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Abstract. We propose a structural model with a joint process of tangible assets

(marker) and firm status for the pricing of corporate securities. The firm status

is assumed to be latent or unobservable, and default occurs when the firm status

process reaches a default threshold at the first time. The marker process is

observable and assumed to be correlated with the latent firm status. The recovery

upon default is a fraction of tangible assets at the time of default. Our model

can evaluate both the corporate debt and equity to fit their market prices in a

unified framework. When the two processes are perfectly correlated, our model

is reduced to the seminal Black-Cox model. Numerical examples are given to

support the usefulness of our model.
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1 Introduction

A large number of studies have been conducted for the evaluation of credit risk of a corpo-

rate firm based on the structural model. The structural model proposed by Merton (1974)

and Black and Cox (1976) provides an intuitive understanding of credit risk by modeling

equity and corporate debt as contingent claims written on the firm value.1 For example,

CreditMetricsTM (1997) calculates VaR (Value-at-Risk) of a credit portfolio based on the

Merton model (1974).

An attractive feature of this approach is that we can analyze how firm-specific variables

such as debt ratio influence debt values. For example, Leland (1994) examines the optimal

capital structure of a firm by introducing firm’s endogenous bankruptcy. See also Mella-

Barral and Perraudin (1997) and Chen and Kou (2005) for extensions of the Leland model.

Also, it can treat complex contingent claims written on the firm’s asset value.2

Since then, many attempts have been made to extend the structural model. Among them,

Longstaff and Schwartz (1995) and Briys and de Varenne (1994) proposed structural models

with stochastic interest rates. This extension is particularly important for valuing corporate

debts with longer maturity. On the other hand, Zhou (2001) and Kijima and Suzuki (2001)

assumed that the firm value process follows a jump-diffusion process of Merton (1976). This

extension makes it possible to generate more realistic and flexible credit spreads.3

However, it is well known that the firm value itself cannot explain actual credit spreads

observed in the market. Also, the key assumption that the firm value is observable is

problematic. In this paper, we extend the classic structural model by taking these points

into account. Namely, we consider a bivariate process of tangible assets (marker) and firm

status (or actual firm value) for the pricing of corporate securities. The actual firm value

is assumed to be latent or unobservable and determines default of the firm.4 The marker

process is observable and assumed to be correlated with the latent firm status. The recovery

upon default is a fraction of tangible assets at the time of default.5 When the two processes

are perfectly correlated, our model is reduced to the seminal Black–Cox model.

Latent process models have been used in the medical science to specify health status.

1The term structure models of credit spreads are classified into three approaches in the finance literature,
i.e. the structural approach, the reduced-form approach and the hybrid approach. We refer to Longstaff and
Schwartz (1995), Jarrow and Turnbull (1995) and Madan and Unal (2000) for these approaches.

2See, e.g., Black and Cox (1976) and Kijima and Suzuki (2001).
3If the firm value is assumed to follow a diffusion process in the classic structural model, it takes time to

reach the default boundary so that the firm never defaults unexpectedly (i.e., by surprise). This means that
the short-term debt should have zero credit spreads, whence the model generates only unrealistic short-term
credit spreads.

4As a similar idea, Giesecke (2004) assumed that the default boundary is not prespecified but given as a
random variable.

5In our model, the recovery rate of debt is random, consistent with the empirical findings reported by,
e.g., Fons (1994). In the Black–Cox model, however, the recovery is constant and equal to the prespecified
default boundary.
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In general, health status is latent or unobservable while some markers checked by a med-

ical doctor are observable. The seminal paper by Whitmore, Crowder and Lawless (1998)

proposed a bivariate model in which a latent health status process determines the failure

(death or onset of disease) time, as the first hitting time to a failure threshold level, and the

observable marker process is correlated with the health status process.6

The health status model has an apparent similarity to default of a firm. Namely, the

actual firm status is latent or unobservable while some markers (analyst reports, credit

rating, etc.) checked by experts are observable. In this paper, we intend to develop a latent

process model for the pricing of corporate securities (debt and equity). As a marker process,

we take the value of tangible assets whose market value is evaluated by experts. The actual

firm status (latent variable) can be imputed from the market prices of debt and equity. The

firm status value is then used to be a proxy of credit quality of the firm.

This paper is organized as follows. In the next section, we formally define the latent

process model for the pricing of corporate securities. While Section 3 discusses how to

derive the pricing formulas in closed form using the ‘change of measure’ technique, Section

4 is devoted to numerical examples. We will examine the impact of model parameters on

the debt value. Also, the firm status values are calculated from the actual market data for

some Japanese firms. The model will prove useful in practice for the evaluation of credit

risk. Section 5 concludes this paper. Some mathematical results are given in the appendix.

Throughout the paper, we fix the probability space (Ω,F , Q) and denote the expectation

operator by EQ. The probability measure Q is the risk-neutral measure and we assume that

such Q exists, since we are interested in the pricing of financial instruments.

2 The Model Description

In this section, we describe our model and discuss the basic assumptions. Some of them are

parallel to those in Black and Cox (1976), and we refer to the seminal paper for detailed

discussions about the assumptions. In particular, we assume that the capital market is

frictionless and free of informational asymmetry. The risk-free instantaneous interest rate is

constant and denoted by r.

Consider a corporate firm and let V (t) denote the time-t market value of tangible assets

of the firm. We assume that V (t) is governed by the following stochastic differential equation

(SDE for short) under Q:

dV (t)

V (t)
= rdt + σvdzv(t), t ≥ 0, (2.1)

6See also Lee, Degfuttola and Schoenfeld (2000) for further discussions of the latent health status model.
They developed a generalized linear regression model to estimate the parameters from censored survival data
and marker measurement.
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where the volatility σv is constant and zv(t) denotes a standard Brownian motion. The

tangible assets are assumed to be traded in the market, whence the instantaneous rate of

return of the asset V (t) is equal to the risk-free interest rate r under Q. The tangible assets

can be collateral when the firm is liquidated. Note however that the value of tangible assets

does not coincide with the actual firm value in general.

Suppose that there exists a process A(t) that represents the actual firm value at time t.

It is assumed that the process A(t) is latent or unobservable (and so it cannot be traded in

the market), and that the risk-adjusted A(t) follows the SDE

dA(t)

A(t)
= μadt + σadza(t), t ≥ 0, (2.2)

under Q, where the volatility σa is constant and za(t) is a standard Brownian motion. Of

course, because the value of tangible assets contributes to the actual firm value, we assume

that A(t) is correlated to V (t) with correlation coefficient ρ. In other words, we assume that

dzv(t)dza(t) = ρdt, where ρ is a constant. It should be noted that the actual firm value A(t)

can be less than the value V (t) of tangible assets, meaning that intangible assets of the firm

have a negative value.

For notational convenience, we define X(t) = log A(t) and Y (t) = log V (t). We call X(t)

the firm status process. Let (w1(t), w2(t)) be a two-dimensional standard Brownian motion

such that⎧⎨
⎩ zv(t) = w1(t),

za(t) = ρw1(t) +
√

1 − ρ2w2(t),

since dzv(t)dza(t) = ρdt. It follows from (2.1) and (2.2) that we have

dX(t) = μxdt + σadw1(t), μx = μa − 1

2
σ2

a, (2.3)

and

dY (t) = μydt + σv

(
ρdw1(t) +

√
1 − ρ2dw2(t)

)
, μy = r − 1

2
σ2

v , (2.4)

respectively.

The basic idea behind the firm status process is the following. In the static setting,

Altman (1968) developed a scoring model to identify bankrupt firms from surviving firms

using a discriminant analysis. For explanatory variables xj , suppose that the parameters βj

are estimated so that the score of a firm is determined as

Z = β0 +
n∑

j=1

βjxj .

The firm is classified into a bankrupt group when the Z-score is negative. Of course, the

score is subject to an error, so that it should be considered as a random variable. Note that,

very often, one of the explanatory variables is the value of tangible assets or its variant.
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Hence, our model described above seems a natural extension of the scoring model to the

continuous-time setting.

Now, suppose that the firm issues two classes of claims, a single homogeneous class

of debt and the residual claim (equity). As in Black and Cox (1976), the corporate debt

has maturity T and default occurs when the firm status process X(t) reaches the default

threshold xB before the maturity. The face value of the debt is denoted by F . It is assumed

that F ≥ Γ ≡ exB . Hence, the firm can survive until the maturity even though the actual

firm value A(t), t < T , is less than the face value F . At the maturity, however, default

occurs when A(T ) < F , because the actual firm value is less than the face value.

For notational convenience, we introduce the following stopping time:

τ = inf{t ≥ 0 : A(t) ≤ Γ} = inf{t ≥ 0 : X(t) ≤ xB}, xB = log Γ. (2.5)

When τ < T , default occurs before the maturity. When τ ≥ T and A(T ) < F , default

occurs at the maturity.

Denote the debt holders’ payoff by D and the equity holders’ payoff by E. The payoffs

in our model are divided into the following five cases:

1. {τ > T, A(T ) ≥ F, V (T ) ≥ F} or {τ > T, A(T ) ≥ F, V (T ) < F}: In the former case,

no default occurs and the value of tangible assets is high enough to repay the debt.

Then, debt holders receive the face value and equity holders will receive the residual.

That is, D = F and E = A(T ) − F . On the other hand, the latter case assumes no

default, but the value of tangible assets is not enough to repay the debt. In this case,

because the firm does not default, we assume that the firm (equity holders) repays

the debt by increasing the capital. In other words, equity holders issue new stocks to

repay the debt as in Leland (1994). Then, as in the former case, we have D = F and

E = A(T ) − F .

2. {τ > T, A(T ) < F, V (T ) ≥ F}: Default occurs at the maturity, while the value of

tangible assets is high enough to repay the debt. In this case, equity holders liquidate

the firm to repay the debt and they receive the residual after paying a liquidation cost.

That is, D = F and E = α2(V (T )−F ), where 1−α2 represents the rate of liquidation

cost.

3. {τ > T, A(T ) < F, V (T ) < F}: Default occurs at the maturity, and the tangible

assets are not enough to repay the debt. In this case, debt holders can receive only

the tangible assets after paying a default cost while equity holders will receive nothing.

That is, D = α1V (T ) and E = 0, where 1 − α1 represents the rate of default cost.

4. {τ ≤ T, V (τ) ≥ F}: Default occurs before the maturity, while the value of tangible

assets at the time of default is high enough to repay the debt. In this case, as in Case

2, equity holders liquidate the firm to repay the debt and they receive the residual

after paying a liquidation cost. That is, D = F and E = α2(V (τ) − F ).
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5. {τ ≤ T, V (τ) < F}: Default occurs before the maturity, and the tangible assets are

not enough to repay the debt. In this case, as in Case 3, debt holders can receive only

the tangible assets after paying a default cost while equity holders will receive nothing.

That is, D = α1V (τ) and E = 0.

In the following, we denote the value of debt by D(T ) and the value of equity by E(T ),

where T is the maturity of the debt. From the above discussions about the payoffs, we obtain

the following:

D(T ) = EQ[e−rT F1{τ>T, A(T )≥F}]

+ EQ[e−rT F1{τ>T, A(T )<F, V (T )≥F}]

+ EQ[e−rT α1V (T )1{τ>T, A(T )<F, V (T )<F} (2.6)

+ EQ[e−rτF1{τ≤T, V (τ)≥F}]

+ EQ[e−rτα1V (τ)1{τ≤T, V (τ)<F}]

and

E(T ) = EQ[e−rT (A(T ) − F )1{τ>T, A(T )≥F}]

+ EQ[e−rT α2(V (T ) − F )1{τ>T, A(T )<F, V (T )≥F}] (2.7)

+ EQ[e−rτα2(V (τ) − F )1{τ≤T,V (τ)≥F}].

The credit spread is defined by

s(T ) = − 1

T
log

D(T )

F
− r, T > 0. (2.8)

3 Change of Measure Formulas

In order to derive the pricing formulas in closed form for both debt and equity, we define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) f1 ≡ e−rT EQ
[
1{τ>T, A(T )≥F}

]
,

(ii) f2 ≡ e−rT EQ
[
1{τ>T, A(T )<F, V (T )≥F}

]
,

(iii) f3 ≡ e−rT EQ
[
V (T )1{τ>T, A(T )<F, V (T )<F}

]
,

(iv) f4 ≡ EQ
[
e−rτ1{τ≤T, V (τ)≥F}

]
,

(v) f5 ≡ EQ
[
e−rτV (τ)1{τ≤T, V (τ)<F}

]
,

(3.1)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i′) g1 ≡ e−rT EQ
[
A(T )1{τ>T, A(T )≥F}

]
,

(ii′) g2 ≡ e−rT EQ
[
V (T )1{τ>T, A(T )<F, V (T )≥F}

]
,

(iv′) g4 ≡ EQ
[
e−rτV (τ)1{τ≤T, V (τ)≥F}

]
.

(3.2)

Then, from (2.6) and (2.7), we have

D(T ) = F [f1 + f2 + f4] + α1[f3 + f5]
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and

E(T ) = [g1 − Ff1] + α2[g2 − Ff2] + α2[g4 − Ff4],

respectively. In what follows, we evaluate these expectations using appropriate change of

measures.

Consider the two-dimensional process (X(t), Y (t)) defined by (2.3) and (2.4), respectively.

That is,⎧⎨
⎩ dX(t) = μxdt + σxdw1(t), X(0) = x0,

dY (t) = μydt + σy

(
ρdw1(t) +

√
1 − ρ2dw2(t)

)
, Y (0) = y0,

(3.3)

where σx = σa and σy = σv. Also, we introduce the following variables:

Z(t) =
X(t) − x0

σx

, μz =
μx

σx

, β = μy − ρσyμz, (3.4)

for notational simplicity.

Now, define new probability measure P by

dP

dQ

∣∣∣Ft
= η(t) ≡ exp

{
−μzw1(t) − 1

2
μ2

zt
}

, (3.5)

and let⎧⎨
⎩ dW1(t) = dw1(t) + μzdt,

dW2(t) = dw2(t).
(3.6)

By Girsanov’s theorem, the process (W1(t), W2(t)) is a two-dimensional standard Brownian

motion under P . It follows from (3.3), (3.4) and (3.6) that Z(t) = W1(t) and⎧⎨
⎩ X(t) = x0 + σxZ(t),

Y (t) = y0 + βt + σy

(
ρZ(t) +

√
1 − ρ2W2(t)

)
.

(3.7)

The default epoch (2.5) can be rewritten as

τ = inf{t ≥ 0 : Z(t) ≤ zB}, zB =
xB − x0

σx
. (3.8)

In the following, we derive the formulas for fj in (3.1) only. The formulas for gj can be

obtained similarly.7 We denote the probability density function (PDF for short) of a standard

normal distribution by φ(x), and the joint PDF of a standard bivariate normal distribution

with correlation coefficient ρ by φ2(x, y; ρ). Also, the expectation operator under the new

probability measure P is denoted simply by E.

7The formulas for gj are available upon request.

7



First, we derive f1 using the change of measure formula (3.5). By definition, we obtain

f1 = EQ[e−rT 1{τ>T, A(T )≥F}]

= E
[
e−rT− 1

2
μ2

zT+μzZ(T )1{τ>T, A(T )≥F}
]

=
∫

z>zF

e−rT− 1
2
μ2

zT+μzz

{
φ

(
z√
T

)
− φ

(
z − 2zB√

T

)}
dz√
T

(by Lemma 1)

= e−rT
∫

z>zF

{
φ

(
z − μ̂z1√

T

)
− e2μzzBφ

(
z − μ̂z2√

T

)}
dz√
T

, (by Lemma 4)

where

zF =
log F − x0

σx
, zB =

xB − x0

σx
, μ̂z1 = μzT, μ̂z2 = μzT + 2zB.

Next, for f2, we obtain

f2 = EQ[1{τ>T, A(T )<F, V (T )≥F}]

= E
[
e−rT− 1

2
μ2

zT+μzZ(T )1{τ>T, A(T )<F, V (T )≥F}
]

=
∫ ∫

zB<z<zF , y>log F
e−rT− 1

2
μ2

zT+μzz

{
φ2

(
z√
T

,
y − (y0 + βT )

σy

√
T

; ρ

)

−φ2

(
z − 2zB√

T
,

y − (y0 + βT + 2σyρzB)

σy

√
T

; ρ

)}
dz√
T

dy

σy

√
T

(by Lemma 2)

= e−rT
∫ ∫

zB<z<zF , y>log F

{
φ2

(
z − μ̂z1√

T
,

y − μ̂y1

σy

√
T

; ρ

)

− e2μzzBφ2

(
z − μ̂z2√

T
,

y − μ̂y2

σy

√
T

; ρ

)}
dz√
T

dy

σy

√
T

, (by Lemma 4)

where

μ̂y1 = y0 + βT + μzρσyT, μ̂y2 = μ̂y1 + 2σyρzB.

Third, for f3, we obtain

f3 = EQ[V (T )1{τ>T, A(T )<F, V (T )<F}]

= E
[
e−rT− 1

2
μ2

zT+μzZ(T )+Y (T )1{τ>T, A(T )<F, V (T )<F}
]

=
∫ ∫

zB<z<zF , y<log F
e−rT− 1

2
μ2

zT+μzz+y

{
φ2

(
z√
T

,
y − (y0 + βT )

σy

√
T

; ρ

)

−φ2

(
z − 2zB√

T
,

y − (y0 + βT + 2σyρzB)

σy

√
T

; ρ

)}
dz√
T

dy

σy

√
T

(by Lemma 2)

= e−rT+μ̃y1

∫ ∫
zB<z<zF , y<log F

{
φ2

(
z − μ̃z1√

T
,

y − μ̃y1

σy

√
T

; ρ

)

− e2(μz+σyρ)zBφ2

(
z − μ̃z2√

T
,

y − μ̃y2

σy

√
T

; ρ

)}
dz√
T

dy

σy

√
T

, (by Lemma 4)
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where⎧⎨
⎩ μ̃z1 = μ̂z1 + ρσyT, μ̃y1 = μ̂y1 + σ2

yT,

μ̃z2 = μ̂z2 + ρσyT, μ̃y2 = μ̂y2 + σ2
yT.

Fourth, to obtain f4, we invoke the joint PDF q(y, t) given in Lemma 5. Namely,

f4 = EQ[e−rτ1{τ≤T,V (τ)>F}]

= E
[
e−rτη(T )1{τ≤T,V (τ)>F}

]
= E

[
E[e−rτη(T )1{τ≤T,V (τ)>F}|τ ]

]
= E

[
e−rτη(τ)1{τ≤T,V (τ)>F}

]
(η(t) is a martingale)

=
∫ ∫

τ<T, y>log F
e−rτ− 1

2
μ2

zτ+μzzBq(y, τ)dydτ. (by Lemma 5)

We note that the above formula can be simplified more; however, this formula seems enough

for the purpose of numerical calculation.

Finally, similar to f4, we obtain

f5 =
∫ ∫

τ<T, y<log F
e−rτ− 1

2
μ2

zτ+μzzB+yq(y, τ)dydτ

by Lemma 5.

4 Numerical Examples

This section provides numerical examples to demonstrate the usefulness of our model. The

base parameters used in the examples are listed in Table 1. Recall that F is the face value

of debt, V (0) the initial value of tangible assets, A(0) the initial value of actual firm value,

Γ the default threshold, r the risk-free interest rate, μa the mean rate of return of A(t), σv

the volatility of V (t), σa the volatility of A(t), ρ the correlation coefficient between them, α1

the rate of default cost, and α2 the rate of liquidation cost.

Table 1: Parameter values for the base case

F V (0) A(0) Γ r μa σv σa ρ α1 α2

1.0 1.0 1.4 0.5 0.05 0.05 0.2 0.2 0.7 0.8 0.8

4.1 The impact of parameters on the credit spread

First, we investigate the impact of initial values A(0) and V (0) on the credit spread s(T ) with

the other parameters being the same as in the base case (see Figures 1 and 2, respectively).

As expected, the lower the initial value A(0), the higher the credit spread s(T ), in particular,
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for the short-term debt. This is so, because there is a high possibility of default in the short

term when A(0) is low; but, conditional on survival, the effect of the initial value disappears.

This phenomena on the term structure of credit spreads is well recognized in the market,

and several attempts have been made to explain the empirical result. See, e.g., Fons (1994)

and Kijima (1998).

Figure 1: Impact of the initial value A(0)

0 2 4 6 8 10
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0.06

0.08

0.1

0.12

The solid line corresponds to the base case (A(0) = 1.4), while the dashed line to the case with

A(0) = 1.1 and the other parameters being the same as in the base case.

Similarly, the lower the initial value V (0), the higher the credit spread s(T ). Note however

that the term structure is more or less parallel with respect to the change in V (0). This is

so, because the value of tangible assets plays only the role of recovery upon default in our

model.

Figure 2: Impact of the initial value V (0)
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0.005

0.01

0.015

0.02

The solid line corresponds to the base case (V (0) = 1.0), while the dashed line to the case with

V (0) = 0.8 and the other parameters being the same as in the base case.

Next, we investigate the impact of volatilities σa and σv on the credit spread (see Figures

3 and 4, respectively). Recall that σa is the volatility of the actual firm (latent) process and

σv the volatility of the value of tangible assets. The higher the volatility σa, the higher the

credit spread s(T ), because the probability of default becomes higher when the volatility
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σa becomes higher. Note that, due to the same reasons as above, the impact of volatility

σa appears significantly for the short-term debt and the effect disappears as the maturity

becomes longer.

Figure 3: Impact of the volatility σa
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The solid line corresponds to the base case (σa = 0.2), while the dashed line to the case with

σa = 0.25 and the other parameters being the same as in the base case.

On the other hand, the higher the volatility σv, the higher the credit spread s(T ), because

the possibility of large loss upon default becomes higher when the volatility σv becomes

higher. Note that the term structure of credit spreads is more or less parallel with respect

to the change in σv.

Figure 4: Impact of the volatility σv
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The solid line corresponds to the base case (σv = 0.2), while the dashed line to the case with

σv = 0.25 and the other parameters being the same as in the base case.

Finally, the impact of the correlation coefficient ρ on the credit spread s(T ) is investigated
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(see Figure 5). As expected, the higher the correlation coefficient ρ, the higher the credit

spread s(T ), because the joint probability of default and large loss becomes higher as the

correlation coefficient ρ becomes higher.

Figure 5: Impact of the correlation coefficient ρ
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The solid line corresponds to the base case (ρ = 0.7), while the dashed and dotted line to the cases

with ρ = 0.5 and ρ = 0.9, respectively, and the other parameters being the same as in the base

case.

4.2 Calibration of the actual firm value

In this subsection, we calibrate the actual firm value A(0) from the market data (debt and

equity). There may be many other ways to compute the value A(0); however, we take the

simplest means to avoid technical difficulties. That is, consider a firm and suppose that

the firm value A(0) = A and its volatility σa are unknown and other parameters are all

estimated correctly. Then, the debt and equity values are functions of variables A and σa,

say D = f(A, σa) and E = g(A, σa). The firm value A can then be obtained by solving the

(non-linear) simultaneous equations.

In this numerical example, we consider four big Japanese companies, Bridgestone, Sony,

Nissan and Tokyo Electronic Power (TEPCO). All the data and the results computed from

our model are listed in Table 2. The market data are based on the closing prices of Tokyo

Stock Exchange and the published financial data on March 2, 2007. The maturity is calcu-

lated as the weighted average of straight bonds issued by the firm. All the parameter values

not listed in Table 2 are the same as the base case.

Although the credit spread of TEPCO is the lowest among the four companies, its actual

firm value normalized by the value of tangible assets, A(0)/V (0), is the lowest. Also, the

volatility of the firm value of TEPCO is the lowest. These results are plausible because

TEPCO is the biggest electronic power company in Japan. It is interesting to note that the
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Table 2: The actual firm value calibrated from the market data

Bridgestone Sony Nissan TEPCO

E(T ) 8.243 7.769 6.428 1.024

s(T ) 17.4 21.6 23.0 12.4

T 5.17 8.25 3.42 5.83

r 1.375 1.547 1.025 1.303

A(0) 7.587 7.052 6.374 1.990

σa 0.345 0.295 0.385 0.130

A(0) − V (0) 6.587 6.052 5.374 0.990

stock prices of Bridgestone, Sony and Nissan are higher than the actual firm values. Such a

case can happen when the firm has a very high reputation in the stock market. In fact, these

firms have very high values A(0) − V (0) that can be considered as the value of intangible

assets.

5 Concluding Remarks

In this paper, we proposed a structural model with a joint process of tangible assets (marker)

and firm status for the pricing of corporate securities (debt and equity). The firm status

is assumed to be latent or unobservable and determines default of the firm. The marker

process is observable and used to repay the debt, which is assumed to be correlated with the

latent firm status. When the two processes are perfectly correlated, our model is reduced to

the seminal Black–Cox model.

Using an appropriate change of measure technique, we obtain the pricing formulas for

both corporate debt and equity in closed form. Numerical examples are given to support the

usefulness of our model. A desirable feature in our model is that the recovery rate is random,

consistent with the empirical findings. Also, debt and equity are evaluated in the unified

framework. Based on the model, the actual firm value (latent variable) can be imputed from

the market prices of debt and equity. The firm status value is then used to be a proxy of

credit quality of the firm.

However, there remain many issues to be addressed. For example, when pricing the equity

issued by a firm, we assume that equity has the same maturity as debt. Although this is

the common assumption in the structural approach (see Merton (1974) and Black and Cox

(1976)), equity has no maturity in general. A unified model for the pricing of both equity

and debt without assuming the maturity for equity is required. Also, our model cannot

generate a realistic term structure of credit spreads. One way to overcome the deficit is to

introduce a jump process. Another way seems to use the information structure available for

investors explicitly. In our model, we assume that the firm defaults when the firm status
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process reaches a default threshold. However, the process is not observed by investors and

default occurs before maturity by surprise. These problems are our future works.

A Some Lemmas

First note that the process Z(t) is a standard Brownian motion under P . It is well known

(see, e.g., Karatzas and Shreve (1988)) that the first passage time τ defined by (3.8) has the

PDF

P{τ ∈ dt} ≡ ∂

∂t
P{τ ≤ t}dt =

zB√
2πt3

exp

(
−z2

B

2t

)
dt

and its Laplace transform is given by

E[e−ατ ] = exp
(
−zB

√
2α
)
, α > 0.

Let mZ(t) = min0≤s≤t Z(s) and define

p0(x|m) ≡ P{Z(t) ∈ dx,mZ(t) > m}, m < 0, x > m,

under the new probability measure P . The next result is well known and the proof is omitted.

Lemma 1 we have

p0(x|m) =
1√
t

{
φ

(
x√
t

)
− φ

(
x − 2m√

t

)}
dx.

The next result is an extension of Lemma 1 to the bivariate case. Define

q0(x, y|m) ≡ P{Z(t) ∈ dx, Y (t) ∈ dy, mZ(t) > m}, m < 0, x > m.

Lemma 2 we have

q0(x, y|m) =

{
φ2

(
x√
t
,

y − (y0 + βt)

σy

√
t

; ρ

)

−φ2

(
x − 2m√

t
,

y − (y0 + βt + 2σyρm)

σy

√
t

; ρ

)}
dx√

t

dy

σy

√
t
.

Proof. By definition, we obtain

q0(x, y|m) = P

⎧⎨
⎩mZ(t) > m, W1(t) ∈ dx, W2(t) ∈ dy − (y0 + βt + σyρx)

σy

√
(1 − ρ2)t

⎫⎬
⎭

= p0(x|m)dxP

⎧⎨
⎩W2(t) ∈ dy − (y0 + βt + σyρx)

σy

√
(1 − ρ2)t

⎫⎬
⎭ ,
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because W1(t) and W2(t) are mutually independent under P . It follows from Lemma 1 that

q0(x, y|m) =
1√
t

{
φ

(
x√
t

)
− φ

(
x − 2m√

t

)}

× 1

σy

√
(1 − ρ2)t

φ

⎛
⎝y − (y0 + βt + σyρx)

σy

√
(1 − ρ2)t

⎞
⎠ dxdy.

The lemma follows since

φ2(x, y; ρ) = φ(x)
1√

1 − ρ2
φ

(
y − ρx√
1 − ρ2

)
.

Let us define

q1(x, y|m) ≡ P{Z(t) ∈ dx, Y (t) ∈ dy, mZ(t) < m}.

Then, since

q1(x, y|m) = P{Z(t) ∈ dx, Y (t) ∈ dy} − P{Z(t) ∈ dx, Y (t) ∈ dy, mZ(t) > m},

the next result follows from Lemma 2 at once.

Lemma 3 we have

q1(x, y|m) = φ2

(
x − 2m√

t
,

y − (y0 + βt + 2σyρm)

σy

√
t

; ρ

)
dx√

t

dy

σy

√
t

The next result seems well known and the proof is omitted.

Lemma 4 we have

eλ1x+λ2yφ2

(
x − μy

σy
,

y − μy

σy
; ρ

)

= exp
(
λ1μx + λ2μy +

1

2
(λ2

1σ
2
x + 2λ1λ2ρσxσy + λ2

2σ
2
y)
)

×φ2

(
x − (μx + λ1σ

2
x + λ2ρσxσy)

σx
,

y − (μy + λ2σ
2
y + λ1ρσxσy)

σy
; ρ

)

Finally, let

q(y, t) ≡ P{Y (τ) ∈ dy, τ ∈ dt}.

We then have the following.

Lemma 5 We have

q(y, t) =
1

σy

√
(1 − ρ2)t

φ

(
y − (y0 + βt + σyρzB)

σx

√
t

)
× zB√

2πt3
e−

z2
B
2t dydt
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Proof. By definition, we have

q(y, t) = P
{
y0 + βt + σy

(
ρW1(t) +

√
1 − ρ2W2(t)

)
∈ dy

∣∣∣τ ∈ dt
}

P{τ ∈ dt}.

But, since

W1(τ) = Z(τ) =
xB − x

σx

from (3.8), and since τ and W2(t) are independent, we obtain

q(y, t) = P
{
y0 + βt + σy

(
ρ
xB − x0

σx
+
√

1 − ρ2W2(t)
)
∈ dy

}
P{τ ∈ dt}

and the result follows at once.

References

[1] Altman, E.I. (1968), “Financial ratios, discriminant analysis and the prediction of cor-

porate bankruptcy,” Journal of Finance, 23, 589–609.

[2] Black, F. and J. Cox (1976), “Valuing corporate securities: Some effects on bond inden-

ture provisions,” Journal of Finance, 31, 351–367.

[3] Briys, E. and F. de Varenne (1997), “Valuing risky fixed debt: An extension,” Journal

of Financial and Quantitative Analysis, 32, 239–248.

[4] Chen, N. and S. Kou (2005), “Credit spreads, optimal capital structure, and implied

volatility with endogenous default and jump risk,” working paper, Columbia University.

[5] CreditMetricsTM (1997), JP Morgan.

[6] Fons, J.S. (1994), “Using default rates to model the term structure of credit risk,” Fi-

nancial Analysis Journal, September-October, 25–32.

[7] Giesecke, K. (2004), “Correlated default with incomplete information,” Journal of Bank-

ing and Finance, 28, 152–1545.

[8] Jarrow, R.A. and S.M. Turnbull (1995), “Pricing derivatives on financial securities sub-

ject to credit risk,” Journal of Finance, 50, 53–86.

[9] Karatzas, I. and S.E. Shreve (1988), Brownian Motion and Stochastic Calculus, Springer.

[10] Kijima, M. (1998), “Monotonicities in a Markov chain model for valuing corporate bonds

subject to credit risk,” Mathematical Finance, 8, 229–247.

[11] Kijima, M. and T. Suzuki (2001), “A jump-diffusion model for pricing corporate debt

securities in a complex capital structure,” Quantitative Finance, 1, 611–620.

16



[12] Lee, T., V. DeGruttola and D. Schoenfeld (2000), “A model for markers and latent

health status,” Journal of the Royal Statistical Society, 62, 747–762.

[13] Leland, H. (1994), “Corporate debt value, bond covenants, and optimal capital struc-

ture,” Journal of Finance, 49, 1213–1252.

[14] Longstaff, F. and E. Schwartz (1995), “A simple approach to valuing risky fixed and

floating rate debt,” Journal of Finance, 50, 789–819.

[15] Madan, D. and H. Unal (2000), “A two-factor hazard rate model for pricing risky debt

and the term structure of credit spreads,” Journal of Financial and Quantitative Analysis,

35, 43–65.

[16] Mella-Barral, P. and W. Perraudin (1997), “Strategic debt service,” Journal of Finance,

52, 531–556.

[17] Merton, R.C. (1974), “On the pricing of corporate debt: The risk structure of interest

rates,” Journal of Finance, 29, 449–470.

[18] Merton, R.C. (1976), “Option pricing when underlying stock returns are discontinuous,”

Journal of Financial Economics, 3, 125–144.

[19] Whitmore, G.A., M.J. Crowder and J.F. Lawless (1998), “Failure inference from a

marker process based on a bivariate Wiener model,” Lifetime Data Analysis, 4, 229–251.

[20] Zhou, C. (2001), “The term structure of credit spreads with jump risk,” Journal of

Banking and Finance, 25, 2015–2040.

17




