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Abstract

This paper studies the problem of fairly allocating an amount of a divisible

resource when preferences are single-peaked. We first show that, given any

preference profile, the set of allocations chosen by envy-free and peak-only rules is

linearly ordered by the Pareto dominance relation, where the uniform allocation

is the top and the equal division is the bottom. We then establish the complete

lattice structure of the set of envy-free and peak-only rules with respect to a

dominance relation induced by the Pareto dominance relation. The greatest

and least elements of the lattice are the uniform rule and the equal division rule,

respectively. Therefore, in the choice of envy-free and peak-only rules, there

is no conflict among individual interests, and the uniform rule is unanimously

considered to be best, while the equal division rule is worst.
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1 Introduction

This paper studies the problem of fairly allocating an amount of a divisible resource

among agents whose preferences are single-peaked (Sprumont, 1991). An allocation

rule, or simply a rule, is a function which maps each single-peaked preference profile

to an allocation. The fairness property of the rules we are interested in is envy-

freeness, which states that, at any chosen allocation, no one should prefer anyone else’s

consumption to her own (Foley, 1967). The practicality condition we are interested

in is peak-onliness, which states that the choice of allocations should only depend on

the peaks of preferences. We say “practical”, since the user of any peak-only rule only

needs information on peak amounts of individual preferences, instead of all complicated

details.

Our purpose is to study various envy-free and peak-only rules and the structure

of the set of those rules. We do not impose efficiency, although our main results are

deeply related to it. The aim is to extract pure implications of envy-freeness and peak-

onliness as much as possible. However, it will turn out that the absence of efficiency

does clarify the role of efficiency in some existing results in the literature, and in this

sense, we are studying efficiency.

Since the class of envy-free and peak-only rules is quite large, we try to somehow

compare the desirability of those rules. In Theorem 1, we show that, for every two

envy-free and peak-only rules and every preference profile, the allocation chosen by one

rule weakly Pareto dominates the allocation chosen by the other, and all agents are

indifferent between the two allocations if and only if they are the same. Thus, given

a preference profile, the Pareto dominance relation on the set of allocations chosen by

envy-free and peak-only rules is a linear ordering. Furthermore, the unique greatest,

least elements of the ordering are the uniform, equal division allocations, respectively.

We next consider ranking over rules. We say that a rule dominates another one

if the allocation chosen by the former rule weakly Pareto dominates the allocation

chosen by the latter at each and every preference profile. By definition, this dominance

relation is a partial ordering over the set of envy-free and peak-only rules. In Theorem 2,

we show that the set of envy-free and peak-only rules is a complete lattice with respect

to this dominance relation, whose greatest, least elements are the uniform rule, and

the equal division rule, respectively. Thus, as the title of this paper says, all envy-free

and peak-only rules are “between” the uniform rule and the equal division rule. An

immediate implication obtained from Theorem 2 is that, in the choice of envy-free and
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peak-only rules, there is no conflict among individual interests, and the uniform rule

is unanimously considered to be best, while the equal division rule is worst.

We also show that, for every envy-free and peak-only rule and every preference

profile, if the chosen allocation is neither the uniform allocation nor the equal divi-

sion, its variance is more than the variance of the equal division and is less than the

variance of the uniform allocation. This result greatly contrasts with Schummer and

Thomson’s (1997, Proposition 2) result whereby the variance of the uniform allocation

is always less than the variance of any other efficient allocation.

The rest of the paper proceeds as follows: Section 2 offers the model. Section 3

presents main results. Section 4 provides discussions. Section 5 concludes the paper.

Proofs of the main results are relegated to the Appendix.

2 Model

2.1 Basic definitions

Let N ≡ {1, 2, . . . , n} be the finite set of agents. There is a fixed amount of an infinitely

divisible resource Ω > 0 to be allocated. An allotment for i ∈ N is xi ∈ [0, Ω]. An

allocation is a vector of allotments x ≡ (x1, x2, . . . , xn) ∈ [0, Ω]N such that
∑

i∈N xi =

Ω. Let X be the set of allocations.

A single-peaked preference relation is a transitive, complete, and continuous binary

relation Ri over [0, Ω] for which there exists a unique point pi ∈ [0, Ω] such that for

each xi, x
′
i ∈ [0, Ω],

[x′
i < xi ≤ pi or pi ≤ xi < x′

i] =⇒ xi Pi x′
i,

where the symmetric and asymmetric parts of Ri are denoted by Ii and Pi, respectively.

The point pi is called the peak of Ri. Let R be the set of single-peaked preferences

and RN the set of single-peaked preference profiles R ≡ (R1, R2, . . . , Rn).

2.2 Rules and axioms

A rule is a function f : RN → X which maps a preference profile R ∈ RN to an

allocation f(R) ≡ (f1(R), f2(R), . . . , fn(R)) ∈ X. We are interested in the rules satis-

fying the following two requirements. The first condition is a central fairness property,

which states that no one should prefer anyone else’s allotment to her own at any chosen
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allocation (Foley, 1967). The next one is a practicality property, which states that the

choice of allocations only needs information on peak amounts of individual preferences,

instead of full information on preferences (Thomson, 1994).

Envy-freeness: For each R ∈ RN and each i, j ∈ N , fi(R) Ri fj(R).

Peak-onliness: For each R,R′ ∈ RN , if pi = p′i for each i ∈ N , then f(R) = f(R′).

Let F be the set of envy-free and peak-only rules. The following rules are example

of rules that belong to F :

Uniform rule (Benassy, 1982; Sprumont, 1991), U : For each R ∈ RN and

each i ∈ N ,

Ui(R) =

{
min{pi, λ} if

∑
j∈N pj ≤ Ω,

max{pi, λ} if
∑

j∈N pj ≥ Ω,

where λ solves
∑

j∈N Uj(R) = Ω.

Equal division rule, E: For each R ∈ RN and each i ∈ N ,

Ei(R) =
Ω

n
.

Since the seminal work by Sprumont (1991), the uniform rule has played the cen-

tral role in the literature. 1 The equal division rule is characterized by Bochet and

Sakai (2007) on the basis of a strong implementability condition. A notable difference

between the uniform rule and the equal division rule is that the former allocates re-

sources efficiently but the latter does not, where efficiency is simply defined in this

context as:

Efficiency : For each R ∈ RN ,

Ω ≤
∑
j∈N

pj =⇒ [fi(R) ≤ pi for each i ∈ N ] ,

∑
j∈N

pj ≤ Ω =⇒ [pi ≤ fi(R) for each i ∈ N ] .

Thomson (1994, Lemma 1) shows that the uniform rule is the only efficient, envy-

free, and peak-only rule. The next basic lemma clarifies what happens if efficiency is

dropped from the list of Thomson’s axioms.

1We refer to Thomson (2005) for a survey on various characterizations of the uniform rule.
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Lemma 1. Let f be a peak-only rule. Then, it is envy-free if and only if for each

R ∈ RN and each i ∈ N ,

fi(R) < pi =⇒ fi(R) = max
j∈N

fj(R),

pi < fi(R) =⇒ fi(R) = min
j∈N

fj(R).

Proof. We first show the “only if” part. Let R ∈ RN , i ∈ N , and x ≡ f(R). We only

consider the case xi < pi, since the opposite case can be dealt with by a parallel way.

Suppose, by contradiction, that there exists j ∈ N such that xi < xj. Then there

exists R′
i ∈ R such that p(R′

i) = pi and xj P ′
i xi. By peak-onliness, x = f(R′

i, R−i), a

contradiction to envy-freeness.

We next show the “if” part. Let R ∈ RN , i ∈ N , and x ≡ f(R). If xi = pi,

then obviously i envies no one. If xi < pi, then since xi = maxj∈N xj, i envies no one.

Similarly, if pi < xi, then since xi = minj∈N xj, i envies no one.

Although we do not explicitly study efficiency, this does not mean that we are not

interested in efficiency. Indeed, the absence of efficiency can clarify how significant

the role of efficiency is in existing results that depend on efficiency. Also, one may

obtain characterizations of some interesting rules without using efficiency. 2 There is

another merit of not imposing efficiency. When a rule itself is to be selected among

a class of rules, an efficient rule may not be chosen because some inefficient rule is

supported by a large majority. However, if the efficient rule Pareto dominates other

rules, we can conclude that the rule can obtain the unanimous support. Indeed we

will establish such results.

2.3 Definitions on binary relations

We introduce some standard definitions on binary relations.

Definition 1 (Partial ordering). A binary relation % on a set A is a partial ordering

if it satisfies:

• Reflexivity : For each a ∈ A, a % a,

• Transitivity : For each a, b, c ∈ A, [a % b and b % c] =⇒ a % c,

2Characterizations of the uniform rule without efficiency can be found in Sönmez (1994), Ehlers

(2002), and Chun (2003, 2006).
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• Anti-symmetry : For each a, b ∈ A, [a % b and b % a] =⇒ a = b.

Then a pair (A,%) is called a partially ordered set.

Definition 2 (Linear ordering). A binary relation % on a set A is a linear ordering

if it is a partial ordering that satisfies:

• Completeness : For each a, b ∈ A, a % b or b % a.

Then a pair (A,%) is called a linearly ordered set.

Definition 3 (Lattice theoretic notions). Consider a partial ordering % on a set

A.

• Join: Given B ⊆ A, an element a ∈ A is the join of B for % if it is the least

maximal of B according to %; that is, (i) for each b ∈ B, a % b and (ii) for each

a′ ∈ A, [a′ % b for each b ∈ B] =⇒ a′ % a.

• Meet : Similarly, an element a ∈ A is the meet of B for % if it is the greatest

minimal of B; that is, (i) for each b ∈ B, b % a and (ii) for each a′ ∈ A,

[b % a′ for each b ∈ B] =⇒ a % a′.

• Lattice: A partially ordered set (A,%) is a lattice if for each a, b ∈ A, there exist

the join and meet of {a, b} for %.

• Complete lattice: A partially ordered set (A,%) is a complete lattice if for each

B ⊆ A, there exist the join and meet of B for %.

If they exist, the join and the meet of B are uniquely determined by anti-symmetry

of %.

3 Main results

Our main results clarify Pareto ordered structures of the set of allocations chosen by

envy-free and peak-only rules and the set of the rules.

Given R ∈ RN , let F (R) ≡ {x ∈ X : ∃f ∈ F , f(R) = x} be the set of allocations

chosen by some envy-free and peak-only rule at R. Then the dominance relation

on F (R), dom[R], is defined to be the binary relation on F (R) such that for each

x, y ∈ X,

x dom[R] y ⇐⇒ [xi Ri yi for each i ∈ N ].
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Our first main theorem ensures that, given any preference profile, all allocations chosen

by some envy-free and peak-only rules are linearly ordered by the dominance relation:

Theorem 1. For each R ∈ RN , (F (R), dom[R]) is a linearly ordered set such that

for each f ∈ F ,

U(R) dom[R] f(R) dom[R] E(R).

Proof. See, the Appendix.

We next analyze the order structure of the set F . The dominance relation on F ,

dom, is defined by, for each f, g ∈ F ,

f dom g ⇐⇒ [f(R) dom[R] g(R) for each R ∈ RN ].

Note that dom is a partial ordering on F . The next theorem shows that this ordering

in fact establishes the complete lattice structure of F :

Theorem 2. The partially ordered set (F , dom) is a complete lattice whose greatest,

least elements are the uniform rule, the equal division rule, respectively.

Proof. See, the Appendix.

This theorem implies that, under envy-freeness and peak-onliness, the uniform

rule can be selected without caring who gains or loses from the choice of rules, since

everyone gains by the use of the uniform rule independently of their preferences.

4 Discussions

4.1 Variance

The variance function is the function var : RN
+ → R+ defined by, for each x ∈ X,

var(x) ≡ 1

n

∑
i∈N

(
xi −

Ω

n

)2

.

The following result by Schummer and Thomson (1997) states that the variance

of the uniform allocation is always smaller than the variance of any other efficient

allocation:
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Proposition 1. For each efficient rule f and each R ∈ RN ,

var(U(R)) ≤ var(f(R)).

Proof. See, Schummer and Thomson (1997, Proposition 2).

This proposition ensures that the variance of the uniform allocation is the smallest

among all efficient allocations. Our next proposition establishes an exactly converse

implication for envy-freeness and peak-onliness.

Proposition 2. For each envy-free and peak-only rule f and each R ∈ RN ,

var(E(R)) ≤ var(f(R)) ≤ var(U(R)).

Proof. See, the Appendix.

Propositions 1 and 2 together suggest that, under peak-onliness, the uniform allo-

cation is the “threshold” that separates the set of efficient allocations and the set of

envy-free allocations in view of variance. This implication also explains why there is

no efficient, envy-free, and peak-only rule other than the uniform rule.

4.2 Lattice structures in other models

In the context of two-sided matching problems such as marriage problems, job-matching

problems, or assignment games,3 the set of stable outcomes often forms a complete

lattice (e.g., Roth, 1984; Sotomayor, 1999, 2000). A notable feature of two-sided

matching problems is the presence of indivisibilities such as people or firms. On the

other hand, there seems no lattice-like result in various allocation problems of divisible

resources. To the best of our knowledge, the present study is the first one that finds

lattice structures in divisible resource allocation problems.

4.3 Characterizations without efficiency

The role of efficiency in some characterization results in other social choice environ-

ments is often quite weak. For example, in Arrow’s impossibility theorem, the role

of efficiency (the Pareto principle) is only to eliminate the inversely dictatorial so-

cial welfare function (e.g., Murakami, 1968). Also, its role is only to eliminate the

disagreement solution in characterizations of Nash’s bargaining solution (Roth, 1977;

3For a survey of two-sided matching problems, see, Roth and Sotomayor (1990).
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Thomson and Lensberg, 1988) and the no-trade rule in a characterization of the core

in house allocation (Miyagawa, 2002). Our Lemma 1 contrasts with such results, since

it ensures that there are indeed many envy-free and peak-only rules, although the

uniform rule is the unique efficient rule among them.

5 Conclusion

We established the Pareto dominance relation over the set of allocations and the lattice

structure over the set of rules under envy-freeness and peak-onliness. They suggest

how strong the position of the uniform rule is and how weak the position of the equal

division rule is in the division problem with single-peaked preferences. In general, this

kind of easy-to-compare relations is rarely observed, except for two-sided matching

problems. Thus results like ours are quite infrequent. Since neither the set of envy-

free rules nor the set of peak-only rules exhibits any lattice structure, our results do

depend on the pair of the two properties. Finding interesting sublattices of the set of

envy-free and peak-only rules is an interesting future research topic.

Appendix: Proofs

The proofs proceed in several lemmas. To simplify notation, given x ∈ X, we write

x ≡ mini∈N xi and x ≡ maxi∈N xi.

Lemma 2. Let f be an envy-free and peak-only rule. For each R ∈ RN , if f(R) <

f(R), then for each i ∈ N ,

fi(R) = f(R) ⇐⇒ pi ≤ f(R).

Proof. Let x ≡ f(R). Let us first show (=⇒). If xi = x but x < pi, then xi < pi. By

Lemma 1, xi = x, a contradiction to x < x. Next let us show (⇐=). If pi ≤ x but

x < xi, then pi < xi, a contradiction to Lemma 1.

Lemma 3. Let f be an envy-free and peak-only rule. For each R ∈ RN , if f(R) <

f(R), then for each i ∈ N ,

fi(R) = f(R) ⇐⇒ f(R) ≤ pi.

Proof. Similarly shown as Lemma 2.
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Lemma 4. Let f be an envy-free and peak-only rule. For each R ∈ RN and each

i ∈ N ,

(i) f(R) ≤ pi ≤ f(R) =⇒ pi = fi(R),

(ii) f(R) < fi(R) < f(R) =⇒ pi = fi(R).

Proof. Let x ≡ f(R). Part (i): By a contraposition argument, suppose that pi 6= xi.

Consider the case pi < xi. Then by Lemma 1, xi = x, so pi < x. Next consider the

case xi < pi. Then by Lemma 1, xi = x, so x < pi.

Part (ii): Similarly shown as Part (i).

Lemma 5. Let f , g be envy-free and peak-only rules. For each R ∈ RN , if f(R) =

g(R), then f(R) = g(R).

Proof. Let x ≡ f(R), y ≡ g(R), and x = y. If x = x or y = y, then by feasibility,

x = E(R) = y. Hence, let us consider the case x < x and y < y, Without loss of

generality, we can assume x ≤ y. Let

N(x) ≡ {i ∈ N : pi ≤ x} ,

N(y) ≡
{
i ∈ N : pi ≤ y

}
,

N(x) ≡ {i ∈ N : x ≤ pi} ,

N(y) ≡ {i ∈ N : y ≤ pi} .

Note that N(y) ⊆ N(x).

Since x = y is assumed, we have N(x) = N(y), and by Lemma 2,

xi = x = y = yi for each i ∈ N(x). (1)

By Lemma 4,

xi = pi = yi for each i ∈ N \ (N(x) ∪ N(x)). (2)

By Lemmas 3 and 4,

xi = x ≤ pi = yi for each i ∈ N(x) \ N(y). (3)

By Lemma 3,

xi = x ≤ y = yi for each i ∈ N(y). (4)

Since
∑

i∈N xi =
∑

i∈N yi, (1)–(4) together imply x = y.
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Lemma 6. Let f, g be envy-free and peak-only rules. For each R ∈ RN , if f(R) <

g(R), then g(R) < f(R).

Proof. Suppose, by contradiction, that there exist f, g ∈ F and R ∈ RN such that,

whenever x ≡ f(R) and y ≡ g(R),

x < y and x ≤ y.

By feasibility,

x < y ≤ x ≤ y and y < y.

By Lemmas 2–4,

xi = x < y = yi if pi ≤ x,

xi = pi ≤ y = yi if x < pi ≤ y,

xi = pi = yi if y < pi ≤ x,

xi = x < pi = yi if x < pi ≤ y,

xi = x ≤ y = yi if y < pi.

For j ∈ N such that xj = x, Lemma 2 implies pj ≤ x, so xj < yj. Hence, the above

five relations together imply
∑

i∈N xi <
∑

i∈N yi, a contradiction.

Lemma 7. Let f, g be envy-free and peak-only rules. For each R ∈ RN , if f(R) <

g(R), then f(R) dom[R] g(R) and not g(R) dom[R] f(R).

Proof. Immediately follows from Lemmas 2, 3, 4, and 6.

Proof of Theorem 1. Let R ∈ RN . Obviously, dom[R] is reflexive and transitive.

Completeness follows from Lemmas 5 and 7. It remains to check anti-symmetry. If

f, g, R are such that f(R) dom[R] g(R) and f(R) dom[R] g(R), then Lemma 7 implies

f(R) = g(R), which in turn implies by Lemma 5 f(R) = g(R). Thus dom[R] is

anti-symmetric.

It remains to see that, given f ∈ F and R ∈ RN , U(R) dom[R] f(R) dom[R]

E(R). Obviously, f(R) dom[R] E(R). Lemmas 1 and 7 together imply U(R) dom[R]

f(R).

Proof of Theorem 2. We first show that (F , dom) is a lattice. Let f, g ∈ F .

Define the rule f ∨ g by, for each R ∈ RN ,

f ∨ g(R) ≡

{
f(R) if f(R) dom[R] g(R),

g(R) if g(R) dom[R] f(R).
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By Theorem 1, f ∨ g is well-defined. By Theorem 1, f ∨ g is envy-free and peak-only,

so f ∨ g ∈ F . Obviously, f ∨ g is the join of f and g. The meet f ∧ g can be found

by a parallel way. Thus (F , dom) is a lattice.

We next show that (F , dom) is complete. Let G ⊆ F . Define the rule ∨G by, for

each R ∈ RN ,

∨G (R) ≡ x,

where x is such that x ∈ F (R) and x = inff∈G mini∈N fi(R). Note that the existence

of x follows from the compactness of F (R) and the uniqueness of x follows from

Lemma 5. Thus ∨G is well-defined. Obviously, ∨G is the unique least upper bound

of G . The unique greatest lower bound of G can be parallely found. Thus (F , dom)

is a complete lattice.

The fact that the uniform, the equal division rules are the greatest, least elements

of (F , dom), respectively, immediately follows from Theorem 1.

Proof of Proposition 2. Let f ∈ F and R ∈ RN . Obviously, var(E(R)) ≤
var(f(R)). Lemmas 2–6 together imply var(f(R)) ≤ var(U(R)).
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