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Abstract

This paper considers problems where agents bargain over their shares of a divisible com-
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1 Introduction

We consider problems where agents bargain over their shares of a divisible commodity. Examples
of such problems are the share of profit between the employer and the labor union, and the distribu-
tion of property. In such situations, if all agents agree on a feasible outcome, then they can arrive
at it; otherwise they arrive at the predetermined outcome or nothing. To avoid disagreements,
they would decide to follow a recommendation made by an impartial arbitrator, for example, the
Central Arbitration Committee presiding over labor disputes, or a judge over civil trials.

Axiomatic bargaining theory initiated by Nash (1950) theoretically deals with the situations
described above. Axiomatic bargaining theory provides numerous “bargaining solutions,” for in-
stance, the Nash solution (Nash, 1950), the Kalai–Smorodinsky solution (Kalai and Smorodinsky,
1975), and the egalitarian solution (Kalai, 1977). As pointed out by Raiffa (1953), a bargain-
ing solution, which associates a profile of welfare levels with each bargaining problem, can be
interpreted as the recommendation of the arbitrator.

In the context of axiomatic bargaining theory, a bargaining problem consists of a utility pos-
sibility set and an element of it, known as the “disagreement point.” Both the utility possibility
set and the disagreement point are generated by the agents’ (private) “types” such as agents’ pref-
erences. Since agents’ types are usually unknown to the arbitrator, selfish agents may have an
incentive to gain by manipulating the bargaining solution through generating a different bargain-
ing problem by misrepresenting their types. Thus, the arbitrator should deal with the problem of
incentive: how does the arbitrator make the agents voluntarily reveal their true types, which she
is not aware of. In other words, the arbitrator faces the problem of constructing a mechanism, the
equilibrium outcome of which is the outcome obtained at the true type profile. If it is possible
for the arbitrator to construct such a mechanism, then the solution is said to be “implementable.”
Thus, it is important to focus attention on the implementability of bargaining solutions.

However, the notion of implementability is usually defined on the commodity space, whereas
bargaining solutions are defined on the utility space. Hence, we cannot directly apply the notion of
implementability to bargaining solutions. To overcome this difficulty, in this paper, we explicitly
consider an “allocation rule,” which associates an outcome with each private type profile.1 More-
over, we introduce the following concept: roughly speaking, a bargaining solution is induced by
an allocation rule if there exists an allocation rule such that for each type profile and each out-
come chosen by the allocation rule, the outcome attains the list of welfare levels chosen by the
bargaining solution. Thus, in order to examine “the implementability of bargaining solutions,”
this paper investigates the relationships between implementable allocation rules and bargaining
solutions induced by the allocation rules.

A large number of studies have been conducted on implementability in the context of bar-
gaining. It is well-known that some of the bargaining solutions are induced by subgame per-
fect implementable allocation rules. Moulin (1984) and Howard (1992) set up mechanisms that
subgame perfect implement the allocation rules inducing the Kalai–Smorodinsky and Nash so-
lutions, respectively. Miyagawa (2002) provides a “simple” mechanism that subgame perfect
implements a wide class of allocation rules inducing bargaining solutions such as the Nash and
Kalai–Smorodinsky solutions. Vartiainen (2006) demonstrates that there is no efficient and sym-
metric bargaining solution that is induced by any Nash implementable allocation rule.

However, these studies focus on a given bargaining solution. Thus, little is known about what
types of bargaining solutions are induced by allocation rules implementable in a given game-

1Roemer (1988, 1996) first focuses on the allocation rules in the context of axiomatic bargaining theory. However,
he does not consider the incentive problem in his framework.
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theoretical solution concept. In this paper, we will attempt to demonstrate the class of bargaining
solutions that are induced by implementable allocation rules. To accomplish this goal, we explore
the relationships between implementability and the axioms of bargaining solutions.

Nash or subgame perfect implementation imposes unrealistic informational assumptions, e.g.,
common knowledge about each other’s preferences. This signifies that mechanisms under Nash or
subgame perfect implementation heavily depend on the informational assumptions, such that they
are not robust. Thus, this paper concentrates on dominant strategy implementation. Dominant
strategy implementability is a “robustness” property; this implies that in this case, it is not neces-
sary to impose strong informational assumptions such as the common knowledge assumption. The
robustness of mechanism has recently received attention in implementation theory (e.g., see Berge-
mann and Morris (2005) for details). Dominant strategy implementability is also a “practicality”
property in that it is sufficient for each agent to understand her own types instead of knowing other
agents’ types when participating in a mechanism. Mizukami and Wakayama (2007) provide a nec-
essary and sufficient condition for dominant strategy implementation in economic environments.
Their results are applicable to our model.

The paper is organized as follows: Section 2 provides the model and defines several concepts
and axioms. Section 3 presents the main results. Section 4 contains some concluding remarks. All
proofs are relegated to the appendix.

2 Preliminaries

2.1 The Model

Consider n agents who are to divide a commodity that is perfectly divisible and freely disposable.
Without loss of generality, we assume that the amount of the divisible commodity is equal to 1.
If all the agents obey a recommendation by an impartial arbitrator, then they receive the outcome
recommended by her; otherwise they get nothing.

Let N := {1,2, . . . ,n} be the set of agents, where 2≤ n < +∞.
Let X :=

{
x = (x1,x2, . . . ,xn) ∈ Rn

+ :
∑

i∈N xi ≤ 1
}

be the set of pure outcomes, where agent
i ∈ N receives xi.

Let 4 be the set of lotteries over X with finite support. Let `(x) denote the probability that
the lottery ` ∈ 4 assigns to the pure outcome x ∈ X . Let 4D := {`x ∈4 : x ∈ X} be the set of
degenerate lotteries, where `x denotes the degenerate lottery whose support consists of the single
pure outcome x. For each agent i ∈ N, let `i denote her marginal distribution of the lottery ` ∈4
over [0,1].

Let Θi be agent i’s set of admissible types, each of which prescribes von Neumann–Morgenstern
(henceforth abbreviated v.N–M) preferences over4. We assume that each agent i∈N is equipped
with a utility function ui : X ×Θi → R. Given a lottery ` ∈4, the expected utility of agent i ∈ N
conditional on the type θi ∈Θi is denoted by

Ui(`;θi) =
∑

x∈supp(`)

`(x)ui(x;θi),

where supp(`) denotes the support of the lottery `, i.e., supp(`) := {x ∈ X : `(x) > 0}. Moreover,
we assume that for each type θi ∈ Θi, the function ui(·;θi) : X → R is (i) continuous; (ii) strictly
increasing; and (iii) strictly concave.

The domain is a set Θ := Θ1×Θ2×·· ·×Θn. A type profile is a list θ := (θ1,θ2, . . . ,θn) ∈Θ.
For each lottery `∈4 and each type profile θ ∈Θ, let U(`;θ) :=(U1(`;θ1),U2(`;θ2), . . . ,Un(`;θn)).
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We often denote N \ {i} by “−i.” With this notation, (θ ′i ,θ−i) is the type profile where agent i’s
type is θ ′i and the type of agent j ∈ N \{i} is θ j.

For each type profile θ ∈Θ, let S(θ) := {U(`;θ) : ` ∈4}⊂Rn be a utility possibility set. Note
that this set is strictly convex by the definition of Θ. For each type profile θ ∈ Θ, a disagreement
point is the list d(θ) = (d1(θ),d2(θ), . . . ,dn(θ)) := U(`0;θ), where `0 denotes the degenerate
lottery that selects 0 := (0,0, . . . ,0) ∈ X . In particular, we write d0(θ) if U(`0;θ) = 0. Given a
type profile θ ∈ Θ, let ∂S(θ) := {s ∈ S(θ) : there is no s′ ∈ S(θ) such that s′ > s}.2 Note that by
definition, d(θ)∈ S(θ)\∂S(θ) for each θ ∈Θ. For each type profile θ ∈Θ, a bargaining problem
is the pair (S(θ),d(θ)). Let Σ :=

⋃
θ∈Θ(S(θ),d(θ)) be the class of bargaining problems.

2.2 Allocation Rules and Implementation

An “allocation rule,” or briefly, a rule is a (possibly multi-valued) mapping f : Θ �4 that assigns
a nonempty subset of 4 to each type profile θ ∈ Θ.3 If f (θ) is a singleton, then we slightly
abuse notation and denote by f (θ) the single element. Following Roemer (1988), we impose two
assumptions on rules:

Essential single-valuedness: For each θ ∈Θ, if `,`′ ∈ f (θ), then U(`;θ) = U(`′;θ).

Full correspondence: For each θ ∈Θ, if ` ∈ f (θ) and U(`′;θ) = U(`;θ), then `′ ∈ f (θ).4,5

Essential single-valuedness implies that the lotteries that are chosen by a rule are welfare equiva-
lent; in other words, all agents are indifferent to all the lotteries chosen by a rule. The full corre-
spondence assumption states that a rule chooses a set of all lotteries that all agents are indifferent
to.

We introduce additional notation and definitions about implementation. Let Mi denote a strat-
egy space of agent i ∈ N. We call mi ∈ Mi a strategy of agent i ∈ N. A mechanism is a pair
Γ = (M,g), where M := M1×M2×·· ·×Mn and g : M →4 is an outcome function. A strategy
profile is denoted by m := (m1,m2, . . . ,mn) ∈M.

A strategy m∗
i ∈Mi is a dominant strategy of mechanism (M,g) at θi ∈Θi if Ui(g(m∗

i ,m−i);θi)≥
Ui(g(m′

i,m−i);θi) for each m′
i ∈ Mi and each m−i ∈ M−i := ∏ j 6=i M j. For each agent i ∈ N, let

DSΓ
i (θi)⊆Mi be the set of her dominant strategies of mechanism Γ at θi ∈Θi.
A strategy profile m∗ = (m∗

1,m
∗
2, . . . ,m

∗
n)∈M is a dominant strategy equilibrium of mechanism

(M,g) at θ ∈ Θ if, for each agent i ∈ N, Ui(g(m∗
i ,m−i);θi) ≥Ui(g(m′

i,m−i);θi) for each m′
i ∈ Mi

and each m−i ∈M−i. Let DSEΓ(θ)⊆M be the set of dominant strategy equilibria of mechanism Γ

at θ ∈ Θ. Let g(DSEΓ(θ)) :=
{
` ∈4 : ` = g(m) for some m ∈ DSEΓ(θ)

}
be the set of dominant

strategy equilibrium outcomes of mechanism Γ at θ ∈ Θ. A mechanism Γ = (M,g) dominant
strategy implements a rule f if g(DSEΓ(θ)) = f (θ) for each θ ∈ Θ. Dominant strategy imple-
mentability states that there exists a mechanism whose equilibrium outcome coincides with the
outcome of a given rule for every type profile.

Dominant strategy implementability: There exists a mechanism Γ =(M,g) such that g(DSEΓ(θ))=
f (θ) for each θ ∈Θ.

2Vector inequalities are denoted as follows: given x,x′ ∈ Rn, x = x′ means xi ≥ x′i for each i ∈ N; x ≥ x′ means
x = x′ and x 6= x′; x > x′ means xi > x′i for each i ∈ N.

3The arrow � is used for a multi-valued mapping.
4Many results obtained in this paper depend strongly on the full correspondence assumption. Indeed, if the full

correspondence assumption is dropped, many rules appear (See Barberà et al. (1998) for details).
5A rule that satisfies the full correspondence assumption is often said to be “Pareto indifferent.”
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Figure 1: The commutative diagram.

2.3 Bargaining Solutions and Axioms

A bargaining solution is a single-valued mapping F : Σ → Rn, which assigns to each bargaining
problem (S,d) ∈ Σ a list of welfare levels in S ⊂ Rn. We denote by Fi(S,d) the welfare level
assigned to agent i ∈ N.

Remark 1. Given a bargaining solution F and type profiles θ ,θ ′ ∈Θ, if (S(θ),d(θ))= (S(θ ′),d(θ ′)),
then F(S(θ),d(θ)) = F(S(θ ′),d(θ ′)). Thus, we can write F(S,d) for F(S(θ),d(θ)) for each
θ ∈Θ.

Since the notion of implementability is usually defined on the commodity (or lottery) space,
we cannot directly apply the notion of implementability to bargaining solutions. Thus, in order to
make a connection between rules and bargaining solutions, we introduce the following concept: a
bargaining solution F is induced by a rule f if for each θ ∈Θ and each ` ∈ f (θ),

F(S(θ),d(θ)) = U(`;θ).

The relationship is illustrated in Figure 1.

Remark 2. For each bargaining solution, there exists a rule inducing it. However, there exists a
rule that does not induce any bargaining solution. For example, some constant rules do not induce
any bargaining solution as we prove in the appendix.

Our primary objective is to explore a relationship between dominant strategy implementability
and the axioms of bargaining solutions. We now provide several axioms. The first axiom is
a standard one for bargaining solutions, namely, efficiency; it requires that there should be no
feasible point at which all the agents are better off.

Efficiency: For each (S,d) ∈ Σ, F(S,d) ∈ ∂S.

The second axiom—scale invariance—reflects the fact that v.N–M utility functions are unique
up to positive affine transformations. Scale invariance entails that the bargaining solution should
yield the same list of welfare levels if two bargaining problems are generated by the type profiles
that prescribe the same v.N–M preference profile. To give the formal definition of scale invariance,
we need some notation. For each agent i ∈ N, τi : R → R is an affine transformation of agent
i ∈ N if τi : t 7→ at + b for each t ∈ R, where a ∈ R++ and b ∈ R. Let Ti be the set of all affine
transformations of agent i ∈ N. Let T := T1 × T2 × ·· · × Tn. Given τ ∈ T and (S,d) ∈ Σ, let
τ(S) := {s′ ∈ Rn : s′ = (τ1(s1),τ2(s2), . . . ,τn(sn)) for some s ∈ S} and τ(S,d) := (τ(S),τ(d)).
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Scale invariance: For each (S,d),(S′,d′)∈ Σ and each τ ∈ T , if (S′,d′) = τ(S,d), then F(S′,d′) =
τ(F(S,d)).

The last axiom—strong monotonicity—is an appealing one from a normative viewpoint; it
entails that all of the agents should benefit from any expansion of opportunities.

Strong monotonicity: For each (S,d),(S′,d) ∈ Σ, if S ⊆ S′, then F(S,d) 5 F(S′,d).

3 Main Results

In this section, we explore a relationship between dominant strategy implementability and the
axioms of bargaining solutions. We first consider the two-agent case. Next, we discuss the case in
which there are three or more agents. All proofs of the results can be found in the appendix.

3.1 The Two-agent Case

In this subsection, we consider the two-agent case. Theorem 1 given below provides a necessary
and sufficient condition for a bargaining solution to be induced by a dominant strategy imple-
mentable rule satisfying an auxiliary condition, provided there are only two agents.

Theorem 1. Suppose that n = 2. A rule f inducing a bargaining solution F is dominant strategy
implementable and satisfies the non-disagreement condition if and only if F induced by f satisfies
efficiency, scale invariance, and strong monotonicity.

Theorem 1 argues that from a dominant strategy implementability viewpoint, these axioms
described above—efficiency, scale invariance, and strong monotonicity—are desirable.

A few remarks should be made at this point. First, it should be noted that dominant strategy
implementability alone does not imply efficiency. For example, a rule that always chooses the
degenerate lottery `0 is dominant strategy implementable, but the bargaining solution induced by
the rule violates efficiency. However, such a rule would not be desirable for agents. Therefore, we
impose the following “plausible” condition on rules.

The non-disagreement condition: There exists no θ ∈Θ such that f (θ) 6= {`0}.

The non-disagreement condition is first introduced by this paper, and so it is a new concept. This
condition requires that a rule should not choose only the disagreement lottery. This condition is
“plausible” in the sense that as mentioned in the introduction, agents would adhere to a recommen-
dation of the arbitrator in order to avoid disagreements. Note that if a bargaining solution satisfies
efficiency, then a rule inducing the bargaining solution satisfies the non-disagreement condition.
This fact holds not only for the two-agent case but also in the case of three or more agents.

Second, we show Theorem 1 by means of Roemer’s (1996) result. Before stating his result,
let us introduce the following solution—dictatorial solution—that favors one agent at the expense
of others.

Dictatorial solutions (for n = 2), Di: There exists an agent i ∈ N such that for each bargaining
problem (S,d)∈Σ, Di(S,d) is the maximal point s of S with s j = d j. That is, there exists i∈N such
that for each (S,d) ∈ Σ, Di

i(S,d) = ai(S,d) and Di
j(S,d) = d j, where ai(S,d) := max{si : s ∈ S}.

Theorem 2 (Roemer, 1996; Theorem 2.7). Suppose that n = 2. A bargaining solution F satisfies
efficiency, scale invariance, and strong monotonicity if and only if it is dictatorial.
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For the original proof of Theorem 2, see Roemer (1996). We give a simple alternative proof in the
appendix.

Third, it is meaningful to study what types of bargaining solutions are induced by dominant
strategy implementable rules satisfying the non-disagreement condition. The answer to this ques-
tion follows from Theorems 1 and 2.

Corollary 1. Suppose that n = 2. A rule f inducing a bargaining solution F is dominant strat-
egy implementable and satisfies the non-disagreement condition if and only if F induced by f is
dictatorial.

From Corollary 1, there are few bargaining solutions induced by dominant strategy imple-
mentable rules satisfying the non-disagreement condition. In contrast, as we prove in the appendix,
there are many dominant strategy implementable rules satisfying the non-disagreement condition.
Indeed, any constant rules, each of which always assigns only an efficient lottery, are dominant
strategy implementable and satisfy the non-disagreement condition. However, almost all constant
rules violate welfarism, which requires that if two type profiles give rise to the same bargaining
problem, then rules should assign to each of the type profiles lotteries that are indistinguishable in
terms of utility across the type profiles.6 Welfarism is a necessary condition for a rule to induce a
bargaining solution. We can say that welfarism is so strong in the light of implementability.

3.2 The Case of Three or More Agents

In this subsection, we discuss the case where there are three or more agents. We apply Roe-
mer (1996) to obtain the results in the previous subsection. However, we cannot apply Roe-
mer (1996) to the case of three or more agents because his characterization holds only for the
two-agent case. Thus, the results of the two-agent case do not easily extend to the case where
there are more than two agents. Indeed, in axiomatic bargaining theory as well as implementation
theory, the results of the two-agent case often differ from those of the case of three or more agents.

According Theorem 3 stated below, even if there are more than two agents, efficiency, scale
invariance, and strong monotonicity are still sufficient for a bargaining solution to be induced by
a dominant strategy implementable rule.

Theorem 3. If a bargaining solution F satisfies efficiency, scale invariance, and strong mono-
tonicity, then a rule f inducing F is dominant strategy implementable.

Theorem 4 states that efficiency is still necessary for a bargaining solution to be induced by a
dominant strategy implementable rule satisfying the non-disagreement condition.

Theorem 4. If a rule f satisfying the non-disagreement condition is dominant strategy imple-
mentable, then a bargaining solution F induced by f satisfies efficiency.

From the above results, it can be inferred that Theorem 1 also holds for the case of more than
two agents. However, Theorem 1 does not hold for the case where there are three or more agents.
Thus, there is a clear gap between the case of two agents and that of more than two agents. Indeed,
there exists a bargaining solution induced by a dominant strategy implementable rule satisfying the
non-disagreement condition that violates strong monotonicity. The following example illustrates
this bargaining solution.

6Welfarism is first introduced by Roemer (1988) in the context of axiomatic bargaining theory. See Footnote 14
for the formal description of welfarism.
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Example 1. Let N = {1,2,3}. Let ` ∈4 be such that `((1,0,0)) = .5 and `(0) = .5. Let `′ ∈4
be such that `′((.3,0,0)) = 1. Consider the following rule: for each θ ∈Θ,

f B(θ) =

{
`(0,1,0) if U1(`;θ1)≥U1(`′;θ1)
`(0,0,1) otherwise.

Note that the rule f B is dominant strategy implementable and satisfies the non-disagreement con-
dition.7 The bargaining solution FB induced by the rule f B is as follows. Let (S,d) ∈ Σ. Then,
there exists λ = (λ1,λ2,λ3) ∈∏i∈N Λi such that

S = λ (co{(a1(S,d),d2,d3),(d1,a2(S,d),d3),(d1,d2,a3(S,d))}),

and d = λ (d), where λi is a monotone transformation of agent i ∈ N.8,9 Then,

FB(S,d) =

{
(d1,a2(S,d),d3) if .5 ·a1(S,d)+ .5 ·d1 ≥ λ1(.3 ·a1(S,d)+ .7 ·d1)
(d1,d2,a3(S,d)) otherwise.

The bargaining solution FB violates strong monotonicity (See Figure 2). This means that Theorem
1 does not hold for the case where there are three or more agents. �

Efficiency plays a central role in the axiomatic bargaining theory, as is evident from the fact
that there are many studies using efficiency. Moreover, scale invariance is indispensable in our
setting. Therefore, a further direction on this study would be to investigate whether Theorem 1
holds if strong monotonicity is relaxed with another axiom in the case where there are three or
more agents.

Remark 3. It would be evident from the proofs provided in the appendix that our results are not
entirely dependant on the full correspondence assumption. The full correspondence assumption
can be replaced by the following condition: for each θ ∈ Θ, if ` ∈ f (θ) and U(`x;θ) = U(`;θ),
then `x ∈ f (θ). According to this condition, a rule should choose the degenerate lotteries that
are indifferent to the one that the rule chooses for all the agents. This condition is different from
the full correspondence assumption in that it is not necessary to choose all the lotteries that are
indifferent to the one chosen by the rule for all the agents.

4 Conclusion

This paper explored a relationship between dominant strategy implementability and the axioms of
bargaining solutions. It has been shown that efficiency, scale invariance, and strong monotonicity
are necessary and sufficient for a bargaining solution to be induced by a dominant strategy imple-
mentable allocation rule satisfying the non-disagreement condition whenever there are two agents.
From this, it follows that there are only dictatorial solutions that are induced by dominant strategy
implementable allocation rules satisfying the non-disagreement condition in the two-agent case.
Next, we demonstrated that these axioms are still sufficient for a bargaining solution to be induced
by a dominant strategy implementable allocation rule even when there are three or more agents.

7Since f B satisfies single-valuedness, ordinality, and Property λ , it is dominant strategy implementable. See
Lemma 2 in the appendix for details.

8Given a set S ⊆ Rn, coS is the convex hull of S.
9Given a set S ⊆ Rn, let λ (S) := {s′ ∈ Rn : s′ = λ (s) = (λ1(s1),λ2(s2), . . . ,λn(sn)) for some s ∈ S} . See the ap-

pendix for the formal definition of monotone transformations.
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Figure 2: The bargaining solution FB in Example 1. Let (S,d0),(S′,d0) ∈ Σ be such that
S′ ⊂ S, ai(S,d0) = 1, and ai(S′,d0) = 1 for each i ∈ N. Then, there exist λ ,λ ′ ∈ ∏i∈N Λi

such that S = λ (co{(1,0,0),(0,1,0),(0,0,1)}) and S′ = λ ′(co{(1,0,0),(0,1,0),(0,0,1)}). Since
λ1(.3) > .5, FB(S,d0) = (0,0,1). Since .5 > λ ′

1(.3), FB(S′,d0) = (0,1,0).

We discuss three remaining problems. First, this paper considered a single-valued bargaining
solution and thereby derived an impossibility result. One way to avoid our impossibility result
can be to consider a multi-valued bargaining solution. For instance, considering multi-valued
bargaining solutions, Vartiainen (2006) derived possibility results for Nash implementation.

Second, although we provided a complete characterization of bargaining solutions that are in-
duced by dominant strategy implementable allocation rules satisfying the non-disagreement con-
dition in the two-agent case, we only provided a sufficient condition for a bargaining solution to be
induced by a dominant strategy implementable allocation rule in the case of three or more agents.
As we observed in Example 1, strong monotonicity is not necessary for a bargaining solution to
be induced by a dominant strategy implementable allocation rule satisfying the non-disagreement
condition. An interesting direction for future research would be to investigate the necessary con-
ditions for a bargaining solution to be induced by a dominant strategy implementable allocation
rule.

Finally, in this paper, we restricted our attention to the class of essentially single-valued al-
location rules satisfying the full correspondence assumption. What are the types of bargaining
solutions that are induced by dominant strategy implementable allocation rules that violate ei-
ther essential single-valuedness or the full correspondence assumption? This issue is left to be
addressed in future research.
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A Appendix: Proofs

A.1 Preliminary Results

This section introduces two lemmas that are useful in the proofs of theorems. Given i∈N, θi ∈Θi,
and x ∈ X , let Ai(x;θi) := {` ∈4 : Ui(`;θi)≥Ui(`x;θi)}. That is, Ai(x;θi) is the set of lotteries
that agent i with type θi likes at least as well as `x. A type θ ′i ∈ Θi of agent i ∈ N is strictly more
risk averse than θi ∈ Θi if Ai(x;θi) ⊃ Ai(x;θ ′i ) for each x ∈ X with xi ∈ (0,1). Given i ∈ N, let
ei ∈ X be a pure outcome such that ei

i = 1. Let 4P :=
{
`x ∈4D :

∑
i∈N xi = 1

}
be the set of

efficient lotteries.

Lemma 1. Let θ ∈Θ, i∈N, and θ̄i ∈Θi be such that θi is strictly more risk averse than θ̄i and f (θ)
is not a singleton. Let `x ∈ f (θ)∩4D. Then, there exists ˜̀∈ f (θ) such that Ui( ˜̀; θ̄i) > Ui(`x; θ̄i).

Proof: Let θ ∈ Θ, i ∈ N, and θ̄i ∈ Θi be such that f (θ) is not a singleton and θi is strictly more
risk averse than θ̄i, i.e., Ai(x′; θ̄i) ⊃ Ai(x′;θi) for each x′ ∈ X with x′i ∈ (0,1). Since f (θ) is not
a singleton, by the full correspondence assumption and essential single-valuedness, `x ∈ f (θ)∩(
4D \

(
4P∪{`0}

))
. Thus, xi 6= 1. Note that f (θ)∩4D is a singleton by the full correspondence

assumption and essential single-valuedness.
We now prove the following claim:

Claim. Ui( ˆ̀; θ̄i)≥Ui(`x; θ̄i) for each ˆ̀∈ f (θ).

Since θi is strictly more risk averse than θ̄i and xi 6= 1, by definition,{
` ∈4 : Ui(`; θ̄i)≥Ui(`x; θ̄i)

}
⊃ {` ∈4 : Ui(`;θi)≥Ui(`x;θi)} if xi ∈ (0,1); and{

` ∈4 : Ui(`; θ̄i)≥Ui(`x; θ̄i)
}

= {` ∈4 : Ui(`;θi)≥Ui(`x;θi)} if xi = 0,

which imply that{
` ∈4 : Ui(`; θ̄i)≥Ui(`x; θ̄i)

}
⊇ {` ∈4 : Ui(`;θi)≥Ui(`x;θi)} . (1)

Note that by the full correspondence assumption and essential single-valuedness, we have f (θ) =
{` ∈4 : U(`;θ) = U(`x;θ)}. Thus, since xi 6= 1,

{` ∈4 : Ui(`;θi)≥Ui(`x;θi)} ⊃ {` ∈4 : U(`;θ) = U(`x;θ)}= f (θ). (2)

(1) and (2) together imply
{
` ∈4 : Ui(`; θ̄i)≥Ui(`x; θ̄i)

}
⊃ f (θ). This establishes that Ui( ˆ̀; θ̄i)≥

Ui(`x; θ̄i) for each ˆ̀∈ f (θ).

To complete the proof, suppose, by contradiction, that Ui(`; θ̄i)≤Ui(`x; θ̄i) for each ` ∈ f (θ).
Then, by the claim,

Ui(`; θ̄i) = Ui(`x; θ̄i) (3)

for each ` ∈ f (θ). Since θi is strictly more risk averse than θ̄i, there exists an increasing and
strictly concave function k : R→ R such that ui(x′;θi) = k(ui(x′; θ̄i)) for each x′ ∈ X by Theorem
4 in Roth (1979). Let ` ∈ f (θ)\{`x}. Since k is strictly concave, by Jensen’s inequality and (3),
Ui(`x;θi)= k

(
Ui(`x; θ̄i)

)
= k

(
Ui(`; θ̄i)

)
= k

(∑
x̃∈supp(`) `(x̃)ui(x̃; θ̄i)

)
>

∑
x̃∈supp(`) `(x̃)k

(
ui(x̃; θ̄i)

)
=

Ui(`;θi), contradicting essential single-valuedness.
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We now introduce a few properties that do not appear in the main text.

Ordinality: For each θ ,θ ′ ∈ Θ, whenever f (θ) 6= f (θ ′), there exist i ∈ N and `,`′ ∈4 such that
Ui(`;θi)≥Ui(`′;θi) and Ui(`′;θ ′i ) > Ui(`;θ ′i ).

For each agent i ∈ N, λi : R → R is a monotone transformation of agent i ∈ N if λi is a
continuous and increasing function. Let Λi be the set of all monotone transformations of agent
i ∈ N. Given a type profile θ ∈ Θ, let λi(S(θ)) := {s′ ∈ Rn : s′ = (λi(si),s−i) for some s ∈ S(θ)}
and λi(S(θ),d(θ)) := (λi(S(θ)),λi(d(θ))).

Remark 4. Since any distinct types of agent i ∈ N induce the same ordinal ordering on X , we
obtain the following fact: for each θi,θ

′
i ∈Θi, there exists λi ∈Λi such that ui(x;θ ′i ) = λi(ui(x;θi))

for each x ∈ X .

Property λ : For each θ ∈Θ, each i∈N, each θ ′i ∈Θi, and each λi ∈Λi, if (S(θ ′i ,θ−i),d(θ ′i ,θ−i)) =
λi(S(θ),d(θ)), then Ui(`′;θ ′i ) = λi(Ui(`;θi)) for each ` ∈ f (θ) and each `′ ∈ f (θ ′i ,θ−i).

Lemma 2 below characterizes the set of dominant strategy implementable rules in terms of
single-valuedness, ordinality, and Property λ . Lemma 2 also says that none of the multi-valued
rules are dominant strategy implementable.

Lemma 2. A rule f is dominant strategy implementable if and only if it satisfies single-valuedness,
ordinality, and Property λ .

Remark 5. If a rule f satisfies the full correspondence assumption and single-valuedness, then
f (θ) ∈4P∪{`0} for each θ ∈Θ.

Proof of Lemma 2: We first show the “only if” part. Let f be a dominant strategy implementable
rule. Then, there exists a mechanism Γ = (M,g) such that g(DSEΓ(θ)) = f (θ) for each θ ∈Θ.

Step 1: f satisfies single-valuedness. Suppose, by contradiction, that f is not a single-valued
function. Then f (θ) is not a singleton for some θ ∈ Θ. Since f satisfies the full correspondence
assumption, f (θ) must contain a degenerate lottery, which we denote by `x.

Let i ∈ N and θ̄i ∈ Θi be such that θi is strictly more risk averse than θ̄i. We denote by `x̄ a
degenerate lottery contained in f (θ̄i,θ−i).

Since f is dominant strategy implementable by Γ,

g(DSEΓ(θ)) = f (θ), (4)

g(DSEΓ(θ̄i,θ−i)) = f (θ̄i,θ−i). (5)

If m∗
i ∈ DSΓ

i (θi), then, by definition, Ui(g(m∗
i ,m−i);θi) ≥ Ui(g(m′

i,m−i);θi) for each m′
i ∈

Mi and each m−i ∈ M−i. This implies that Ui(g(m∗
i ,m

∗
−i);θi) ≥Ui(g(m̄i,m∗

−i);θi) for each m̄i ∈
DSΓ

i (θ̄i) and each m∗
−i ∈∏ j 6=i DSΓ

j (θ j). Thus, Ui(g(m∗);θi)≥Ui(g(m̄);θi) for each m∗ ∈DSEΓ(θ)
and each m̄ ∈ DSEΓ(θ̄i,θ−i). Combined with (4) and (5), this implies that Ui(`;θi)≥Ui( ¯̀;θi) for
each `∈ f (θ) and each ¯̀∈ f (θ̄i,θ−i). Hence, this implies that Ui(`x;θi)≥Ui(`x̄;θi), which implies
that

xi ≥ x̄i (6)

by the strict increasingness of ui(·;θi).
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Similarly, if m̄∗
i ∈ DSΓ

i (θ̄i), then Ui(g(m̄∗
i ,m−i); θ̄i) ≥Ui(g(m′

i,m−i); θ̄i) for each m′
i ∈ Mi and

each m−i ∈ M−i. This implies that Ui(g(m̄∗
i , m̄

∗
−i); θ̄i) ≥Ui(g(m̂i, m̄∗

−i); θ̄i) for each m̂i ∈ DSΓ
i (θi)

and each m̄∗
−i ∈ ∏ j 6=i DSΓ

j (θ j). Thus, Ui(g(m̄∗); θ̄i) ≥ Ui(g(m̂); θ̄i) for each m̄∗ ∈ DSEΓ(θ̄i,θ−i)
and each m̂ ∈ DSEΓ(θ). Combined with (4) and (5), this implies that

Ui( ¯̀; θ̄i)≥Ui(`; θ̄i) (7)

for each ¯̀∈ f (θ̄i,θ−i) and each ` ∈ f (θ).
Since f (θ) is not a singleton, by Lemma 1,

Ui( ˜̀; θ̄i) > Ui(`x; θ̄i) (8)

for some ˜̀∈ f (θ). Since ˜̀∈ f (θ), by (7),

Ui( ¯̀; θ̄i)≥Ui( ˜̀; θ̄i) (9)

for each ¯̀∈ f (θ̄i,θ−i). (8) and (9) together imply that Ui( ¯̀; θ̄i) > Ui(`x; θ̄i) for each ¯̀∈ f (θ̄i,θ−i).
Since `x̄ ∈ f (θ̄i,θ−i), Ui(`x̄; θ̄i) > Ui(`x; θ̄i). Hence, the strict increasingness of ui(·; θ̄i) implies
that x̄i > xi, which contradicts (6).

Step 2: f satisfies ordinality. Suppose, by contradiction, that f violates ordinality. Then,
there exist θ ,θ ′ ∈ Θ such that f (θ) 6= f (θ ′), but there are no i ∈ N and `,`′ ∈ 4 such that
Ui(`;θi) ≥ Ui(`′;θi) and Ui(`′;θ ′i ) > Ui(`;θ ′i ). This means that θ and θ ′ yield the same v.N–
M preference profile. Therefore, DSEΓ(θ) = DSEΓ(θ ′). By dominant strategy implementability,
f (θ ′) = g(DSEΓ(θ ′)). Hence, f (θ) 6= f (θ ′) = g(DSEΓ(θ ′)) = g(DSEΓ(θ)), which is a contra-
diction to dominant strategy implementability.

Step 3: f satisfies quasi-constancy.10 Suppose, by contradiction, that for some θ ∈ Θ, some
i ∈ N, and some θ ′i ∈ Θi, there exist ` ∈ f (θ) and `′ ∈ f (θ ′i ,θ−i) such that `i 6= `′i. By Step 1,
f (θ) and f (θ ′i ,θ−i) are singletons. Note that f (θ), f (θ ′i ,θ−i) ∈ 4P ∪{`0} ⊂ 4D by Remark 5.
Thus, we obtain fi(θ) 6= fi(θ ′i ,θ−i). Since ui(·;θi) and ui(·;θ ′i ) are strict increasing functions, this
implies that

Ui( f (θ);θi) 6= Ui( f (θ ′i ,θ−i);θi), (10)

Ui( f (θ);θ
′
i ) 6= Ui( f (θ ′i ,θ−i);θ

′
i ). (11)

So, since ui(·;θi) and ui(·;θ ′i ) are strictly increasing functions, by (10) and (11), Ui( f (θ);θi) >
Ui( f (θ ′i ,θ−i);θi) implies Ui( f (θ);θ ′i ) >Ui( f (θ ′i ,θ−i);θ ′i ), or Ui( f (θ);θi) <Ui( f (θ ′i ,θ−i);θi) im-
plies Ui( f (θ);θ ′i ) < Ui( f (θ ′i ,θ−i);θ ′i ). These imply that f is not strategy-proof.11 Hence, by the
revelation principle, it is a contradiction to dominant strategy implementability.

Step 4: f satisfies Property λ . Suppose that there exist θ ∈Θ, i∈N, θ ′i ∈Θi, and λi ∈Λi such
that (S(θ ′i ,θ−i),d(θ ′i ,θ−i)) = λi(S(θ),d(θ)), and Ui(`′;θ ′i ) 6= λi(Ui(`;θi)) for some ` ∈ f (θ) and
some `′ ∈ f (θ ′i ,θ−i). Since f is single-valued, by the full correspondence assumption, `,`′ ∈4D.
Since Ui(`′;θ ′i ) 6= λi(Ui(`;θi)), we have Ui(`′;θ ′i ) 6= λi(Ui(`;θi)) = Ui(`;θ ′i ). This means that
`i 6= `′i, which is a contradiction to quasi-constancy.

10A rule f satisfies quasi-constancy if for each θ ∈ Θ, each i ∈ N, each θ ′i ∈ Θi, each ` ∈ f (θ), and each `′ ∈
f (θ ′i ,θ−i), we have `i = `′i.

11A single-valued rule f satisfies strategy-proofness if for each θ ∈ Θ, each i ∈ N, and θ ′i ∈ Θi, Ui( f (θ);θi) ≥
Ui( f (θ ′i ,θ−i);θi).
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We next show the “if” part. Let f be a single-valued rule satisfying ordinality and Property λ .
We would like to show that f is dominant strategy implementable. To show this, we first prove
that Property λ implies quasi-constancy. Suppose, by contradiction, that for some θ ∈ Θ, some
i ∈ N, and some θ ′i ∈ Θi, there exist ` ∈ f (θ) and `′ ∈ f (θ ′i ,θ−i) such that `i 6= `′i. Since f is a
single-valued function, by the full correspondence assumption, f (θ) ∈ 4D for each θ ∈ Θ. By
Remark 4, there exists λi ∈Λi such that for each x ∈ X , ui(x;θ ′i ) = λi(ui(x;θi)). So, (S(θ ′i ,θ−i)) =
λi((S(θ),d(θ))). Since `i 6= `′i and `,`′ ∈ 4D, we obtain Ui(`′;θ ′i ) 6= Ui(`;θ ′i ) = λi (Ui(`;θi)),
which is a contradiction to Property λ . Hence, Property λ implies quasi-constancy. It is obvious
that if a single-valued rule satisfies quasi-constancy, then it satisfies strategy-proofness. Hence, f
is strategy-proof.

Let us prove that f is dominant strategy implementable. Let

Θ
∗
i :=

θi,θ
′
i ∈Θi :

there exist `,`′ ∈4 such that Ui(`;θi) > Ui(`′;θi),
Ui(`′;θ ′i ) > Ui(`;θ ′i ), Ui(`;θi) > Ui(`0;θi), and
Ui(`′;θ ′i ) > Ui(`0;θ ′i )

⊂Θi.

It is easy to check that the domain Θ∗ satisfies the following properties: (i) the existence of a
common worst alternative; (ii) weak separability; and (iii) strict value distinction with a refer-
ence point.12 Thus, we can use the mechanism ΓMW = (MMW ,gMW ) constructed by Mizukami
and Wakayama (2007) for dominant strategy implementation on the domains satisfying the three
properties mentioned above. So, since f satisfies single-valuedness and strategy-proofness, then
by Mizukami and Wakayama (2007),

f (θ ′) = gMW (DSEΓMW
(θ ′)) for each θ ′ ∈Θ∗. (12)

Let θ̂ ∈ Θ \Θ∗. Then, there exists θ ′ ∈ Θ∗ such that θ̂ and θ ′ yield the same v.N–M preference
profile.13 This implies that DSEΓMW

(θ̂) = DSEΓMW
(θ ′). By ordinality, f (θ̂) = f (θ ′). Thus, by

(12), f (θ̂) = f (θ ′) = gMW (DSEΓMW
(θ ′)) = gMW (DSEΓMW

(θ̂)). Hence, we can conclude that f is
dominant strategy implementable.

A.2 Proof of Theorem 1

We first show the “only if” part. Let f be a dominant strategy implementable rule satisfying the
non-disagreement condition.

12See Mizukami and Wakayama (2007) for the formal definitions of these properties.
13We now prove the following claim:

Claim. Let θ̂ ∈Θ\Θ∗. Then, there exists θ ′ ∈Θ∗ such that for each i ∈ N and each `,`′ ∈4,

(i) if Ui(`; θ̂i) > Ui(`′; θ̂i), then Ui(`;θ ′i ) > Ui(`′;θ ′i );

(ii) if Ui(`; θ̂i) = Ui(`′; θ̂i), then Ui(`;θ ′i ) = Ui(`′;θ ′i );

(iii) if Ui(`; θ̂i) < Ui(`′; θ̂i), then Ui(`;θ ′i ) < Ui(`′;θ ′i ).

To prove the claim, we shall derive a contradiction for the case (i). The proofs for other cases (ii) and (iii) are
similar, so we omit them. Suppose that for each θ ′ ∈ Θ∗, there exist i ∈ N and `,`′ ∈4 such that Ui(`; θ̂i) > Ui(`′; θ̂i)
and Ui(`;θ ′i ) ≤ Ui(`′;θ ′i ). Assuming Ui(`;θ ′i ) < Ui(`′;θ ′i ) immediately yields a contradiction to θ̂ /∈ Θ∗. Thus, we
assume Ui(`;θ ′i ) = Ui(`′;θ ′i ). Let `i ∈ 4 be such that `i(ei) = 1

2 and `i(0) = 1
2 . By the axiom of independence,

we have Ui
( 1

2 `+ 1
2 `i; θ̂i

)
> Ui

( 1
2 `′+ 1

2 `i; θ̂i
)

and Ui
( 1

2 `+ 1
2 `i;θ ′i

)
= Ui

( 1
2 `′+ 1

2 `i;θ ′i
)
. Let ˆ̀ be such that ˆ̀(ei) =

1
2 `(ei)+ 1

2 `i(ei)− ε , ˆ̀(0) = 1
2 `(0)+ 1

2 `i(0)+ ε , and ˆ̀(x) = 1
2 `(x)+ 1

2 `i(x) for each x ∈ X \{0,ei}. Let ˜̀ be such that
˜̀(ei) = 1

2 `′(ei)+ 1
2 `i(ei)+ ε , ˜̀(0) = 1

2 `′(0)+ 1
2 `i(0)− ε , and ˜̀(x) = 1

2 `′(x)+ 1
2 `i(x) for each x ∈ X \ {0,ei}. Then,

by the continuity of Ui, there exists ε > 0 such that Ui( ˆ̀; θ̂i) > Ui( ˜̀; θ̂i) and Ui( ˆ̀;θ ′i ) < Ui( ˜̀;θ ′i ). Obviously, ˆ̀, ˜̀∈4.
However, this is a contradiction to θ̂ /∈Θ∗.
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Step 1: f(θ) ∈4P for each θ ∈ Θ. It immediately follows from Lemma 2, Remark 5, and
the non-disagreement condition.

Step 2: For each θ ,θ ′ ∈ Θ, f(θ) = f(θ ′). Suppose, by contradiction, that there exists θ ,θ ′ ∈
Θ such that f (θ) 6= f (θ ′). By Step 1, f (θ), f (θ ′) ∈ 4P. Let f (θ) = `x and f (θ ′) = `x′ . Note
that x2 6= x′2. By Lemma 2, dominant strategy implementability implies quasi-constancy. Thus, by
quasi-constancy, f1(θ ′1,θ2) = `x

1 and f1(θ1,θ
′
2) = `x′

1 . By Step 1, f2(θ ′1,θ2) = `x
2 and f2(θ1,θ

′
2) =

`x′
2 . Then, since u2(·;θ2) and u2(·;θ ′2) are strictly increasing, if x2 < x′2, U2( f (θ1,θ

′
2);θ2) >

U2( f (θ);θ2); otherwise U2( f (θ ′1,θ2);θ ′2)>U2( f (θ ′);θ ′2). This is a contradiction to quasi-constancy.
Thus, by Lemma 2, this is a contradiction to dominant strategy implementability.

Before starting Step 3, we introduce a notation and a class of rules. For each α ∈ [0,1], let
x(α) be a pure outcome such that x(α) = (α,1−α). A constant rule f α which always assigns
only an efficient lottery is defined as follows: for each θ ∈Θ, f α(θ) = `x(α).

Step 3: For each α ∈ (0,1), f α violates welfarism.14 Let α ∈ (0,1). Obviously, f α sat-
isfies single-valuedness. There exist θ ,θ ′ ∈ Θ and (λ1,λ2) ∈ Λ1 ×Λ2 such that (i) θ 6= θ ′;
(ii) (S(θ ′1,θ2),d0(θ ′1,θ2)) = λ1(S(θ),d0(θ)); (iii) (S(θ ′),d0(θ ′)) = λ2(S(θ ′1,θ2),d0(θ ′1,θ2)); (iv)
(S(θ ′),d0(θ ′))= (S(θ),d0(θ)); (v) λ1(d0

1(θ))= d0
1(θ) and λ1(a1(S(θ),d0(θ)))= a1(S(θ),d0(θ));

and (vi) λ2(d0
2(θ ′1,θ2)) = d0

2(θ ′1,θ2) and λ2(a2(S(θ ′1,θ2),d0(θ ′1,θ2))) = a2(S(θ ′1,θ2),d0(θ ′1,θ2)).
This is illustrated in Figure 3.
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Figure 3: An example of transformation functions (λ1,λ2) in the proof of Theorem 1.

Since α ∈ (0,1), a1(S(θ),d0(θ))>U1( f α(θ);θ1)> 0 and a2(S(θ),d0(θ))>U2( f α(θ);θ2)>
0. Thus, λ (U( f α(θ);θ)) 6=U( f α(θ);θ). Then, (S(θ),d0(θ))= (S(θ ′),d0(θ ′)), but U( f α(θ);θ) 6=
λ (U( f α(θ);θ)) = U( f α(θ);θ ′) = U( f α(θ ′);θ ′) (the last equality comes from the constancy of
f α ). Hence, f α violates welfarism.

14A rule f satisfies welfarism if for each θ , θ ′ ∈ Θ, if (S(θ),d(θ)) = (S(θ ′),d(θ ′)), then U(`;θ) = U(`′;θ ′) for
each ` ∈ f (θ) and each `′ ∈ f (θ ′).
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Step 4: f 1 and f 0 satisfy welfarism. It suffices to show that the rule f 1 satisfies wel-
farism, since the proof for the rule f 0 can be dealt with in a parallel way. Let θ ,θ ′ be such that
(S(θ ′),d(θ ′))= (S(θ),d(θ)). Then, U( f 1(θ);θ)=U( f 1(θ ′);θ ′), since (a1(S(θ),d(θ)),d2(θ))=
(a1(S(θ ′),d(θ ′)),d2(θ ′)). Hence, f 1 satisfies welfarism.

Step 5: Concluding. By Step 3, for each α ∈ (0,1), f α cannot induce any bargaining solu-
tions. Thus, by Step 4, it is sufficient to consider f 1 and f 0. Without loss of generality, we assume
f = f 1. Then, for each (S,d) ∈ Σ, F(S,d) = (a1(S,d),d2), where F is the bargaining solution
induced by the rule f 1. That is, F is dictatorial. It follows from Theorem 2.7 in Roemer (1996)
that F satisfies efficiency, scale invariance, and strong monotonicity.

We next show the “if” part. Let F be a bargaining solution satisfying efficiency, scale invari-
ance, and strong monotonicity. By Theorem 2.7 in Roemer (1996), the bargaining solution F is
dictatorial. Then, there exists a rule f inducing the bargaining solution F and an agent i ∈ N such
that for each type profile θ ∈Θ, f (θ) = `ei

. Hence, it is easily checked that the rule f is dominant
strategy implementable and satisfies the non-disagreement condition. �

A.3 Alternative proof of Theorem 2

Since the “if” part is straightforward, we prove the “only if” part. Let F be a bargaining solution
satisfying efficiency, scale invariance, and strong monotonicity.

Step 1: F(S,d) ∈ (a1(S,d),d2)∪ (d1,a2(S,d)) for each (S,d)∈ Σ. Suppose, by contradiction,
that F(S,d) /∈ (a1(S,d),d2)∪ (d1,a2(S,d)) for some (S,d) ∈ Σ. Then, efficiency implies that

F(S,d) ∈ ∂S\{(a1(S,d),d2),(d1,a2(S,d))} . (13)

Consider (S′,d) ∈ Σ such that S′ ⊃ S and ai(S′,d) = ai(S,d) for each i ∈ {1,2}. Then, strong
monotonicity implies F(S′,d) = F(S,d).

Next, consider (S′′,d) ∈ Σ and τ ′′ ∈ T such that S′′ ⊃ S′ and (S′′,d) = τ ′′(S,d), where τ ′′(S) ={
s′′ ∈ R2 : s′′ = τ ′′(s) = (τ ′′1 (s1),s2) for some s ∈ S

}
. Then, scale invariance implies F(S′′,d) =

τ ′′(F(S,d)). Since S′′ ⊃ S′, strong monotonicity implies F(S′′,d) = F(S′,d). Thus, we obtain
F(S′′,d) = τ ′′(F(S,d)) = F(S′,d) = F(S,d), which implies

F2(S′,d) = F2(S,d). (14)

Finally, consider (S′′′,d) ∈ Σ and τ ′′′ ∈ T such that S′′′ ⊃ S′ and (S′′′,d) = τ ′′′(S,d), where
τ ′′′(S) =

{
s′′′ ∈ R2 : s′′′ = τ ′′′(s) = (s1,τ

′′′
2 (s2)) for some s ∈ S

}
. Then, by reasoning similar to

that above, scale invariance and strong monotonicity together implies

F1(S′,d) = F1(S,d). (15)

By (14) and (15), we obtain F(S′,d) = F(S,d). Then, (13) and S′ ⊃ S together imply F(S′,d) /∈
∂S′, contradicting efficiency.

Step 2: F is dictatorial. Consider (S,d) ∈ Σ. Then, by Step 1, we have either F(S,d) =
(a1(S,d),d2) or F(S,d) = (d1,a2(S,d)). Without loss of generality, we assume that F(S,d) =
(a1(S,d),d2).

Consider (S′,d′) ∈ Σ. We shall show F(S′,d′) = (a1(S′,d′),d′2). Let (S̄,d′) ∈ Σ be such that
(i) S̄ ⊂ S′; (ii) a1(S̄,d′) = a1(S′,d′); and (iii) (S̄,d′) = τ(S,d) for some τ ∈ T . Then, scale in-
variance implies F(S̄,d′) = τ(F(S,d)). Thus F(S̄,d′) = (a1(S̄,d′),d′2). Therefore, by (i), strong
monotonicity implies that F(S̄,d′) 5 F(S′,d′). Combined with (ii), these imply (a1(S̄,d′),d′2) =
(a1(S′,d′),d′2) 5 F(S′,d′), which establishes F(S′,d′) = (a1(S′,d′),d′2). �
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A.4 Proof of Theorem 3

Let F be a bargaining solution satisfying efficiency, scale invariance, and strong monotonicity.
Then, there exists a rule f inducing the bargaining solution F by Remark 2. By Lemma 2, it is
sufficient to show that the rule f satisfies single-valuedness, ordinality, and Property λ .

Step 1: f satisfies single-valuedness. Since the utility possibility set is strictly convex, all
efficient lotteries are degenerate. Since F satisfies efficiency, f inducing F satisfies the following:
f (θ) chooses only an efficient lottery for each θ ∈Θ. Hence, f is single-valued.

Step 2: f satisfies ordinality. Suppose that f violates ordinality. Then, there exist θ ,θ ′ ∈ Θ

such that f (θ) 6= f (θ ′), but there exist no i ∈ N and `,`′ ∈ 4 such that Ui(`;θi) ≥Ui(`′;θi) and
Ui(`′;θ ′i ) > Ui(`;θ ′i ). This implies that θ and θ ′ yield the same v.N–M preference profile. Then,
there exists τ ∈ T such that τ(S(θ),d(θ)) = (S(θ ′),d(θ ′)). Since f is induced by F and satisfies
single-valuedness by Step 1, U( f (θ);θ) = F(S(θ),d(θ)) and U( f (θ ′);θ ′) = F(S(θ ′),d(θ ′)).
Hence,

τ(F(S(θ),d(θ))) = τ(U( f (θ);θ)) = U( f (θ);θ
′) 6= U( f (θ ′);θ

′) = F(S(θ ′),d(θ ′)),

which contradicts scale invariance.

Step 3: f satisfies Property λ . Let θ ∈Θ, i∈N, θ ′i ∈Θi, and λi ∈Λi be such that (S(θ ′i ,θ−i),d(θ ′i ,θ−i))=
λi(S(θ),d(θ)). Let (S,d) := (S(θ),d(θ)) and (S′,d′) := (S(θ ′i ,θ−i),d(θ ′i ,θ−i)). By scale invari-
ance, F(S′,d0) = F(S′,d′)−d′ and F(S,d0) = F(S,d)−d.

Choose τ ∈ T such that

τ(S′) = {s ∈ Rn : s = τ(s′) = (τi(s′i),s
′
−i) for some s′ ∈ S′} ⊃ S.

and τ(d0) = d0. Then, scale invariance implies that

F(τ(S′,d0)) = τ(F(S′,d0)). (16)

Since τ(S′)⊃ S, strong monotonicity implies

F(τ(S′,d0)) = F(S,d0). (17)

Next, consider τ ′ ∈ T such that

τ
′(S) = {s′ ∈ Rn : s′ = τ ′(s) = (τ ′i (si),s−i) for some s ∈ S} ⊃ τ(S′).

and τ ′(d0) = d0. Then, scale invariance implies

F(τ ′(S,d0)) = τ
′(F(S,d0)). (18)

Since τ ′(S)⊃ τ(S′), by strong monotonicity

F(τ ′(S,d0)) = F(τ(S′,d0)). (19)

By (17) and (19), F(τ ′(S,d0)) = F(τ(S′,d0)) = F(S,d0). Thus, by (16) and (18), τ ′(F(S,d0)) =
τ(F(S′,d0)) = F(S,d0), which implies Fj(S′,d0) = Fj(S,d0) for each j ∈ N \{i}. Since (S′,d′) =
λi(S,d), d′j = d j for each j ∈ N \ {i}. Thus, by scale invariance, Fj(S′,d′) = Fj(S′,d0) + d′j =
Fj(S,d0)+d j = Fj(S,d) for each j ∈ N \{i}. By efficiency,

F(S′,d′) = max
si

{
s ∈ S′ : s j = Fj(S,d) for any j ∈ N \{i}

}
= λi(F(S,d)).
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Since F is induced by f and satisfies single-valuedness by Step 1, U( f (θ);θ) = F(S(θ),d(θ)) and
U( f (θ ′i ,θ−i);(θ ′i ,θ−i))= F(S(θ ′i ,θ−i),d(θ ′i ,θ−i)). Thus, we can conclude that Ui( f (θ ′i ,θ−i);θ ′i )=
λi(Ui( f (θ);θi)). Hence, f satisfies Property λ .

Step 4: Concluding. By Steps 1–3, it follows from Lemma 2 that f is dominant strategy
implementable. �

A.5 Proof of Theorem 4

Let (S,d) ∈ Σ. Let θ ∈ Θ be such that (S(θ),d(θ)) = (S,d). Since f is dominant strategy imple-
mentable, it follows from Lemma 2 that f is single-valued. By Remark 5, f (θ) ∈4P∪{`0}. By
the non-disagreement condition, f (θ)∈4P, which implies U( f (θ);θ)∈ ∂S(θ). Since F induced
by f , we have F(S,d) = F(S(θ),d(θ)) =U( f (θ);θ)∈ ∂S(θ) = ∂S. Hence, F satisfies efficiency.
�
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