be zero if all the cashflows of a government bond are evaluated along

the L-curve. The swap spread is usually positive, meaning that the market price of the

government bond is more expensive than evaluated along the L-curve. The premium can

be interpreted as a benefit of holding the government bond (i.e. a convenience yield) or a

reflection of credit issues surrounding banks and the government. In order to describe such

a benefit formally, we regard the purchase of a government bond as a swap transaction to

exchange the fixed-coupon bond against a floating-coupon bond with relatively low rates.

Namely, we derive the deposit rate calculated along the G-curve and consider a swap trans-

action on the floating deposit rates. The notional fixed-coupon bond in the swap transaction

is understood to be the government bond. We formulate this idea as follows.

Let V (t, TN) be the time-t price of the government bond (“JGB”) with maturity TN and

fixed-coupon rate C(TN ). Since the purchase of a government bond is equivalent to a swap

transaction to exchange the fixed-coupon bond against a floating-coupon bond, we obtain

−V (t, TN) + δC(TN)
N∑

i=1

PD(t, Ti) + PD(t, TN)

= −PD(t, T0) + δ

N∑
i=1

G(t, Ti−1, Ti)PD(t, Ti) + PD(t, TN),

(3.9)

where

G(t, Ti−1, Ti) =
1

δ

(
EQ

Ti
D

[
1

PG(Ti−1, Ti)

∣∣∣Ft

]
− 1

)
(3.10)

as for (3.4). The derivation of (3.9) is the same as (3.5) for the ordinary interest-rate swaps.

By solving (3.9) with respect to the government bond price V (t, TN), we obtain the third

fundamental equation

V (t, TN) = PD(t, T0) + δ

N∑
i=1

[C(TN) − G(t, Ti−1, Ti)]PD(t, Ti) (3.11)
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for the G-curve. Note that the par yield (the bond price is at par) Cp(t, T0, TN ) is given by

Cp(t, T0, TN) =

∑N
i=1 G(t, Ti−1, Ti)PD(t, Ti)∑N

i=1 PD(t, Ti)
, (3.12)

which is completely parallel to the swap rate (3.6).

Remark 3.2. Equation (3.9) represents that the value of cashflows arising from the purchase

of a government bond is equal to the value of the floating-rate bond whose floating rates are

the Govt rates cG(Ti−1, Ti−1, Ti) = G(Ti−1, Ti−1, Ti). However, note that the value of the both

sides in (3.9) is not equal to zero, because the floating-rate bond is not at par. Moreover,

note that the coupon cashflows of the fixed bond are evaluated along the D-curve, while

the redemption value of the bond is evaluated with the D- and G-curves under the DLG

model. Namely, from (3.11), one can see that by setting C(TN) = 0 in (3.11), the price of

the zero-coupon government bond is given by

PD(t, T0) − δ
N∑

i=1

G(t, Ti−1, Ti)PD(t, Ti),

which implies that the coupon value of the coupon-bearing bond is equal to

δC(TN)
N∑

i=1

PD(t, Ti).

Hence, the convenience yield appears only in the original principal.

If all the forward rates of the G-curve are lower than the ones of the L-curve (forward

LIBOR) plus the basis swap spread, i.e.

G(t, Ti−1, Ti) < L(t, Ti−1, Ti) + bs(t, T0, TN), i = 1, 2, . . . , N,

then, from (3.7) and (3.11), we obtain

V (t, TN) > δC(TN )
N∑

i=1

PD(t, Ti) + PD(t, TN).

That is, the value of each leg in (3.9) is negative and the JGB price becomes more expensive

than evaluated along the L-curve. This is the situation that a government bond yield is

lower than the corresponding swap rate as usually observed in the actual market.

3.4 Bootstrapping

By the three fundamental equations (3.6), (3.8) and (3.11), we can construct a bootstrapping

to calculate the prices (PD, L, G) from the observed data (S, bs, V ) by starting from the
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nearest maturity T0 and going through further maturities recursively. Namely, from (3.8),

we first obtain the D-curve

PD(t, TN) =
PD(t, T0) − δ[S(t, T0, TN ) + bs(t, T0, TN)]

∑N−1
i=1 PD(t, Ti)

1 + δ[S(t, T0, TN) + bs(t, T0, TN)]
. (3.13)

Next, from (3.6), we have with PD(t, Ti) at hand that

L(t, TN−1, TN) =
1

PD(t, TN)

[
S(t, T0, TN)

N∑
i=1

PD(t, Ti) −
N−1∑
i=1

L(t, Ti−1, Ti)PD(t, Ti)

]
.

(3.14)

Finally, from (3.11), we obtain

G(t, TN−1, TN) = C(TN) − 1

δPD(t, TN)

[
V (t, TN) − PD(t, T0) (3.15)

− δ

N−1∑
i=1

[C(TN ) − G(t, Ti−1, Ti)]PD(t, Ti)
]
.

4 Short-Rate Models

In this section, we study two simple short-rate models to derive formulas in closed form

for the three curves Pk(t, T ), k = D, L,G. The D-curve on the first model is built by a

quadratic Gaussian model and the second one is by the Vasicek model14. For this purpose,

we introduce the short-rate spreads defined by

hL(t) = rL(t) − rD(t), hG(t) = rG(t) − rD(t),

and model them together with rD(t), rather than the three short rates rk(t) directly.

The spreads hL(t) and hG(t) can be interpreted in our framework as follows. First,

hL(t) can be viewed as an averaged cost of JPY funding over rD(t) among reference banks

contributing to the LIBOR panel. The cost may be incurred due to heterogeneous demands

among currencies. Next, −hG(t) is a convenience yield, or a benefit of holding the government

bond for market participants. These costs can be retrieved from the bootstrapped forward

rates L(t, Ti−1, Ti) and G(t, Ti−1, Ti). Note that

rL(t) − rG(t) = hL(t) − hG(t)

represents the swap spread. Hence, we have

rG(t) = rL(t) − [hL(t) − hG(t)],

meaning that the JGB yield is the swap rate with the same maturity less the swap spread.
14The Hull-White model (1990,1994) is another candidate for our purpose, provided that the initial curve

is available. The formulation can be carried out in a completely parallel fashion to the Vasicek case.
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4.1 Quadratic Gaussian Model

As a specific model, we first apply the quadratic Gaussian model proposed by Pelsser (1997).

That is, the short rate rD(t) is assumed to follow the process

rD(t) = (y(t) + α + βt)2,

dy(t) = −aDy(t)dt + σDdWD(t),
(4.1)

where α, β, aD, σD are some constants.

On the other hand, the spreads are modelled by the Vasicek model (i.e., the Ornstein–

Uhlenbeck process) as

dhL(t) = aL(bL − hL(t))dt + σLdWL(t),

dhG(t) = aG(bG − hG(t))dt + σGdWG(t),
(4.2)

respectively, where ak, bk, σk (k = L,G) are some constants and the Brownian motions

WD(t), WL(t), WG(t) are independent of each other under QD. The market prices of risk

are assumed to be given by⎛
⎜⎜⎜⎜⎝

λD
D(t) λL

D(t) λG
D(t)

λD
L (t) λL

L(t) λG
L(t)

λD
G(t) λL

G(t) λG
G(t)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 0

0 λL 0

0 0 λG

⎞
⎟⎟⎟⎟⎠ (4.3)

with some constants λL, λG.

According to Pelsser (1997), the zero-coupon bond price derived from (4.1) is given by

PD(t, T ) = exp
{
AD(t, T ) − BD(t, T )y(t) − CD(t, T )y(t)2

}
, (4.4)

where

γ =
√

a2
D + 2σ2

D,

FD(t, T ) = 2γeγ(T−t)
(
(γ + aD)e2γ(T−t) + γ − aD

)−1
,

CD(t, T ) =
(
e2γ(T−t) − 1

) (
(γ + aD)e2γ(T−t) + γ − aD

)−1
,

BD(t, T ) = 2FD(t, T )

∫ T

t

α + βs

FD(s, T )
ds,

AD(t, T ) =

∫ T

t

(
1

2
σ2

DBD(s, t)2 − σ2
DCD(s, T ) − (α + βs)2

)
ds.

Explicit formulas for BD and AD are given in Appendix A.

We next derive an explict formula for the L-curve. Because WD(t) and WL(t) are inde-

pendent under QD, one can show that

PL(t, T ) = EQD

[
ZL(T )

ZL(t)

∣∣∣Ft

]
= PD(t, T )HL(t, T ), (4.5)
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where

HL(t, T ) = EQL

[
e−

� T
t

hL(s)ds
∣∣∣Ft

]
after an appropriate change of measures.

For the explicit calculation of HL(t, T ), using Girsanov’s theorem, it is easy to show that

dhL(s) = aL

[(
bL − σLλL

aL

)
− hL(s)

]
ds + σLdW L

L (s)

where W L
L (t) = WL(t)+λLt is a standard Brownian motion under QL. Note that the process

hL(t) is also the Vasicek process (the Ornstein–Uhlenbeck process) under QL. Recalling the

usual discussions for the Vasicek model, we then obtain

HL(t, T ) = exp {AL(t, T ) + BL(t, T )hL(t)} , (4.6)

where the functions AL and BL are given by

BL(t, T ) = − 1

aL

(
1 − e−aL(T−t)

)
,

AL(t, T ) = − (BL(t, T ) + (T − t))

(
bL − σLλL

aL

− σ2
L

2a2
L

)
− σ2

LBL(t, T )2

4aL

,

respectively. We note from (4.5) that

− log
PL(t, T )

T − t
+ log

PD(t, T )

T − t
= − log

HL(t, T )

T − t

represents the spread in the zero rates between the “discounting curve” and the “LIBOR

curve”.

In order to calculate the forward LIBOR, we invoke the fact that the dynamics of hL(t)

is not affected by the change of measures from QD to QT1
D . It follows from (4.6) that

δL(t, T1, T2) = EQ
T2
D

[
1

PL(T1, T2)

∣∣∣Ft

]
− 1

=
PD(t, T1)

PD(t, T2)
exp
{
−AL(T1, T2) − BL(T1, T2)E

QD [hL(T1) | Ft]

+
1

2
BL(T1, T2)

2V arQD [hL(T1) | Ft]
}
− 1.

Thanks to the conditional normality of hL(T1), we then obtain the forward LIBOR rates as

L(t, T1, T2) =
1

δ

(
PD(t, T1)

PD(t, T2)
KL(t, T1, T2) − 1

)
, (4.7)

where

KL(t, T1, T2) = exp
{
−AL(T1, T2) − BL(T1, T2)

(
hL(t)e−aL(T1−t) + bL

(
1 − e−aL(T1−t)

))
+

σ2
LBL(T1, T2)

2

4aL

(
1 − e−2aL(T1−t)

)}
,

12



which represents the spread in the forward rates between the discounting curve and the

forward LIBOR curve.

Finally, using the same arguments, we can derive an explicit formula for the G-curve.

Namely,

PG(t, T ) = PD(t, T )HG(t, T ), (4.8)

and

HG(t, T ) = exp {AG(t, T ) + BG(t, T )hG(t)} , (4.9)

where

BG(t, T ) = − 1

aG

(
1 − e−aG(T−t)

)
,

AG(t, T ) = − (BG(t, T ) + (T − t))

(
bG − σGλG

aG
− σ2

G

2a2
G

)
− σ2

GBG(t, T )2

4aG
.

Furthermore, we have

G(t, T1, T2) =
1

δ

(
PD(t, T1)

PD(t, T2)
KG(t, T1, T2) − 1

)
, (4.10)

where

KG(t, T1, T2) = exp
{
−AG(T1, T2) − BG(T1, T2)

(
hG(t)e−aG(T1−t) + bG

(
1 − e−aG(T1−t)

))
+

σ2
GBG(T1, T2)

2

4aG

(
1 − e−2aG(T1−t)

)}
.

4.2 The Vasicek Model

The quadratic Gaussian model (4.1) has an apparent merit that the short rate rD(t) stays

non-negative. However, in order to derive formulas in closed form, we assumed that rD(t)

and the short-rate spreads hL(t), hG(t) are mutually independent. In reality, however, these

processes are correlated significantly, so the independent assumption may cause a limited

flexibility of our model when fitted to the actual data.

In this subsection, at the sacrifice of non-negativity in the short rate, we develop a

correlated Gaussian model. Namely, the short rate rD(t) is assumed to follow the Vasicek

model

drD(t) = aD(bD − rD(t))dt + σDdWD(t), (4.11)

13



where aD, bD and σD are some constants. The spreads hL(t) and hG(t) follow the same

Vasicek processes as in (4.2). In order to introduce correlations between them, we assume

that the Brownian motions WD(t), WL(t), WG(t) are correlated as

dWD(t)dWL(t) = ρDLdt, dWD(t)dWG(t) = ρDGdt, dWL(t)dWG(t) = ρLGdt.

The market prices of risk are the same as (4.3).

By making use of the conditional normality of the above processes, one can show that

the relevant prices and the forward rates are given by15

PD(t, T ) = exp {AD(t, T ) + BD(t, T )rD(t)} ,

PL(t, T ) = EQD

[
ZL(T )

ZL(t)

∣∣∣Ft

]
= PD(t, T )HL(t, T ),

PG(t, T ) = EQD

[
ZG(T )

ZG(t)

∣∣∣Ft

]
= PD(t, T )HG(t, T ),

L(t, T1, T2) =
1

δ

(
EQ

T2
D

[
1

PL(T1, T2)

∣∣∣Ft

]
− 1

)
=

1

δ

(
PD(t, T1)

PD(t, T2)
KL(t, T1, T2) − 1

)
,

G(t, T1, T2) =
1

δ

(
EQ

T2
D

[
1

PG(T1, T2)

∣∣∣Ft

]
− 1

)
=

1

δ

(
PD(t, T1)

PD(t, T2)
KG(t, T1, T2) − 1

)
,

where

Bk(t, T ) = − 1

ak

(
1 − e−ak(T−t)

)
,

Ak(t, T ) = − (Bk(t, T ) + (T − t))

(
bk − σ2

k

2a2
k

)
− σ2

kBk(t, T )2

4ak

,

BDk(t, T ) = −1 − e−(aD+ak)(T−t)

aD + ak
,

AD�(t, T ) = λ�
σ�

a�
(B�(t, T ) + T − t) + λ�

ρD�σD

aD
(BD(t, T ) + T − t)

+
ρD�σDσ�

aDa�
(BD(t, T ) + B�(t, T ) − BD�(t, T ) + T − t) ,

H�(t, T ) = exp {A�(t, T ) + AD�(t, T ) + B�(t, T )h�(t)} ,

K�(t, T1, T2) = exp
{
−A�(T1, T2) − B�(T1, T2)

(
h�(t)e

−a�(T1−t) + b�

(
1 − e−a�(T1−t)

))
+

σ2
� B�(T1, T2)

2

4a�

(
1 − e−2a�(T1−t)

)
−AD�(T1, T2) − ρD�σDσ�

aD
B�(T1, T2) (BD(t, T1) − BDD(t, T1))

}
,

for k = D, L,G and � = L,G.

15A detailed derivation is provided from the authors upon request.
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5 The Pricing of Options

The three curves obtained in the previous section look too complicated to be used for the

evaluation of swaptions and bond options in the DLG model. However, regardless of the

complexity, we can obtain approximated prices of such options by using the Gram–Charlier

expansion and bond moments as discussed in Tanaka, Yamada and Watanabe (2007). In

this section we outline the basic procedure of the approximation.

As the first step, we need to calculate the moments of the bond prices, called the bond

moments, involved in the valuation of the cashflow upon the exercise of the option in question

under the T -forward measure. Suppose that the zero-coupon bond price P (t, T ) is given

as a function of Markov state variable X(t). For a given set of dates T, T0, U1, . . . , Um

(T ≤ T0 ≤ Ui for all i = 1, . . . , m), the bond moment is defined as

μT (t, T0, {U1, . . . , Um}) ≡ ET

[
m∏

i=1

P (T0, Ui) | X(t)

]
.

What is useful in practice is that the bond moments can be obtained as a function of Xt

either analytically or numerically.

Next, by regarding the cashflow
∑N

i=0 aiP (T0, Ti) of a fixed-coupon bond with cashflow ai

on date Ti as the value of a swap, we obtain the mth swap moment, using the bond moments

and the cashflows, as

Mm(t) = ET0

[(
N∑

i=0

aiP (T0, Ti)

)m ∣∣∣Xt

]

=
∑

0≤i1,...,im≤N

ai1 · · ·aimμT0(t, T0, {Ti1 , . . . , Tim}).

The kth cumulant ck(t) of the cashflow
∑N

i=0 aiP (T0, Ti) is calculated from the set of moments

Mm(t).

Finally, define the coefficients qk(t), k ≥ 1, as q0 = 1, q1 = q2 = 0, and

qk =

[k/3]∑
m=1

∑
k1+···+km=k,ki≥3

ck1 · · · ckm

m!k1! · · · km!

(
1√
c2

)k

, k = 3, 4, . . . ,

where we omit the argument of time t to save the space. In particular, we have

q3 =
c3

3!c
3/2
2

, q4 =
c4

4!c2
2

, q5 =
c5

5!c
5/2
2

, q6 =
c6 + 10c2

3

6!c3
2

, q7 =
c7 + 35c3c4

7!c
7/2
2

,

and so on. Recall that the Gram–Charlier expansion of the density function f(x) is given

by

f(x) =

∞∑
n=0

qn√
c2

Hn

(
x − c1√

c2

)
φ

(
x − c1√

c2

)
,
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where φ(x) is the density function of the standard normal distribution and Hn(x) denotes

the nth Hermite polynomial defined by

Hn(x) =
(−1)n

φ(x)

dn

dxn
φ(x).

It follows that, by working under the T0-forward measure, the option price V (t) at time t

can be approximated as

V (t) ≈ P (t, T0)

[
c1N

(
c1√
c2

)
+
√

c2φ

(
c1√
c2

)
+
√

c2φ

(
c1√
c2

) L∑
k=3

(−1)kqkHk−2

(
c1√
c2

)]

(5.1)

for some positive integer L.16 Here, N(x) denotes the distribution function of the standard

normal distribution.

Now, let us consider the pricing of a receiver’s swaption with strike rate C under the

setting of Section 4.1. The value of the underlying swap at the expiry is given by

V (T0) = δ

N∑
i=1

(C − L(T0, Ti−1, Ti))PD(T0, Ti)

=
N∑

i=1

((1 + δC)PD(T0, Ti) − PD(T0, Ti−1)KL(T0, Ti−1, Ti)) ,

which is a polynomial of the exponentials of y(T0), y(T0)
2 and hL(T0). Hence, it is possible to

obtain the moments of V (T0) by making use of the fact that, when Y is normally distributed

with mean μ and variance σ2, we have

E
[
eaY +bY 2

]
=

1√
1 − 2bσ2

exp

{
σ2(a + 2bμ)2

2(1 − 2bσ2)
+ aμ + bμ2

}
,

where a and b are some constants with b < (2σ2)−1. The Gram–Charlier expansion can then

be applied to this payoff.

Next, for the pricing of a call option written on the bond with coupon C and strike price

K, we note that the value of the underlying bond at the expiry is given by

V (T0) = 100 − K +
N∑

i=1

((1 + δC)PD(T0, Ti) − PD(T0, Ti−1)KG(T0, Ti−1, Ti)) ,

which is again a polynomial of the exponentials of y(T0) and hG(T0). The same procedure

as the swaptions can apply.

16Tanaka, Yamada and Watanabe (2007) suggested to use either L = 3 or L = 6 for a practical application.

16



6 Empirical Results

In this section, we provide some numerical examples. Before proceeding, a brief discussion

on the historical movement of the USD/JPY basis swap spreads is given.

6.1 Overview of the Historical JPY Rates

Until recently, the USD/JPY basis swap spreads showed the relative strength of the demand

for JPY against USD. Since Japanese banks needed USD funding to support their Japanese

customers’ businesses in abroad, the basis swap spread had fluctuated with negative values

as shown in Figure 1.

After the crush of the bubble economy in early 1990’s, Japanese banks faced the so-

called “Japan premium” problem17 in 1998 due to several financial problems surrounding

themselves. The affect of the problem is clearly observed in the historical movement of the

USD/JPY basis swap spreads in Figure 1. To support Japanese firms and banks through a

monetary policy, Bank of Japan conducted the zero interest-rate policy between 1998 and

2006. After 2006, the basis swap spreads turned to be positive. As the result of the positive

basis swap spreads, JGB’s become more expensive for USD-based investors than JPY-based

investors.

The volatilities of the basis swap spreads are very low recently, while they were relatively

high in 1997 and 1998 as shown in Table 1.

6.2 Calibration

As shown in Kijima and Tanaka (2007), the one-factor quadratic Gaussian model is well-

fitted to the low interest-rate environment such as JPY,18 while the performance of the

Vasicek model (as well as the CIR model) is not so good. Therefore, in the following, we

focus on the calibration of the quadratic Gaussian model described in Section 4.1, where

for the sake of simplicity, we assume that λL = λG = 0 throughout the calibration. Also,

we verify the fitness of the DLG model by calibrating the parameters to the market data

17Foreign banks were reluctant to lend money, especially in USD, to Japanese banks.
18As observed in Kijima (2002), the short-rate process implied by the quadratic Gaussian model has a

square-root volatility with a non-linear drift, which is consistent with the empirical findings by Ait-Sahalia

(1996). Also, although some recent papers such as Gorovoi and Linetsky (2004) and Kabanov, Kijima and

Rinaz (2007) proposed one-factor short-rate models to fit the low interest-rate economy, their models are

not easy to calibrate.
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Figure 1: USD/JPY basis swap spreads

Table 1: Historical absolute volatilities (bp/yr, 1997-2007)

[Basis swap spreads] [Swap rates]

1yr 5yr 10yr 20yr 30yr 1yr 5yr 10yr 20yr 30yr

1997 27.5 12.6 10.7 34.1 43.2 48.0

1998 18.7 23.5 22.8 30.7 57.0 69.2

1999 16.2 12.5 13.9 10.4 25.7 64.5 74.6 57.6

2000 11.6 10.0 10.6 21.7 32.6 36.9 46.1 53.9

2001 11.0 7.5 10.2 15.9 14.8 33.8 46.9 50.1

2002 11.7 6.5 6.6 9.4 11.9 21.9 33.9 39.3

2003 6.2 7.4 5.7 15.7 8.6 14.5 46.9 61.4 70.9 72.7

2004 7.3 6.2 5.4 5.2 5.9 12.9 40.9 50.1 50.3 50.6

2005 8.9 5.0 6.2 9.7 5.3 7.9 33.5 35.7 34.9 36.3

2006 5.4 5.1 6.8 6.4 6.4 23.9 48.3 45.2 41.0 41.6

2007 3.1 3.8 4.3 4.2 4.3 21.7 32.4 31.2 36.7 30.4

average 12.8 10.8 11.0 13.0 6.5 22.1 44.1 52.6 49.7 51.0
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Table 2: Observed rates and yields (pct) on November 6, 2007

Maturity (yrs) Swap Basis swap Bond yield (swap spread)

1 0.9670 -0.0015 0.6605 (0.3065)

2 1.0210 0.0075 0.7720 (0.2490)

3 1.1060 0.0200 0.8415 (0.2645)

4 1.2030 0.0280 0.9969 (0.2061)

5 1.3010 0.0325 1.1055 (0.1955)

7 1.4960 0.0325 1.2548 (0.2412)

10 1.7735 0.0313 1.5871 (0.1864)

20 2.3125 -0.0250 2.1332 (0.1793)

30 2.5075 -0.0155 2.3772 (0.1303)

40 2.5915 -0.0160 2.4375 (0.1540)

observed on November 6, 2007 19, using the Nelder–Mead algorithm20 with 1,000 times of

iterated calculation within the ranges specified in the second and third columns of Table 3.

Table 2 is a snapshot of the market data of swap rates, basis swap spreads and JGB yields

on the same day.21

Our calibration procedure consists of three stages. As the first stage, we conduct the

calibration for the parameters of rL(t) by observing LIBOR rates, swap rates and basis swap

spreads in the following manner. Since the sum of the swap rate and the basis swap spread is

expressed by PD according to the second fundamental equation (3.8), the parameters related

to rD can be calibrated by minimizing the sum of squared errors in the “synthetic swap

rates”

min
θ1

n∑
i=1

[Smodel(Ti) + bsmodel(Ti) − (Sobs(Ti) + bsobs(Ti))]
2 ,

where θ1 denotes the set of parameters to be calibrated in the first stage, and where

Smodel(Ti) + bsmodel(Ti) =
PD(0, T0) − PD(0, Ti)

δ
∑i

k=1 PD(0, Tk)
,

Sobs(Ti) = Observed swap rate with maturity Ti,

bsobs(Ti) = Observed basis swap spread with maturity Ti.

19This is the day of first issuance of 40-year JGB auctioned by Ministry of Finance, Japan.
20See Nelder and Mead (1965).
21Data Source: Bloomberg and Japan Securities Dealers Association
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Here, the maturities Ti run over 6 month, every 1-10 years, and 12, 15, 20, 25, 30 years.22

Next, for the second stage, given the calibrated parameters of rD(t), calibration for the

parameters of hL(t) is conducted by observing swap rates in the following manner. By the

first fundamental equation (3.6) and (4.7), we see that the swap rate is calculated from PD

and KL as

S(0, Ti) =
PD(0, TN) +

∑N
i=1(1 − KL(0, Ti−1, Ti))PD(0, Ti−1)

δ
∑N

i=1 PD(0, Ti)
.

Since all the parameters related to PD are already fixed, we can calibrate the parameters

related to hL by minimizing the errors in the swap rates as

min
θ2

n∑
i=1

[Smodel(Ti) − Sobs(Ti)]
2 ,

where θ2 denotes the set of parameters to be calibrated in the second stage, and where

Smodel(Ti) =
PD(0, TN) +

∑N
i=1(1 − KL(0, Ti−1, Ti))PD(0, Ti−1)

δ
∑N

i=1 PD(0, Ti)
.

Finally, as the third stage, given the calibrated parameters of rD and hL, calibration for

the parameters of hG is conducted by observing government bond prices. According to the

third fundamental equation (3.11), we set the objective function as the sum of the absolute

errors23 in the yields of synthetic zero-coupon bonds implied by the observed JGB’s and the

calibrated parameters of rD as

min
θ3

n∑
i=1

|Zmodel(Ti) − Zobs(Ti)|,

where θ3 denotes the set of parameters to be calibrated in the third stage, and where

Zmodel(Ti) = − ln

(
PD(0, Ti) +

i∑
k=1

[1 − KG(0, Tk−1, Tk)]PD(0, Tk−1)

)/
(Ti − T0),

Zobs(Ti) = − ln

(
Vobs(Ti) − δC(Ti)

i∑
k=1

PD(0, Tk)

)/
(Ti − T0),

Vobs(Ti) = Closing price of JGB with maturity Ti and coupon rate C(Ti).

Here, the bonds are taken from 2, 5, 10, 20, 30 year JGB’s (one issue for a calendar year).24

The calibrated parameters obtained by the above procedure are listed in Table 3.

22Data Source: British Bankers Association and Bloomberg
23We evaluate the error in the absolute deviation rather than the squared deviation for the purpose of

robust estimation.
24Data Source: Japan Securities Dealers Association
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Table 4 presents the calibration results of swap rates, basis swap spreads and bond par

yields calculated from the calibrated numbers listed in Table 3, while Table 5 shows the

difference between the calibration results and the observed rates25. The absolute differences

are basically less than 5 basis points. In particular, the prediction error for the newly issued

40-year bond is less than 2 basis points.

6.3 Numerical Examples for Options

In this subsection, we calculate receiver’s swaption prices using the Gram–Charlier expansion

(5.1) with calibrated parameters listed in Table 3, and compare them with the Monte Carlo

simulation results. Here, we employ the third order Gram–Charlier expansion (GC3), i.e.

L = 3 in (5.1), and Monte Carlo simulation with 100,000 runs. Option prices by GC3 are

shown in Table 6 for at-the-money-forward (ATMF) receiver’s swaptions, while Figures 2

and 3 illustrate the pricing errors produced by GC3 when Monte Carlo prices are used as

the benchmark.

In Figure 2, we examine the pricing errors of the GC3 approximation for a 1-into-10

receiver’s swaption across various strike rates, i.e. a receiver’s swaption expiring at 1 year

with the underlying being a 10 year swap. The pricing errors are at most 3 basis points. On

the other hand, Figure 3 compares the two approaches for the ATMF receiver’s swaptions

across a typical range of expiries and maturities. For all the cases, the pricing errors are

less than 5 basis points. The Gram–Charlier expansion approach seems to provide a good

approximation for swaption prices even in the DLG model.

As to the computational time, the GC3 takes 7 seconds to calculate the price of the

1-into-10 receiver’s swaption, while it takes about 35 seconds to produce the price using

Monte Carlo simulation with 100,000 runs. The computational time depends strongly on

the maturity of the underlying swap. For example, for a 1-into-5 receiver’s swaption, the

computational time is reduced to 17 seconds for Monte Carlo simulation and 1 second for

GC3. Hence, the Gram–Charlier approach is not only accurate but also very efficient in

terms of the computational time.

25Calibration errors for basis swaps are of the same magnitude as the market quotes of basis swaps,

because the the current level is very low. Hence it might make no sense to calibrate basis swaps for the

current market. However, basis swaps play an important role in our model, especially under the situations in

late 1990’s, since they produce the spread between D-curve and L-curve, which implies a friction in banks’

funding.
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Table 3: Calibrated parameters and searched ranges in the calibration

Parameter Lower bound Upper bound Calibrated number

aD 0.0500 0.8000 0.0909

σD 0.0000 1.0000 0.0282

y(0) -1.0000 1.0000 -0.1340

α -1.0000 1.0000 0.2204

β -0.5000 0.5000 -0.0012

aL 0.0001 1.0000 0.9892

bL -0.2000 0.2000 -0.0003

σL 0.0001 0.5000 0.0002

hL(0) -0.2000 0.2000 0.0007

aG 0.0001 1.0000 0.3383

bG -0.2000 0.2000 -0.0012

σG 0.0001 0.5000 0.0001

hG(0) -0.2000 0.2000 -0.0035

Table 4: Calibrated rates and yields (pct)

Maturity (yrs) Swap Basis swap Bond yield (swap spread)

1 0.9152 -0.0337 0.5618 (0.3534)

2 1.0226 -0.0134 0.7171 (0.3055)

3 1.1325 -0.0017 0.8611 (0.2714)

4 1.2406 0.0056 0.9944 (0.2462)

5 1.3446 0.0103 1.1178 (0.2268)

7 1.5362 0.0160 1.3370 (0.1992)

10 1.7795 0.0203 1.6057 (0.1738)

20 2.2741 0.0251 2.1338 (0.1403)

30 2.4763 0.0267 2.3471 (0.1292)

40 2.5467 0.0274 2.4227 (0.1240)
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Table 5: Difference between calibrated rates and observed rates (bp)

Maturity (yrs) Swap Basis swap Bond yield (swap spread)

1 -5.18 -3.22 -9.87 (4.69)

2 0.16 -2.09 -5.49 (5.65)

3 2.65 -2.17 1.96 (0.69)

4 3.76 -2.24 -0.25 (4.01)

5 4.36 -2.22 1.23 (3.13)

7 4.02 -1.65 8.22 (-4.20)

10 0.60 -1.10 1.86 (-1.26)

20 -3.84 5.01 0.06 (-3.90)

30 -3.12 4.22 -3.01 (-0.11)

40 -4.48 4.34 -1.48 (-3.00)

Table 6: ATMF receiver’s swaption premium by GC3 with calibrated parameters (bp).

Numbers in the first column depict the years to the expiry of the option, and those in the

first row depict the years to the maturity of the underlying swap.

Exp / Mat 1 3 5 7 10

1 20.9 60.6 95.7 125.4 160.1

3 38.1 106.6 164.4 211.7 265.6

5 48.6 133.3 202.6 258.2 320.3

7 54.9 148.6 223.6 282.8 348.2

10 58.9 157.3 234.3 294.2 360.0
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Figure 2: Errors of GC3 prices relative to Monte Carlo prices for a 1-into-10 receiver’s

swaption across various strikes.

Figure 3: Errors of GC3 prices relative to Monte Carlo prices for receiver’s swaptions with

various expiries and maturities.
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7 Conclusion

We study a three yield-curve model, called the DLG model, for the consistent pricing of

government bonds, interest-rate swaps and basis swaps. The derivation is based on the two

ideas; the first one is to distinguish the discounting rates from the deposit rates, and the

other one is to regard a bond purchase as a swap contract to exchange a fixed-coupon bond

against a floating-coupon bond. As a result, on-the-market swap values are always zero while

off-the-market swap values are different from the classical NPV due to the existence of basis

swap spreads, which is a well-known fact for international financial institutions.

However, the pricing of derivatives based on our model seems rather weak, given the

presence in the market of reliable quotes. The model calibration to market quotes including

option prices is left to the future research.
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A Formula

BD(t, T ) = 2FD(t, T )

∫ T

t

α + βs

FD(s, T )
ds =

2B1(t, T )

γ2A5(t, T )
,

AD(t, T ) =

∫ T

t

(
1

2
σ2

DBD(s, t)2 − σ2
DCD(s, T ) − (α + βs)2

)
ds

= −σ2
D

(
A4(t, T )

γ5A5(t, T )
+ A6(t, T )

)
− α2(T − t) − αβ(T 2 − t2) − 1

3
β2(T 3 − t3),

where

Γa = γ − aD,

Γb = γ + aD,

A1a(t, T ) = −eγ(T−t) + 4 − e−γ(T−t)(3 + 2γ(T − t)),

A1b(t, T ) = e−γ(T−t) − 4 + eγ(T−t)(3 − 2γ(T − t)),

A2a(t, T ) = eγ(T−t)(1 − γT ) − 2(1 − γ(t + T )) + e−γ(T−t)(1 − γ(2t + T ) + γ2(t2 − T 2)),

A2b(t, T ) = e−γ(T−t)(1 + γT ) − 2(1 + γ(t + T )) + eγ(T−t)(1 + γ(2t + T ) + γ2(t2 − T 2)),

A3a(t, T ) = −4γt(1 − γT ) − eγ(T−t)(1 − γT )2

+ e−γ(T−t)

(
1 + 2γt − γ2(2t2 + T 2) +

2

3
γ3(t3 − T 3)

)
,

A3b(t, T ) = −4γt(1 + γT ) + e−γ(T−t)(1 + γT )2

+ eγ(T−t)

(
−1 + 2γt + γ2(2t2 + T 2) +

2

3
γ3(t3 − T 3)

)
,

A4(t, T ) = Γa

(
α2γ2A1a(t, T ) + 2αβγA2a(t, T ) + β2A3a(t, T )

)
+ Γb

(
α2γ2A1b(t, T ) + 2αβγA2b(t, T ) + β2A3b(t, T )

)
,

A5(t, T ) = Γae
−γ(T−t) + Γbe

γ(T−t),

A6(t, T ) = −1

2
(T − t)

(
Γ−1

a − Γ−1
b

)
+

1

2γ

(
Γ−1

a + Γ−1
b

)
ln

A5(t, T )

2γ
,

B1(t, T ) = −αγ
(
e−γT − e−γt

) (
Γae

γt + Γbe
γT
)

+ β
(
Γae

−γ(T−t)(1 − γt) + Γbe
γ(T−t)(1 + γt) − Γa(1 − γT ) − Γb(1 + γT )

)
.
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