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Abstract

The purpose of this paper is to demonstrate the powerful and flexible applicabil-
ity of Gram–Charlier expansion to pricing of a wide variety of interest rate related
products involving interest rate risk and credit risk. In this paper, we develop easily
implemented approximations of the prices of several derivatives; swaptions, CMS,
CMS options, and vulnerable options. Associated with the default risk, a survival
contingent forward measure is constructed.
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1 Introduction

Many financial institutions hold large portfolios of interest rate derivatives transactions.
Therefore, an efficient calculation method is needed, not only for pricing specific transac-
tion, but also for evaluation and risk management of the portfolio, with two features. (1)
it is not computer-intensive for the valuation of a portfolio. (2) it can handle many types
of products within the same model to avoid inconsistent valuations among products. In
this paper, we develop easily implemented approximations of the prices of several inter-
est rate related derivatives; swaptions, CMS, CMS options, and credit derivatives. The
available models include general affine term structure models (Duffie and Kan, 1996),
Gaussian Heath-Jarrow-Morton model (Heath et al., 1992) and quadratic interest rate
models (Pelsser, 1997 and Ahn et al., 2002). The method is based on the Gram–Charlier
expansion and the bond moments introduced by Collin-Dufresne and Goldstein (2002)
(hereafter, “CDG”). There are the literature on an approximation technique for one
specific product but, to our best knowledge, this paper is the first one to develop one
technique applicable to many products.

A closed formula for swaptions has not been obtained in multi-factor models due to
the difficulty of identifying the exercise boundary. By focusing on the exercise bound-
ary carefully, several approximation methods have been proposed by Wei (1997), Brace
(1997), Munk (1999), Singleton and Umantsev (2002). Schrager and Pelsser (2006) ob-
tain good results of swaption pricing by approximating the stochastic volatility of a swap
rate with deterministic one under the swap measure. To be sure, the swap measure ap-
proach of Jamshidian (1997) is useful for swaption pricing, but the relevant processes
become difficult to use in association with the change of measure between a forward
measure and a swap measure. Our approach differs from theirs in that we focus on
zero-coupon bond prices as building blocks of the evaluation of all derivatives so that
the approach is suitable to not only swaptions but also other products. A closely re-
lated literature to ours is CDG. They introduce the idea of bond moments and develop
an approximation method of swaption prices under many forward measures associated
with the swaption expiry and the cash-flow timing of the underlying swap. We simplify
the methods of CDG by using the Gram–Charlier expansion under one forward measure
rather than many forward measures. The coefficients are expressed by the cumulants of
the underlying swap value, or equivalently by the bond moments. Our numerical studies
confirm that our methods improve the results of CDG.

Approximation of the convexity adjustment of a CMS rate is discussed by Benhamou
(2000), Pelsser (2003) and Hunt and Kennedy (2004). Benhamou (2000) derives the con-
vexity adjustment for multi-factor Gaussian models by using a Wiener Chaos expansion.
The linear swap model (LSM) of Hunt and Kennedy (2004) provides a convenient way
to calculate the convexity adjustment of a CMS rate. The result is naturally related to
the volatility of the swap rate. Pelsser (2003) unify the theories of similar adjustments
as the side-effect of the change of numéraire. For general models under which the bond
moments are available, we show convexity adjustments of CMS and CMS option prices
with the bond moments by approximating the reciprocal of a duration (or PVBP) with
a polynomial of zero-coupon bonds. Our results of CMS convexity adjustments are ob-
tained in similar forms as Benhamou (2000). The point of our observation to express
everything with zero-coupon bonds under a forward measure is in contrast with one of
the LSM to represent a relative price of zero-coupon bond as a linear function of a swap
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rate under a swap measure. Our approach is closer to Benhamou (2000) in that point.
Nevertheless, our results are consistent with LSM.

As the applications to credit derivatives, we present pricing of vulnerable options.
It may be natural to think of a defaultable security as a numéraire in a defaultable
environment. The corresponding martingale measure is called a survival measure which is
investigated by Collin-Dufresne et al. (2004) and Schönbucher (2000a). However, it is not
equivalent to the original risk-neutral measure since the numéraire gets worthless when
default. On the other hand, a survival contingent measure is an equivalent martingale
measure, and it is first proposed by Schönbucher (2000b). Our idea is that the pre-default
price can be a numéraire after modifying it so that the relative price be a martingale under
the original risk-neutral measure. We construct a survival contingent forward measure
with a pre-default price of a fictitious defaultable asset. The choice of numéraire relies
on not only the non-defaultability but also the recovery rule.

The rest of this paper is organized as follows. After setting up the model in Section 2,
we develop approximation methods of swaptions by using the Gram–Charlier expansion
and bond moments in Section 3. Then we provide CMS and CMS options based on these
methods in Section 4. In Section 5, we discuss the survival contingent measure and the
pricing of several vulnerable credit derivatives. Section 6 concludes the paper.

2 Setup

2.1 Gram–Charlier expansion

The Gram–Charlier expansion gives the density function of a random variable from the
cumulants. In a similar way as Stuart and Ord (1987) who show an expansion for a
random variable with the mean of zero, we derive the Gram–Charlier expansion around
an arbitrary mean value in order to make the successive formulation easy-to-use.

First, we define the Hermite polynomial as Hn(x) = (−1)nφ(x)−1Dnφ(x) with H0(x) =
1, where D = d

dx and φ(x) = (2π)−1/2 exp(−x2/2).1 The Hermite polynomials have
the orthogonal property

∫∞
−∞ Hm(x)Hn(x)φ(x)dx = δmnn! with respect to the Gaussian

measure which has a standard normal distribution. The Gram–Charlier expansion is an
orthogonal decomposition with {Hnφ}n of a density function. The proof of the following
proposition is shown in the appendix.

Proposition 1. Assume that a random variable Y has the continuous density function
f and has cumulants ck (k ≥ 1), all of which are finite and known. Then the followings
hold.

1By definition,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x, H6(x) = x6 − 15x4 + 45x2 − 15, H7(x) = x7 − 21x5 + 105x3 − 105x.
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(i) f can be expanded as follows

f(x) =
∞∑

n=0

qn√
c2

Hn

(
x − c1√

c2

)
φ

(
x − c1√

c2

)
, where q0 = 1, q1 = q2 = 0,

qn =
1
n!

E

[
Hn

(
Y − c1√

c2

)]
=

[n/3]∑
m=1

∑
k1+···+km=n,ki≥3

ck1 · · · ckm

m!k1! · · · km!

(
1√
c2

)n

, (n ≥ 3).

(1)

(ii) for any a ∈ R,

E[1{Y >a}] = N

(
c1 − a√

c2

)
+

∞∑
k=3

(−1)k−1qkHk−1

(
c1 − a√

c2

)
φ

(
c1 − a√

c2

)
.

The advantages of the Gram–Charlier expansion are that it is written in additive
form and the coefficients qn are easily expressed by the given cumulants as follows

q3 =
c3

3!c3/2
2

, q4 =
c4

4!c2
2

, q5 =
c5

5!c5/2
2

, q6 =
c6 + 10c2

3

6!c3
2

, q7 =
c7 + 35c3c4

7!c7/2
2

,

among which 3!q3 represents skewness and 4!q4 represents the excess kurtosis. The
cumulants cj can be calculated from the moments μj around zero2.

The Gram–Charlier expansion is related to the Edgeworth expansion. Actually, in
the proof of Proposition 1, the inverse Fourier transforms of both (22) and (23) yield the
Edgeworth expansion

f(x) =
1√
c2

exp

( ∞∑
k=3

(−1)kck

k!
Dk

)
φ

(
x − c1√

c2

)
.

Thus, both the Gram-Charlier and the Edgeworth expansion give the same value when
the summation is taken over infinite terms, but there may be a difference between the
truncated sums which will be discussed later.

2.2 Affine Term Sructure Models

Our methodology in this paper can be applied to many models. For the tractability we
apply the affine term structure models (“ATSMs”, see Duffie and Kan, 1996) and assume
the followings through the paper.

2See Stuart and Ord (1987). For example,

c1 = μ1, c2 = μ2 − μ2
1, c3 = μ3 − 3μ1μ2 + 2μ3

1, c4 = μ4 − 4μ1μ3 − 3μ2
2 + 12μ2

1μ2 − 6μ4
1,

c5 = μ5 − 5μ1μ4 − 10μ2μ3 + 20μ2
1μ3 + 30μ1μ

2
2 − 60μ3

1μ2 + 24μ5
1,

c6 = μ6 − 6μ1μ5 − 15μ2μ4 + 30μ2
1μ4 − 10μ2

3 + 120μ1μ2μ3 − 120μ3
1μ3

+ 30μ3
2 − 270μ2

1μ
2
2 + 360μ4

1μ2 − 120μ6
1,

c7 = μ7 − 7μ1μ6 − 21μ2μ5 − 35μ3μ4 + 140μ1μ
2
3 − 630μ1μ

3
2 + 210μ1μ2μ4

− 1260μ2
1μ2μ3 + 42μ2

1μ5 + 2520μ3
1μ2

2 − 210μ3
1μ4 + 210μ2

2μ3 + 840μ4
1μ3 − 2520μ5

1μ2 + 720μ7
1.
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The time horizon in our study is finite [0, T ∗] with some T ∗ < ∞. The relevant
dates of financial contracts in question are T0 < T1 < · · · < TN < · · · ≤ T ∗, which
are set at regularly spaced time intervals, with δ = Ti − Ti−1 for all i. We assume
that tradable assets comprise zero coupon bonds and a money-market account, and that
there is an equivalent spot martingale measure (or risk-neutral measure) Q. (Ω,F , Q) is
a complete probability space with an n-dimensional standard Brownian motion W , and
F = {Ft : t ∈ [0, T ∗]} is the augmented filtration generated by the Brownian motion W .

An n-dimensional Markov-state vector X satisfies a stochastic differential equation
(SDE) ,

dXt = K(θ − Xt)dt + ΣD(Xt)dWt,

where

αi ∈ R (i = 1, 2, . . . , n), θ ∈ R
n, βi ∈ R

n (i = 1, 2, . . . , n), K ∈ R
n×n

D(x) = diag
[√

α1 + β1
�x, . . . ,

√
αn + βn

�x

]
, x ∈ R

n,

and Σ ∈ R
n×n is a matrix such that ΣΣ� is a positive definite matrix. The risk-free

short rate is given as rt = δ0 + δ�XXt, where δ0 ∈ R, δX ∈ R
n. The time-t price of a

zero coupon bond with a maturity date of T is denoted by P (t, T ). We assume that the
T -forward measure QT exists for any T ∈ [T0, T

∗].
It is well-known that under the ATSM the bond price is expressed in the form of an

exponentially affine function,

P (t, T ) = exp(A(t, T ) + B(t, T )�X(t)).

The Feynman–Kac formula yields the following system of ordinary differential equations
of A and B

∂

∂t
A(t, T ) = −(Kθ)�B(t, T ) − 1

2

n∑
j=1

(Σ�B(t, T ))j
2
αj + δ0, A(T, T ) = 0,

∂

∂t
B(t, T ) = K�B(t, T ) − 1

2

n∑
j=1

(Σ�B(t, T ))j
2
βj + δX , B(T, T ) = 0. (2)

This system can be solved in a closed form for special cases and can be solved numerically
in many other cases.

For given dates, the bond moment is defined under the T -forward measure as

μT (t, T0, {T1, · · · , Tm}) ≡ ET0

[
m∏

i=1

P (T0, Ti) | Xt

]
.

As is the bond price, the bond moment is also an exponentially affine function of X(t)

μT (t, T0, {T1, · · · , Tm}) =
exp(M(t) + N(t)�X(t))

P (t, T )
,
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where M(t) = M(t, T, T0, {T1, . . . , Tm}) and N(t) = N(t, T, T0, {T1, . . . , Tm}) satisfy the
same system of ordinary differential equations as (2)

∂

∂t
M(t) = −(Kθ)�N(t) − 1

2

n∑
j=1

(Σ�N(t))j
2
αj + δ0,

∂

∂t
N(t) = K�N(t) − 1

2

n∑
j=1

(Σ�N(t))j
2
βj + δX ,

with the terminal conditions

M(T0) =
m∑

i=1

A(T0, Ti) + A(T0, T ), N(T0) =
m∑

i=1

B(T0, Ti) + B(T0, T ).

For Gaussian ATSMs and uncorrelated CIR models, there exist explicit solutions of
A,B,M, and N , which are given in the Appendix.

3 Swaptions

In this section we present a way to approximate a swaption price with the technique of
the Gram–Charlier expansion and the bond moments.

3.1 Approximation

Consider a receiver’s swaption with the expiry T0 and the fixed rate K during a period
[T0, TN ]. By the linearity of the valuation, the value SV (t) of the underlying swap at
time t is written as a linear combination of the zero coupon bond prices

SV (t) = −P (t, T0) + δK

N∑
i=1

P (t, Ti) + P (t, TN ) ≡
N∑

i=0

aiP (t, Ti),

where ai is the amount of cash flow at time Ti. Then the swaption value SOV (t) at
time t is the discounted value of the expectation of the gain from exercising under the
T0-forward measure QT0

SOV (t) = P (t, T0)ET0
[
1{SV (T0)>0}SV (T0) | Ft

]
= P (t, T0)

∫ ∞

0
xf(x)dx, (3)

where f is the density function of the swap value SV (T0) at the expiry date T0 under
the T0-forward measure conditioned on Ft. Therefore, it is enough to obtain the den-
sity function of the value of the underlying swap under the T0-forward measure for the
calculation of the swaption price.

For the application of the Gram–Charlier expansion to (3), we have only to calculate
the coefficients qn in (1) from the bond moments under a underlying model. Firstly, the
m-th swap moment can be obtained with bond moments and cash flow amounts as

Mm(t) = ET0 [SV (T0)m | Xt] =
∑

0≤i1,...,im≤N

ai1 · · · aimμT0 (t, T0, {Ti1 , · · · , Tim}) .
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Secondly, we can calculate the n-th swap cumulant cn(t) from the set of the swap moments
{Mm(t)}m. Define the weighted cumulant Cn = cn(t)P (t, T0)n for n ≥ 1, and rewrite
the coefficients qn in (1) for n ≥ 3 as

qn =
[n/3]∑
m=1

∑
k1+···+km=n,ki≥3

Ck1 · · ·Ckm

m!k1! · · · km!

(
1√
C2

)n

.

Finally, by applying the Gram–Charlier expansion to Y = SV (T0) we have

SOV (t) = C1N

(
C1√
C2

)
+
√

C2φ

(
C1√
C2

)
+
√

C2φ

(
C1√
C2

) ∞∑
n=3

(−1)nqnHn−2

(
C1√
C2

)
.

Therefore, the truncated sum of the above formula yields an approximation of the swap-
tion value.

Proposition 2. The swaption value is approximated as

SOV (t) ≈ C1N

(
C1√
C2

)
+
√

C2φ

(
C1√
C2

)
+
√

C2φ

(
C1√
C2

) L∑
n=3

(−1)nqnHn−2

(
C1√
C2

)
,

to which we refer as the L-th order approximated price GCL.

Hence, the calculation of the swaption is reduced to the calculation of the bond
moments μT0(t, T0, {T1, . . . , Tm}). It is straightforward to extend this method to a short
rate model where the initial yield curve is fitted to the observed curve in the market
by adding a deterministic shift in the risk-free rate process (see Brigo and Mercurio,
2001), and/or where the volatility is a deterministic function of time. Similarly, this
method can be applied when the value of the underlying asset of an option in question is
represented as a polynomial of zero coupon bond prices, and the bond moments can be
calculated numerically. The available models include general ATSMs, Gaussian Heath-
Jarrow-Morton models (Heath et al., 1992) and quadratic interest rate models (Pelsser,
1997 and Ahn et al., 2002).

3.2 Comparison with Edgeworth expansion

It is worth mentioning other approaches based on the Edgeworth expansion which is
closely related to the Gram–Charlier expansion.

In existing studies including CDG, the swaption value is often decomposed into cash-
flow values weighted by the exercise probability under a forward measure associated with
the swaption expiry and the cash-flow timing of the underlying swap,

SOV (t) =
N∑

i=0

aiP (t, Ti)ETi

[
1{SV (T0)>0} | Ft

]
. (4)

CDG use a seventh-order Edgeworth expansion when calculating the probability of end-
ing up in-the-money under each forward measure. They ignore higher terms than D8 in
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the Taylor expansion of the exponential,

f(x) ≈ 1√
c2

exp
( 7∑

k=3

(−1)kck

k!
Dk
)
φ
(x − c1√

c2

)

≈ 1√
c2

(
1 +

7∑
k=3

(−1)kck

k!
Dk +

1
2
((c3

3!
D3
)2 − 2

c3

3!
c4

4!
D3D4

))
φ
(x − c1√

c2

)
=

1√
c2

(
1 + q3H3 + q4H4 + q5H5 + q6H6 + q7H7

)
φ
(x − c1√

c2

)
,

where Hk = Hk

(
x−c1√

c2

)
. This approximation itself is exactly same as the truncated sum

of the Gram–Chariler expansion for the term ETi

[
1{SV (T0)>0} | Ft

]
. In general, the

approximation based on the Gram–Charlier expansion ignores the higher “standardized
moments” qn in (1), whereas the approximation based on the Edgeworth expansion
ignores the higher cumulants cn. In many practical applications, however, the finite sums
become same after the Edgeworth expansion is futher approximated and reordered.

Although (3) and (4) bring the same values, they differ in the number of measures. (3)
can be calculated under the T0-forward measure QT0 only. On the other hand, CDG carry
out their calculations in accordance with (4) under several forward measures. It follows
that the accumulated approximation error in each expectation in (4) may be bigger than
the error of (3), and using (3) will be faster in the computation of the relevant bond
moments than (4). In order to reduce the computational time, CDG ignore c6 and c7

which are negligible in (1) relative to c2
3 and c3c4 in the calculation of q6 and q7. We

call the method GC7d. Since the Gram–Charlier expansion is an orthnormal expansion,
the error term cannot be evaluated analytically. In the next subsection on numerical
examples, we compare the results of the two approaches.

3.3 Numerical examples

We consider the three ATSMs whose parameter values are specified in Table 1 for the
numerical studies of swaptions and CMS in Sections 3 and 4. Model 1 (three factor
Gaussian model) is constructed to build a lower yield and higher volatility environment
than Model 2 (three factor Gaussian model) and Model 3 (two factor CIR model) whose
parameter values are taken from CDG and Schrager and Pelsser (2006) for comparison
purpose. Throughout the numerical examples in the paper, swaps and bonds are as-
sumed to have semi-annual coupon payments3. Table 2 shows the option data implied
by the three models, which include at-the-money-forward swap rates (ATMF), the ATMF
receivers’ swaption prices in basis points calculated by the Monte Carlo method, yield
volatilities and absolute volatilities4 .

[Table 1 and Table 2 around here]

3It seems that CDG and Schrager and Pelsser (2006) assume annual coupon payments. Thus, the
true prices are slightly different by a few basis points due to the different frequency.

4An absolute volatility is obtained as the yield volatility times the ATMF and it roughly represents
the annual standard deviation of a particular swap rate to be observed.
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The numerical performance of our methods is shown in Figures 1 - 4, Table 3 and
4. The price difference is calculated as the approximated price (4) based on the Gram–
Charlier expansion (“GC price”) with a specified approximation order minus the price
from the Monte Carlo simulation (“MC price”). GC7d is obtained from GC7 with
the sixth and seventh cumulants being set equal to 0 in (1) to save calculaion time
as CDG apply. The MC price is obtained by simulating 400 million times (20 million
runs multiplied by 20 to calculate MC error) with the negative correlation technique,
and using Gaussian distribution of state variables at the expiry to avoid the discretizing
error. The standard error is of the order of 10−6 for a one-year into 10-year swaption.

Figures 1, 2 and 3 illustrate absolute price differences for a one-year into a 10-year
swaption across the stike rates under Model 1, Model 2 and Model 3, respectively. The
numbers of the results for GC3 and GC6 are presented in Table 3. The order of the
difference is basically determined by the underlying model and the volatility level. All
price differences are within 0.3 bp under Model 1 (Figure 1) while they are within 0.01
bp under Model 2 (Figure 2) and within 0.10 bp under Model 3 (Figure 3). Figure 4
shows a result for a five-year into a 10-year swaption where one can observe a “zoomed”
wave pattern of the result of a one-year into a 10-year swaption with higher difference
by 1-digit. All of them give satisfactory numerical results for practical purposes.

Among several approximation orders, GC6 and GC7d show good results. Note that
the higher-order approximations (GC4 and GC5) do not necessarily produce more accu-
rate prices than lower order approximations (GC3) since the Gram–Charlier expansion
is an orthogonal expansion. Table 4 shows price differences for ATMF swaptions for
combinations of option expiries and swap maturities, based on GC6. It turns out that
these performance is very competitive with other methods if one compares the results for
Model 2 and 3 with ones of CDG and Schrager and Pelsser (2006). Figure 5 compares
the performance of the CDG approach to our approach for coupon-bond option prices (a
two-year option on 12-year bond) by using the same parameters used by CDG (Model 3).
This figure confirms that each of our methods improves the results of CDG. Especially, a
difference between GC7d and CDG implies an accumulated difference due to the number
of forward measures. In addition, our results with GC6 compare favorly with Schrager
and Pelsser (2006), except for for swaptions with short-dated maturities under Model 3.

The calculation time increases with the number of bond moments in use, or equiva-
lently, the approximation order L and the time to maturity of underlying swap though
it does not depend on the time to the option exipry so much. In our calculation for a
one-year into a 5-year swaption under a three-factor Gaussian model, it took less than
10−3 seconds with up to GC7d, 0.063 seconds with GC7 and 78 seconds with MC, using
Visual C in a 2.4 GHz Pentium 4 CPU. For a one-year into a 10-year swaption, the
time was less than 10−3 seconds with GC3, 0.156 seconds with GC6 and GC7d, 3.453
seconds with GC7, and 109 seconds with MC. These speedy calculation of GC prices can
be carried out with analytical solutions of the bond moments. For more general ATSMs
than Models 1-3 such as a correlated multi-factor CIR model, one needs to solve a set of
Ricatti equations numerically to obtain bond moments so that it will take much longer
time. On the other hand, for quadratic Gaussian models, we expect to have a similar
efficient approximation as Gaussian ATSMs. It is another feature of the bond moments
that a value of a bond moment for a set of dates can be shared among derivative trans-
actions which involve cash flows in the same dates. This fact allows us to evaluate a
portfolio of derivative transactions efficiently with our methods and it differs from other
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valuation methods which need to evaluate each transaction in a portfolio independently.
We suggest either GC3, GC6 or GC7d for a practical application. By considering the

accuracy and the computational time, we conclude that a higher order approximation
GC6 or GC7d yields very accurate prices enough to price a specific transaction, and that
a lower order one GC3 attains good approximation in a very short time so that it is
suitable for the portfolio evaluation and the risk management.

[Figure 1 - 5, Table 3 - 4 around here]

4 CMS

Our approximation method can be applied to the convexity adjustment of a CMS rate
and an option on CMS.

4.1 CMS

A CMS is a swap contract between two parties to exchange a fixed rate and a floating
rate whose reference rate is a swap rate with a specified time to maturity. The fixed rate
to be exchanged on a CMS is called the CMS rate.

We consider a CMS to be traded at time t < T0 for the exchange of a fixed rate
CMSR(t) with the prevailing swap rates for a maturity of M = mδ in arrears during
the period [T0, TN ]. The fixing (observation) dates are Ti−1 (i = 1, . . . , N) and the
payment dates are Ti. By the usual discussion, the fixed rate on the CMS is given by

CMSR(t) =
∑N

i=1 P (t, Ti)ETi [SR(Ti−1, Ti−1,M) | Ft]∑N
i=1 P (t, Ti)

, (5)

where SR(u, Ti−1,M) is the forward swap rate for the period [Ti−1, Ti−1 +M ] at time u,

SR(u, Ti−1,M) =
P (u, Ti−1) − P (u, Ti−1 + M)

δ
∑i+m−1

j=i P (u, Tj)
.

A swap rate is a martingale under the swap measure, but it may not be so under other
measures since a swap rate is not a price of some traded security. The expectation
of the swap rate ETi [SR(Ti−1, Ti−1,M) | Ft] may be close to the forward swap rate
SR(t, Ti−1,M) but they don’t coincide in general. Thus, we call a difference between
them the convexity adjustment in a broad sense (bCA)5.

For a pricing of CMS, it is sufficient to consider the expectation of a swap rate starting
on a particular future date in the numerator of (5). It is equivalent to the bCA of the
single-period CMS rate

bCA = ET1 [SR(T0, T0,M) | Ft] − SR(t, T0,M).

For that purpose let us consider a receiving swap with a coupon rate of SR(t, T0,M)
initiated at time t for a period of [T0, T0 + M ]. For t ≤ u ≤ T0, recall that the time-u
swap value is given by the rate difference times the duration

SV (u, S(t, T0,M), T0,M) = (SR(t, T0,M) − SR(u, T0,M))Dur(u, T0,M), (6)
5bCA for the LIBOR is zero because a forward LIBOR of maturity date Ti is a martingale under the

Ti-forward measure SR(t, Ti−1, δ) = ETi [S(Ti−1, Ti−1, δ) | Ft].
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where Dur(u, T0,M) = δ
∑m

j=1 P (u, Tj) is the duration (or PVBP) of the underlying
swap. Then by dividing the both sides of the above equality evaluated at time u = T0

by the duration and taking the expectations, we see the bCA is given by

ET1 [SR(T0, T0,M) | Ft] − SR(t, T0,M) = −ET1

[
SV (T0, S(t, T0,M), T0,M)

Dur(T0, T0,M)

∣∣∣Ft

]
. (7)

A major problem in evaluating the CMS is that no general analytical expression exists
for the right hand side of (7).

To overcome the problem, we propose an approximation with a polynomial of zero-
coupon bond prices so as to calculate the expectation (7) with the bond moments. Let
us denote the forward duration of the swap by

D(t, T0,M) =
δ
∑m

j=1 P (t, Tj)
P (t, T0)

.

Thus, a random variable Dur(T0, T0,M) will be distributed around D(t, T0,M)6. By
making use of a first-order approximation7 (1 + x)−1 ≈ 1 − x, one can approximate the
reciprocal of the stochastic duration as a linear function of the zero-coupon bonds as

1
Dur(T0, T0,M)

=
D(t, T0,M)−1

1 + Dur(T0,T0,M)−D(t,T0,M)
D(t,T0,M)

≈ 2
D(t, T0,M)

− Dur(T0, T0,M)
D(t, T0,M)2

. (8)

Let us denote by aj (j = 0, . . . ,m) the equivalent bond cash flow at time Tj in the swap
with the fixed rate of S(t, T0,M) under consideation,

aj =

⎧⎨⎩
−1 if j = 0,

δSR(t, T0,M) if 1 ≤ j ≤ m − 1,
1 + δSR(t, T0,M) if j = m.

Then SV is also represented a linear function of the zero-coupon bonds

SV (T0, S(t, T0,M), T0,M) =
m∑

j=0

ajP (T0, Tj). (9)

By plugging (8) and (9) into (7), we obtain the expected value of the swap rate as

ET1 [SR(T0, T0,M) | Ft]

≈ SR(t, T0,M) −
m∑

j=0

aj

(
2μT1(t, T0, {Tj})

D(t, T0,M)
− δ

m∑
k=1

μT1(t, T0, {Tj , Tk})
D(t, T0,M)2

)
.

Therefore, the bond moments allow us to calculate the convexity adjustment easily.

6This idea is similar to the low-variance martingales argument of Schrager and Pelsser (2006) who
approximate P (T0, T0 + M)/Dur(T0, T0, M) ≈ P (t, T0 + M)/Dur(t, T0, M) under a swap measure.

7The second-order approximation (1 + x)−1 ≈ 1 − x + x2 is also applicable and the results can be
easily modified accordingly
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Proposition 3. The convexity adjustment in a broad sense can be approximated as

bCA ≈ 2
(
1 − μT1(t, T0, {Tm}))

D(t, T0,M)
− δ

m∑
k=1

μT1(t, T0, {Tk}) − μT1(t, T0, {Tk, Tm})
D(t, T0,M)2

− δSR(t, T0,M)
m∑

j=1

(
2μT1(t, T0, {Tj})

D(t, T0,M)
− δ

m∑
k=1

μT1(t, T0, {Tj , Tk})
D(t, T0,M)2

)
. (10)

There are several related derivations of bCA. By (8) one may have

ET1 [SR(T0, T0,M) | Ft] ≈ ET1

[
1 − P (T0, Tm)
D(t, T0,M)

(
2 − Dur(T0, T0,M)

D(t, T0,M)

) ∣∣∣Ft

]
=

2
(
1 − μT1(t, T0, {Tm}))

D(t, T0,M)
− δ

m∑
k=1

μT1(t, T0, {Tk}) − μT1(t, T0, {Tk, Tm})
D(t, T0,M)2

,

which is the first two terms of (10). However, this formulation does not make a full use
of the covariance among the zero-coupon bonds (or the second order bond moments)
so that the equality of (7) may not be guranteed. On the other hand, the linear swap
model (LSM)8 of Hunt and Kennedy (2004) is consistent with (7). Under LSM, the
relative price of a zero-coupon bond with respect to the duration is assumed to be a
linear function of the swap rate

P (u, Tj)
Dur(u, T0,M)

≈ A + BjSR(u, T0,M), t ≤ u ≤ T0 (11)

with A =
1

mδ
, Bj =

P (t, Tj) − ADur(t, T0,M)
SR(t, T0,M)Dur(t, T0,M)

. The constants A and Bj are determined

so that the identity
∑m

j=1 P (u, Tj) = Dur(u, T0,M) holds and the left hand side of (11) is

a martingale under the swap measure. Then we see
m∑

j=0

ajA = SR(t, T0,M),
m∑

j=0

ajBj =

−1, and (7) holds. By applying (8) to the left hand side of (11), multiplying the cash
flow aj and taking the summation, we attain (10) again.

The bCA represents convexity adjustment with different timings for the observation,
T0, and the payment, T1. We can consider a convexity adjustment with the same timing
of the observation and the payment, and call it the convexity adjustment in a narrow
sense (nCA). By noting that ET0 [SV (T0, S(t, T0,M), T0,M) | Ft] = 0, equation (7) can
be decomposed into two terms as

bCA = −CovT0 [SV (T0, S(t, T0,M), T0,M),Dur(T0, T0,M)−1 | Ft]

+
(
ET0 [SV (T0, S(t, T0,M), T0,M)Dur(T0, T0,M)−1 | Ft]

− ET1 [SV (T0, S(t, T0,M), T0,M)Dur(T0, T0,M)−1 | Ft]
)

= nCA + TA.

8Pelsser (2003) derives the convexity adjustment in terms of the volatility of the swap rates under
LSM.
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We call the first term −CovT0
t [· · · , · · · ] the convexity adjustment in a narrow sense (nCA)

that represents adjustment based on the same timing for the observation and the pay-
ment9

nCA = −δ
m∑

k=1

μT0(t, T0, {Tk}) − μT0(t, T0, {Tk, Tm})
D(t, T0,M)2

+ δ2SR(t, T0,M)
m∑

j,k=1

μT0(t, T0, {Tj , Tk})
D(t, T0,M)2

,

which is obtained by replacing μT1 with μT0 in (10). The remaining term in the bracket,
ET0 [· · · ] − ET1 [· · · ], represents the timing adjustment (TA) due to the different timing
of the payments.

Table 5 reports the convexity adjustments (bCA, nCA, and TA) of one-period CMS
rates under the three models calculated by the first-order approximation. The longer
the time to the observation or the longer the maturity of the observed swaps, the bigger
the adjustments are. By comparing the results with the Monte Carlo method, we find
that the pricing deviations reported in Tables 6 are at most 0.29 bp for Model 1, and
less than 0.04 bp for Model 2 and 3. These results are very good though obviously the
level of volatility affects the performance in a similar way as swaptions. When necessary
such as extremely high volatility environment, the second-order approximation can be
applied and will show relatively better performance.

[Table 3 and 4 around here]

4.2 CMS options

The approximated price of an option contract on a CMS can be obtained by combining
the two methods to approximate a swaption price by the Gram–Charlier expansion in
Section 3 and a convexity adjustments of a CMS rate with bond moments in the previous
subsection. We discuss the approximated price of a CMS floor and a CMS swaption.

Let’s consider a CMS floorlet first. A swap rate is observed at T0 for a period of
M = mδ. The strike rate of the floor is K and the payment of the floor is made at T1.
The value is then given by

CMSF (t) = δP (t, T1)ET1 [max(K − SR(T0, T0,M), 0) | Ft] .

From (6) and (8), we can approximate the observed swap rate as an affine function of
bond prices,

SR(T0, T0,M) ≈ SR(t, T0,M)

− SV (T0, S(t, T0,M), T0,M)
D(t, T0,M)

(
2 − Dur(T0, T0,M)

D(t, T0,M)

)
. (12)

9Benhamou (2000) obtains nCA and bCA in a similar form as ours with Wiener Chaos expansion
under multi-factor Gaussian models.
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Then we can obtain an approximated price of the CMS floor as

CMSF (t)

≈ δP (t, T1)ET1

[
max

(
K − SR(t, T0,M) +

2
D(t, T0,M)

SV (T0, SR(t, T0,M), T0,M)

− 1
D(t, T0,M)2

SV (T0, SR(t, T0,M), T0,M)Dur(T0, T0,M), 0
)∣∣∣Ft

]
.

Since the underlying value is expressed as a polynomial of zero-coupon bond prices, the
CMS floor price can be approximated further by using the Gram–Charlier expansion and
the bond moments so as to obtain an approximated price. While it is straightforward to
calculate the moments of the underlying rate, this requires higher order bond moments
because of the quadratic term SV (T0)Dur(T0).

We test an approximated price of 10-year CMS floors on five-year swap rates. The
strike rate is 2 percent under Model 1 and 6 percent under Model 2. The true prices
by the Monte-Carlo method are 528.3 bp, and 106.33 bp, respectively, while our method
results in 525.8 bp with with GC3, and 106.31 bp with GC3, respectively.

Lastly, we consider a CMS swaption which is a right to enter into a CMS swap on
M -maturity swap for a period of [T0, TN ] with the expiry T0 and the strike rate of K.
The arbitrage-free price can be given by

CMSOV (t)

= P (t, T0)ET0

[
max

(
N∑

i=1

δP (T0, Ti)(K − ETi [SR(Ti−1, Ti−1,M) | FT0 ]), 0

)
| Ft

]
.

Each coupon in the underlying swap can be approximated by taking the expectation of
(12) to obtain the expression with bond moments. Therefore, one can apply the Gram-
Charlier expansion to obtain the approximated price in a similar way as swaptions and
CMS floorlets.

5 Vulnerable options

We apply the techniques developed so far to the valuation of the credit derivatives. The
forward measure in a default-free setting is replaced by the survival contingent forward
measure in the defaultable setting.

5.1 Default risk

We make more standing assumptions. There are three firms A,B,C subject to default
risk10. The default time of firm i (i = A,B,C) is denoted by τ i and the default indicator
is denoted by H i

t = 1{τ i≤t}. At time t = 0 all of these three firms are solvent almost
surely. A filtration G = {Gt : t ∈ [0, T ∗]} is generated by the default indicators and F;
Gt = Ft∨σ(HA

s ,HB
s ,HC

s : 0 ≤ s ≤ t). Any (Q, F)-martingale is also a (Q, G)-martingale.
H i

t has the intensity hi(Xt) with an affine function hi(x) = li0 + li1
�
x, (li0, l

i
1) ∈ R × R

n,
of the state vector Xt.

10The discussion here can be easily extended to a case of a finite number of defaultable firms.
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The default time of firm i (i = A,B,C) τ i is constructed by

τ i = inf
{

t ≥ 0 :
∫ t

0
hi(Xs)ds ≥ ηi

}
,

where ηA, ηB , and ηC are independent random variables with a unit exponential law
under Q. We assume that simultaneous defaults by any two firms do not occur almost
surely; Q(τ i = τ j) = 0 (i 
= j). It will be convenient to introduce an auxiliary notation,

τABC = min{τA, τB , τC}.

An adjusted short rate R is a F-predictable process defined by

Rt = rt + δAhA
t + δBhB

t + δChC
t

such that a process exp(− ∫ t
0 Rsds) is square-integrable.

We study a defaultable security which pays Y at the maturity T . In case of default
of firm i (i = A,B,C) prior to T , the security holder receives 1− δi times the pre-default
price and the contract is terminated without further payments. Such a recovery rule is
called a fractional recovery of market value (RMV).

Then one can show that the time-t price St of a defaultable security with the payment
Y at the maturity T in case of no default subject to a fractional recovery of market value
is given by

St = 1{τABC>t}E
[
exp

(
−
∫ T

t
R(Xu)du

)
Y | Ft

]
, (13)

which is a natural extension of the well known result by Duffie and Singleton (1999) by
recalling that Rt = rt + δAhA

t + δBhB
t + δChC

t . The proof is omitted since it can be
accomplished in a similar fashion as Duffie and Huang (1996). When the defaultable
security price is written as St = 1{τABC>t}Vt with some F-adapted process Vt, we call Vt

the pre-default price of the security. When considering the applications, a typical form of
Y is a payoff from an option Y = max(G, 0) where G =

∑
i aiP̃ (T, Ti) with a pre-default

price of some defaultable bonds P̃ (T, Ti).

5.2 Change of measure

When the payoff is complicated, the valuation gets difficult in general and a change of
measure to a kind of a forward measure turns out useful. For the construction of an
equivalent measure, it is natural to consider a fictitious defaultable bond which pays 1
at maturity T if all of firms A,B and C are solvent. If either firm i defaults prior to the
maturity, the bond pays 1 − δi times the pre-default price as the recovery.

By (13), the pre-default price F (t, T ) at time t is given by

F (t, T ) = E

[
exp

(
−
∫ T

t
R(Xs)ds

)
| Ft

]
, (14)

which satisfies a SDE

dF (t, T ) = F (t, T )R(Xt)dt + F (t, T )σF (t, T )�dWt,
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for some F-progressively measurable process σF (·, T ) : [0, T ∗]×Ω → R
n. For an arbitrary

fixed T let us define a process L̃T by

L̃T
t =

F (t ∧ T , T )Λ̃t∧T

exp
(∫ t∧T

0 r(Xs)ds
)

F (0, T )
,

Λ̃t = exp
(
−
∫ t

0

(
δAhA(Xs) + δBhB(Xs) + δChC(Xs)

)
ds

)
.

Λ̃ is constructed so that the relative price of a modified fictitious bond price F (t, T )Λ̃t is
a martingale under Q. The modification is made due to the RMV feature with non-zero
recovery and the difference between the price and the pre-default price (or the jump on
the default). Moreover, by using Ito’s lemma, we see that dL̃T

t = L̃T
t σF (t, T )�dWt. By

the above observation and the assumptions, L̃T can be a density process to define an
equivalent measure Q̃T with respect to Q by

dQ̃T

dQ

∣∣∣
Gt

= L̃T
t . (15)

We call Q̃T the T -survival contingent forward measure for the RMV and we will use the
symbol ẼT for the expectation operator with respect to Q̃T . It should be emphasized that
the measure Q̃T depends on the recovery rule upon default of firms A,B and C although
we omit the dependence in the notation. By construction, Q̃T is the corresponding
martingale measure with a numéraire of a modified pre-default bond price F (t, T )Λ̃t.

To obtain a better understanding of the change of the measure, it is useful to see how
the processes are transformed. One can see that the change of measure transforms the
Brownian motion only and keeps the jump process unaffected. Namely,

W T
t = Wt −

∫ t

0
σF (s, T )ds

is a Brownian motion under Q̃T , and the process hi remains the intensity of H i under
Q̃T .

By the change of measure (15), the price S of a contingent claim which pays Y at
time T with the recovery payoff based on fractional recovery of market value for firms
A,B, and C is given by

St = 1{τABC>t}F (t, T )ẼT [Y | Ft] , t < T. (16)

The pre-default price of a contingent claim with the RMV is expressed under the survival
contingent forward measure Q̃T as if F (t, T ) were a bond price.

The importance of change of numéraire cannot be overstressed. By construction, for
any asset price S, the relative price S/(F (·, T )Λ) is a (Q̃T , G)-martingale. On the other
hand, the pre-default price V of a contingent claim paying Y with maturity T with the
same RMV is written as Vt = F (t, T )ẼT [Y | Ft]. Hence, the relative price V/F (·, T ) is a
(Q̃T , F)-martingale thus it is also a (Q̃T , G)-martingale. The fictitious bond price F (·, T )
plays the same role as a numéraire for pre-default prices of T -maturity contingent claims
with RMV. However, it is not a numéraire for other claims.
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The idea of a survival contingent measure is first proposed by Schönbucher (2000b)
for the case of zero-recovery. The contribution of this paper is to extend to more general
cases and give two meanings in the change of measure to the survival contingent forward
measure Q̃T . One meaning is that it is associated with the change of numéraire to the
pre-default price of a fictitious bond. Another one is that it reflects the possibility of a
change of cash flow schedule before the maturity due to a default and the recovery rule.

The survival contingent forward measure Q̃T should not be confused with a survival
forward measure Q

T which is introduced by Schönbucher (2000a). A survival contingent
measure is equivalent while a survival measure is only absolutely continuous and is not
equivalent. The survival forward measure Q

T is defined by the density process

L
T
t =

F (t, T )Λt

exp
(∫ t

0 r(Xs)ds
)

F (0, T )
,

where F (t, T ) = 1{τABC>t∧T}F (t, T ) is the price of the fictitious zero coupon bond with
the RMV feature and

Λt = exp
(∫ t

0

(
(1 − δA)hA(Xs) + (1 − δB)hB(Xs) + (1 − δC)hC(Xs)

)
ds

)
is a modifying term reflecting the RMV feature.

In a similar way as Schönbucher (2004), we can give a justification of the name of
a survival contingent measure. It is clear that the survival contingent forward measure
Q̃T and the survival forward measure Q

T are constructed in a different way. However,
these two measures are identical if the domain is restricted to the sub σ-field Ft (t ≤ T )
because one can show that they assign the same probability Q

T (G) = Q̃T (G) for any
event G ∈ Ft by making use of a well-known formula

E
[
1{τABC>T}Y | Gt

]
= 1{τABC>t}E

⎡⎣exp

⎛⎝−
∑

i=A,B,C

∫ T

t
hi

sds

⎞⎠Y | Ft

⎤⎦ , (17)

which holds for any FT -measurable, integrable random variable Y and any t ≤ T . It
implies that given no default, these two measures assign the same probability. But for
other events involving a default they assign different probabilities. That is a justification
of the name of a survival contingent measure. The relationship (17) is an instructive
expression that leads us to a survival contingent forward measure rather than a survival
measure.

5.3 Vulnerable option on a defaultable coupon bond

In this subsection and the subsequent one we will see that regardless of the compli-
cated valuation form of vulnerable options, the pricing formulae become tractable in the
computation owing to the affine structure and the change of measure to the survival
contingent forward measure.

First, we consider the following vulnerable option on a defaultable bond:

• The firm A buys from the firm B a defaultable option (either call or put) with
strike price K and the expiry T0 on a defaultable coupon bond issued by the firm
C.
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• The bond pays aj at Tj (j = 1, · · · , N) as long as C is solvent. The firm C also
issues zero coupon bonds with maturity Tj (j = 1, · · · , N). In case of the default of
C the recovery payoff of these bonds is subject to RT, that is, the bond of unit face
amount is assumed to be replaced by the corresponding default-free bonds with
face amount of 1 − δC

bond upon the default of C. 11

• If a firm i (i = A,B,C) defaults before the expiry T0, the seller B pays 1− δi times
the market value prior to the default to the buyer A and the option contract is
terminated. We set δA = 0.

Time t-price of the zero coupon bond with the maturity date T issued by C is denoted
by PC(t, T ). Since the bond is subject to RT, it is well known that PC(t, T ) is represented
as PC(t, T ) = 1{τC>t}P̃C(t, T ) where P̃C(t, T ) is the pre-default price of the bond that
is a linear combination of default-free bond price and defaultable bond price with zero
recovery

P̃C(t, T ) = (1 − δC
bond)E

[
e−

R T
t

r(Xs)ds | Xt

]
+ δC

bondE
[
e−

R T
t (r(Xs)+hC(Xs))ds | Xt

]
. (18)

This bond price is expressed as a linear combination of exponentially affine functions of
the state variable Xt.

A defaultable coupon bond has cash flows of aj at Tj (j = 1, · · · , N) as long as C
is solvent. Then we obtain the price St of the vulnerable put option on a defaultable
coupon bond as St = 1{τABC>t}Vt with

Vt = F (t, T0)ẼT0

⎡⎣max

⎛⎝K −
N∑

j=1

ajP̃
C(T0, Tj), 0

⎞⎠ | Xt

⎤⎦ . (19)

This is the same form as a swaption valuation. Since X is an affine diffusion, the price
F (t, T ) can be written as F (t, T ) = exp

(
α(t, T ) + β(t, T )�Xt

)
with some deterministic

functions α, β. Hence the state vector X is also an affine diffusion under Q̃T and we can
calculate the approximated price of the option (19) with the Gram–Charier expansion
and bond moments as discussed earlier.

5.4 Vulnerable option on CDS

Let’s consider a vulnerable option contract to enter into the following credit default swap
(CDS):

• A buys from B an option to enter into a CDS which starts at T0.

• The reference bond on the CDS is a zero coupon bond with maturity U issued by
C (U ≥ TN ) subject to fractional recovery of Treasury.

• As the premium the CDS buyer A pays κ to the CDS seller B at Tj (j = 1, · · ·N)
if C survives at Tj ; τC > Tj .

• As the protection B pays a + bP (Tj , U) to A at Tj if Tj−1 < τC ≤ Tj.
11Other recovery rules such as RMV can be applied to these bonds issued by C if appropriate modifi-

cations are made on the successive discussion.
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• If a firm i (i = A,B,C) defaults before the expiry T0, the seller B pays 1− δi times
the market value prior to the default to the buyer A and the option contract is
terminated whereas we assume δA = 0.

In order to make our discussion simple, the vulnerability is only up to the exercise time T0

of the option and we don’t assume the default of A and B after the CDS starts. Although
the above option is a call-type option in the sense that the option buyer becomes the
CDS buyer upon the exercise, a put-type option contract can be discussed in a similar
fashion.

The payoff at T0 upon the exercise of the call option is given by

E

⎡⎣ N∑
j=1

e
− R Tj

T0
r(Xu)du

(
−κ1{τC>Tj} + 1{Tj−1<τC≤Tj} (a + bP (Tj , U))

)
| GT0

⎤⎦ .

To simplify this expression it is convenient to introduce a function

G(t, S, T ) = E

[
exp

(
−
∫ S

t
r(Xu)du −

∫ T

t
hC(Xu)du

)
| Xt

]
, (20)

which is an exponentially affine function of the state vector Xt. Then by (17) the payoff
upon the exercise can be written as 1{τABC>T0}H where

H =
N∑

j=1

(
−κG(T0, Tj , Tj) + a

(
G(T0, Tj , Tj−1) − G(T0, Tj , Tj)

)
+ b (G(T0, U, Tj−1) − G(T0, U, Tj))

)
.

Hence the price of the option on the CDS is given by

St = 1{τABC>t}F (t, T0)ẼT0 [max (H, 0) | Xt] . (21)

Thanks to the form of G, this option price can also be approximated by the Gram–
Charlier expansion and bond moments.

5.5 Numerical examples

In order to see numerical examples of these vunerable options discussed in Sections 5.3
and 5.4, let us assume that the risk-free rate and the intensities12 are independent CIR
processes satisfying

dr(t) = Kr(θr − r(t))dt + σr

√
r(t)dWr(t),

dhi(t) = Ki(θi − hi(t))dt + σi

√
hi(t)dWi(t), (i = B,C),

where (Wr,WB ,WC) is a three-dimensional standard Brownian motion, and

r(0) = 0.03, Kr = 0.5, θr = 0.03, σr = 0.15,
hB(0) = 0.03, KB = 0.4, θB = 0.03, σB = 0.10, δB = 0.6,
hC(0) = 0.04, KC = 0.3, θC = 0.04, σC = 0.10, δC = δC

bond = 0.6.
12Since the parameter δA is assumed zero in the previous subsections, the process hA does not matter.
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For a Markov process y, let us define

P (t, T ; y) = E

[
exp

(
−
∫ T

t
y(s)ds

)
| y(t)

]
,

which is the zero-coupon bond price with maturity T by regarding y as the risk-free rate.
Then we can write (14), (20) and (18) as,

F (t, T ) = P (t, T ; r)P (t, T ; δBhB)P (t, T ; δChC),
G(t, S, T ) = P (t, S; r)P (t, T ;hC ),
P̃C(t, T ) = (1 − δC

bond)P (t, T ; r) + δC
bondG(t, T, T ).

For the vulnerable option on the defaultable coupon-bearing bond in Section 5.3, the
pre-default price P̃C(t, T ) is a polynomial of exponentially affine functions of r and hC .
It follows that the bond moments can be calculated analytically and we can work for (19).
As the example we consider a 6-year 6% coupon bearing bond of which the current price
is 103.792. Table 7 and Figure 6 show the price differences of 1-yr vulnerable put options
on the bond with several strike prices. Similar features as swaptions are observed. As
a reference, we obtain the at-the-money-forward price KATMF for the vulnerable option
on the coupon-bearing bond as

KATMF ≡ ẼT0

[
P̃C(T0, T )

]
=
∑N

j=1 aj

(
(1 − δC

bond)
P (0,Tj ;r)
P (0,T0;r) + δC

bondJ(0, T0, Tj , Tj)
)

,

where aj is the cash flow on Tj (j = 1, 2, · · · , N) from the bond, and

J(t, T0, S, T ) ≡ ẼT0 [G(T0, S, T ) | Xt] =
P (t, S; r)Q(t, T0, T ; δC , hC)
P (t, T0; r)P (t, T0; δChC)

,

Q(t, T, U ; δC , hC) = E

[
exp

(
−
∫ T

t
δChC(s)ds

)
P (T,U ;hC) | hC(t)

]
.

Q(t, T ; δC , hC) for a CIR process hC can be calculated via Laplace transform and the
formula is found in Theorem 4.8 of Cairns (2004).

For a vulnerable CDS option with a = 0, b = 1 in Section 5.4, the ATMF rate of the
underlying CDS is

κATMF =
J(0, T0, U, T0) − J(0, T0, U, TN )∑N

j=1 J(0, T0, Tj , Tj)
.

We take 5-yr into 5-yr CDS options to buy the protection as the example. Table 8 shows
the prices of vulnerable CDS options. The quality is at a satisfactory level for practical
purposes.

[Table 7 and Figure 6 around here]

[Table 8 around here]
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6 Conclusion

We have demonstrated that the Gram–Charlier expansion and bond moments are so
powerful that we can develop easy-to-use approximation methods for pricing several
interest rate derivatives and credit derivatives. The accuracy and the computational
speed is very competitive. Therefore, our methods can be applied to not only a pricing
of a transaction but also an evaluation of a portfolio with keeping model consistency
among products.
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A Proof of Proposition 1

The characteristic function GY of a random variable Y is defined by the Fourier transform
of f as

GY (t) =
∫ ∞

−∞
eitxf(x)dx = eitc1

∫ ∞

−∞
ei
√

c2tx√c2f(c1 +
√

c2x)dx. (22)

On the other hand, by the definitions of the cumulants, this can be expressed as

GY (t) = exp

( ∞∑
k=1

ck

k!
(it)k

)
= eitc1

∫ ∞

−∞
ei
√

c2tx exp

( ∞∑
k=3

(−1)kck

k!

(
D√
c2

)k
)

φ(x)dx. (23)

This is because, for any sequence {an}, it holds that

exp

(
−c2

2
t2 +

∞∑
n=1

an(−i
√

c2t)n
)

=
∫ ∞

−∞
ei
√

c2tx exp

( ∞∑
n=1

anDn

)
φ(x)dx.

We further expand the integrand of (23) by using the Taylor expansion. We then reorder
the terms as follows

exp

( ∞∑
k=3

(−1)kck

k!

(
D√
c2

)k
)

φ(x)

=

(
1 +

∞∑
m=1

1
m!

( ∞∑
k=3

(−1)kck

k!

(
D√
c2

)k
)m)

φ(x)

=

⎛⎝1 +
∞∑

m=1

1
m!

∑
k1,··· ,km≥3

(−1)k1+···+kmck1 · · · ckm

k1! · · · km!

(
D√
c2

)k1+···+km

⎞⎠φ(x)

=
(

1 +
∑∗ ck1 · · · ckm

m!k1! · · · km!

(
1√
c2

)n

Hn(x)
)

φ(x),

where
∑∗ =

∑∞
n=3

∑[n/3]
m=1

∑
k1+···+km=n,ki≥3. We use the relationship Hn(x)φ(x) =

(−1)nDnφ(x) in the last equality. Then, (23) can be written as

eitc1

∫ ∞

−∞
ei
√

c2txφ(x)dx + eitc1

∫ ∞

−∞
ei
√

c2tx
∑∗ ck1 · · · ckm

m!k1! · · · km!

(
1√
c2

)n

Hn(x)φ(x)dx. (24)

By using the inverse Fourier transforms of both (22) and (24) and by changing the
relevant variable, we obtain the following Gram–Charlier expansion around the mean 13

f(x) =
1√
c2

φ

(
x − c1√

c2

)
+

1√
c2

∑∗ ck1 · · · ckm

m!k1! · · · km!

(
1√
c2

)n

Hn

(
x − c1√

c2

)
φ

(
x − c1√

c2

)
.

The proof of (ii) is straightforward by using (i) and the properties of Hermite polyno-
mials.

13For the density function of a standardized random variable, an expansion around zero f(x) =
P∞

k=0 qkHk(x)φ(x), where qk = 1
k!

E[Hk(Y )] =
P[k/2]

l=0
(−1)l

l!(k−2l)!2l E[Y k−2l], is known as a Gram–Charlier

series of type A (Stuart and Ord, 1987).
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B Affine term structure models

B.1 A0(n) Gaussian Model

The coefficients of an n-factor Gaussian model, A0(n), are given by

δX = 1n, K = diag[K1, . . . ,Kn],
Σ = diag[σ1, . . . , σn]V, where V V � = (ρij)ij , D(X(t)) = In.

Bond prices and bond moments can be obtained from

A(t, T ) = −(T − t)
(
δ0 +

n∑
i=1

(1 − D(Ki(T − t)))θi − 1
2

n∑
i=1

n∑
j=1

ρijσiσj

KiKj

× (
1 − D(Ki(T − t)) − D(Kj(T − t)) + D((Ki + Kj)(T − t))

))
,

Bj(t, T ) = −τD(Kj(T − t)),

M(t) = A(t, T0) + F0 + τ

n∑
j=1

KjθjFjD(Kjτ) +
τ

2

J∑
i,j=1

ρijσiσj

(
FiFjD((Ki + Kj)τ)

+ Fi
D((Ki + Kj)τ) − D(Kiτ)

Kj
+ Fj

D((Ki + Kj)τ) − D(Kjτ)
Ki

)
,

Nj(t) = Bj(t, T0) + Fj exp(−Kj(T0 − t)),

where D(x) = 1−e−x

x , τ = T0−t, F0 =
∑m

i=1 A(T0, Ti)+A(T0, T ) and Fj =
∑m

i=1 Bj(T0, Ti)+
Bj(T0, T ).

B.2 An(n) CIR Model

The coefficients of an n-factor CIR model, An(n), are given by

δX = 1n, K = diag[K1, . . . ,Kn], θ = (θ1, . . . , θn)�, (θj > 0),

Σ = diag[σ1, . . . , σn], D(X(t)) = diag[
√

X1(t), . . . ,
√

Xn(t)].

Bond prices and bond moments can be obtained from

A(t, T ) = −δ0(T − t) −
n∑

j=1

Kjθj

[ 2
σ2

j

ln
(Kj + γj)(eγj (T−t) − 1) + 2γj

2γj
+

2
Kj − γj

(T − t)
]
,

Bj(t, T ) =
−2(eγj (T−t) − 1)

(Kj + γj)(eγj (T−t) − 1) + 2γj
,

M(t) = F0 − δ0τ −
n∑

j=1

Kjθj

[ 2
σ2

j

ln
(Kj + γj − σ2

j Fj)(eγjτ − 1) + 2γj

2γj

+
(Kj + γj)Fj + 2
Kj − γj − σ2

j Fj
τ
]
,

Nj(t) =
−((Kj − γj)Fj + 2)(eγj τ − 1) + 2γjFj

(Kj + γj − σ2
j Fj)(eγjτ − 1) + 2γj

,

where γj =
√

K2
j + 2σ2

j , τ = T0−t, F0 =
∑m

i=1 A(T0, Ti)+A(T0, T ) and Fj =
∑m

i=1 Bj(T0, Ti)+
Bj(T0, T ).
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Table 1: Parameter values

Model 1 (Gaussian) Model 2 (Gaussian) Model 3 (CIR)
δ0 -0.0065 0.06 0.02
δ [1 1 1]� [1 1 1]� [1 1]�

K [0.05 0.1 1]� [1.0 0.2 0.5]� [0.2 0.2]�

θ [0.015 0.02 0.02]� [0 0 0]� [0.03 0.01]�

Σ diag[0.01 0.02 0.03]V diag[0.01 0.005 0.002]V diag[0.04 0.02]V

V

⎛⎝ 1 −0.8 0.7
−0.8 1 −0.9
0.7 −0.9 1

⎞⎠ ⎛⎝ 1 −0.2 −0.1
−0.2 1 0.3
−0.1 0.3 1

⎞⎠ (
1 0
0 1

)
D(x) diag[1 1 1] diag[1 1 1] diag[

√
x1

√
x2]

X0 [0.005 − 0.02 0.02]� [0.01 0.005 − 0.02]� [0.04 0.02]�

Table 2: Yields and volatilities

Model 1 (Gaussian) Model 2 (Gaussian) Model 3 (CIR)
Option Swap Maturity Swap Maturity Swap Maturity
Expiry 1 3 5 10 1 3 5 10 1 3 5 10
ATMF rate (pct)
1 0.47 0.82 1.12 1.70 5.72 5.87 5.95 6.03 7.33 7.12 6.96 6.71
3 1.17 1.45 1.69 2.14 6.01 6.06 6.09 6.10 6.90 6.76 6.65 6.48
5 1.72 1.95 2.14 2.51 6.12 6.13 6.13 6.12 6.61 6.52 6.44 6.33
10 2.68 2.81 2.93 3.15 6.12 6.13 6.13 6.12 6.24 6.20 6.18 6.14
ATMF receiver’s swaption price (bp)
1 32.1 84.1 138.3 230.7 20.8 41.8 53.3 65.6 24.9 58.2 77.7 98.3
3 54.5 153.7 240.3 379.9 24.2 51.5 67.0 83.6 30.3 71.0 94.8 120.0
5 67.4 186.0 284.8 442.1 23.2 50.2 65.7 82.2 28.4 66.8 89.3 112.9
10 73.8 199.9 301.6 463.0 18.0 39.3 51.5 64.6 20.7 48.7 65.2 82.5
Yield volatility (pct)
1 202 89.5 64.4 36.7 10.1 6.94 5.55 3.87 10.5 9.00 7.86 5.98
3 73.9 55.2 44.7 28.9 7.22 5.38 4.44 3.17 8.98 7.65 6.62 4.97
5 48.5 39.6 33.6 23.4 5.94 4.54 3.77 2.72 7.78 6.58 5.67 4.21
10 26.5 23.3 20.8 15.9 4.41 3.40 2.84 2.05 5.81 4.87 4.16 3.04
Absolute volatility (pct)
1 0.95 0.73 0.72 0.62 0.58 0.41 0.33 0.23 0.80 0.66 0.56 0.41
3 0.86 0.80 0.75 0.62 0.43 0.33 0.27 0.19 0.64 0.53 0.45 0.33
5 0.83 0.77 0.72 0.59 0.36 0.28 0.23 0.17 0.52 0.44 0.37 0.27
10 0.71 0.66 0.61 0.50 0.27 0.21 0.17 0.12 0.37 0.30 0.26 0.18
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Figure 1: Price differnces GC-MC (1 into 10, Model 1)
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Figure 2: Price differnces GC-MC (1 into 10, Model 2)
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Figure 3: Price differnces GC-MC (1 into 10, Model 3)
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Figure 4: Price differnces GC-MC (5 into 10, Model 1)
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Table 3: Absolute difference of swaption price (GC-MC, bp)

1yr into 10yr 5yr into 10yr
Strike rate Model 1 Model 2 Model 3 Model 1

-ATMF (pct) GC3 GC6 GC3 GC6 GC3 GC6 GC3 GC6
-2.0 -0.031 -0.004 0.000 0.000 0.000 0.000 -0.499 0.083
-1.5 -0.133 0.019 0.000 0.000 -0.001 0.000 0.634 -0.743
-1.0 -0.073 0.019 0.000 0.000 -0.025 -0.002 1.591 -1.081
-0.5 0.201 -0.050 -0.004 0.000 0.055 0.007 1.980 -0.466
0.0 0.266 0.031 0.008 0.001 -0.042 -0.003 1.996 0.559
0.5 0.191 0.076 -0.005 0.000 0.039 -0.004 1.848 1.178
1.0 -0.065 -0.003 0.000 0.000 -0.023 0.001 1.431 1.074
1.5 -0.179 -0.022 0.000 0.000 -0.007 -0.001 0.632 0.484
2.0 -0.092 0.003 0.000 0.000 -0.001 -0.001 -0.356 -0.151

Table 4: Absolute difference of ATMF swaption price (GC6-MC, bp)

Option Swap Maturity
Expiry 1 3 5 10

Model 1 (Gaussian)
1 -0.000 -0.001 0.000 0.001
3 -0.001 -0.001 -0.005 -0.052
5 -0.001 -0.001 -0.016 -0.052
10 -0.001 -0.001 -0.010 -0.113

Model 2 (Gaussian)
1 -0.005 0.002 0.003 0.004
3 0.003 0.003 0.004 0.006
5 -0.001 0.003 0.004 0.005
10 0.003 0.002 0.003 0.004

Model 3 (CIR)
1 1.200 -0.174 0.018 0.019
3 0.569 -0.060 0.017 0.008
5 0.576 -0.033 0.030 0.004
10 0.819 -0.011 0.078 0.039
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Figure 5: Price differnces for bond options (Model 3)
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Table 5: Convexity adjustments

Model 1 (Gaussian) Model 2 (Gaussian) Model 3 (CIR)
Obser Swap Maturity Swap Maturity Swap Maturity
-vation 1 5 10 20 1 5 10 20 1 5 10 20
bCA (bp)

1 0.14 1.18 2.00 2.30 0.07 0.23 0.25 0.22 0.11 0.55 0.64 0.58
3 0.46 3.74 5.81 6.45 0.12 0.47 0.52 0.46 0.23 1.09 1.25 1.13
5 0.76 5.65 8.54 9.51 0.14 0.58 0.64 0.57 0.26 1.26 1.44 1.29
10 1.14 8.08 12.19 13.99 0.16 0.65 0.72 0.65 0.26 1.27 1.44 1.29

nCA (bp)
1 0.51 1.32 2.10 2.38 0.25 0.33 0.32 0.27 0.37 0.74 0.77 0.67
3 1.47 4.45 6.37 6.85 0.42 0.65 0.64 0.55 0.74 1.46 1.52 1.32
5 2.38 6.86 9.50 10.18 0.49 0.79 0.79 0.67 0.86 1.69 1.75 1.51
10 3.56 9.96 13.66 15.03 0.54 0.88 0.89 0.76 0.87 1.70 1.75 1.51

TA (bp)
1 -0.37 -0.14 -0.10 -0.08 -0.18 -0.09 -0.06 -0.04 -0.26 -0.19 -0.13 -0.09
3 -1.01 -0.71 -0.56 -0.40 -0.30 -0.17 -0.12 -0.08 -0.49 -0.37 -0.27 -0.19
5 -1.62 -1.22 -0.95 -0.67 -0.35 -0.21 -0.15 -0.10 -0.60 -0.43 -0.29 -0.22
10 -2.43 -1.87 -1.48 -1.04 -0.39 -0.23 -0.16 -0.11 -0.61 -0.43 -0.29 -0.22

Table 6: Price differnces of convexity adjustments

Model 1 (Gaussian) Model 2 (Gaussian) Model 3 (CIR)
Obser Swap Maturity Swap Maturity Swap Maturity
-vation 1 5 10 20 1 5 10 20 1 5 10 20
bCA (bp)

1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 -0.00 -0.01 -0.01 -0.01
3 0.00 0.01 0.04 0.06 0.00 0.00 0.00 0.00 -0.00 -0.02 -0.02 -0.02
5 0.00 0.03 0.08 0.14 0.00 0.00 0.00 0.00 -0.01 -0.02 -0.03 -0.04
10 0.00 0.05 0.16 0.29 0.00 0.00 0.00 0.00 -0.01 -0.02 -0.04 -0.04

nCA (bp)
1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 -0.00 -0.01 -0.01 -0.01
3 0.00 0.01 0.03 0.05 0.00 0.00 0.00 0.00 -0.00 -0.02 -0.02 -0.02
5 0.00 0.02 0.06 0.11 0.00 0.00 0.00 0.00 -0.01 -0.02 -0.03 -0.04
10 0.00 0.04 0.12 0.24 0.00 0.00 0.00 0.00 -0.01 -0.02 -0.04 -0.04

TA (bp)
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.02 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30



Table 7: Price of vulnerable put option on coupon-bearing bond

Strike price 88.255 93.255 98.255 103.255 108.255 113.255 118.255
(ATMF)

Strike yield (pct) 8.968 7.649 6.414 5.251 4.154 3.115 2.130
MC (bp) 0.386 4.068 30.342 152.419 475.942 930.600 1395.916
GC3 0.099 3.190 31.044 153.559 476.682 929.429 1395.879
(abs. price diff.) -0.287 -0.878 0.702 1.140 0.739 -1.171 -0.037
GC6 0.338 4.562 29.439 152.840 476.400 930.254 1396.043
(abs. price diff.) -0.048 0.494 -0.903 0.420 0.458 -0.346 0.127
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Figure 6: Price differnces of vulnerable put option on coupon-bearing bond

Table 8: Price of vulnerable CDS option (5-yr into 5-yr)

Strike price 110.19 134.19 158.19 182.19 206.19 230.19 254.19
(ATMF)

MC (bp) 423.36 301.55 205.78 136.00 87.73 55.54 34.65
GC3 424.39 305.12 208.66 137.84 89.52 57.49 36.10
(abs. price diff.) 1.03 3.57 2.88 1.84 1.57 1.79 1.95
GC6 423.91 304.94 209.00 137.04 86.09 52.37 31.93
(abs. price diff.) 0.55 3.39 3.23 1.04 -1.64 -3.17 -2.72
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