
 
 
 
 
 
 
 

Research Paper Series 
 

No. 17 
 
 

A Maximal Domain for the Existence of 
Bribe-proof Rules 

 
Takuma Wakayama†

 
November, 2006 

                                                  
†Faculty of Urban Liberal Arts, Tokyo Metropolitan University, 1-1 Minami-Osawa, 
Hachiouji, Tokyo 192-0397, JAPAN; t_waka@center.tmu.ac.jp 



A Maximal Domain for the Existence of
Bribe-proof Rules∗

Takuma Wakayama†

Faculty of Urban Liberal Arts, Tokyo Metropolitan University

t waka@center.tmu.ac.jp

November 29, 2006

Abstract

This paper considers the problem of allocating an amount of a perfectly di-
visible good among agents. First, we prove that when the amount of the good
is fixed, the uniform rule is the only rule satisfying bribe-proofness (Schum-
mer, 2000) and symmetry on the single-peaked domain. Next, we examine
how large a preference domain can be to allow for the existence of bribe-proof
and symmetric rules when the amount of the good is a variable. We demon-
strate that the convex domain is the unique maximal domain including the
single-peaked one for bribe-proofness and symmetry when the amount of the
good is a variable.
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1 Introduction

We are considering economies characterized as “allotment economies” where there

exists an amount of one perfectly divisible good that is not freely disposable, each

agent has a preference relation on the consumption levels of the good, and the

amount of the good is allocated among agents.1 When the amount of the good is

fixed, an “economy” is described by a preference profile. A set of preference profiles

is called a “preference domain.” A “rule” is a mapping defined on a preference

domain, which assigns a feasible allocation of the good to each economy.

Sprumont (1991) introduced the axiomatic analysis of this class of problems us-

ing the “single-peaked domain.”2 The axioms he considered are strategy-proofness,

Pareto-efficiency, and anonymity. Strategy-proofness is the requirement that each

agent cannot be better off by her own misrepresentations regardless of the other

agents’ representations. Pareto-efficiency requires that agents cannot obtain better

consumption levels by redistributing their original consumption levels. Anonymity is

the requirement that whenever the preferences of two agents are switched, their con-

sumption levels are also switched. Sprumont (1991) demonstrated that the “uniform

rule” (Benassy, 1982) is the unique strategy-proof, Pareto-efficient, and anonymous

rule on the single-peaked domain. Ching (1994) strengthened Sprumont’s result by

replacing anonymity with a weaker axiom, symmetry; this axiom states that if two

agents’ preferences are the same, their welfare from allocation should be the same.

A strategy-proof rule is not necessarily immune from strategic behavior by a

coalition of agents. If a rule is immune from strategic behavior by any kind of

coalition, then the rule is said to be coalitionally strategy-proof. The larger the

coalition, the more difficult it is for the coalition to manipulate. Thus, society

does not need to be concerned about manipulations from large coalitions. Hence,

coalitional strategy-proofness is quite a strong requirement. Nevertheless, a collusion

between two agents is relatively easy. Thus, it is plausible that an agent can be

bribed by another agent to misrepresent her preferences. We are interested in rules

that eliminate the possibility of this type of manipulation. Such rules are said to

be bribe-proof. The concept of bribe-proofness was first introduced by Schummer

(2000).3

1The model has been given several interpretations. See Sprumont (1991) and Barberà et
al. (1997).

2“Single-peakedness” denotes that each agent has a most preferred consumption level and above
or below this preferred consumption level welfare is decreasing. The “single-peaked domain” is the
set of all single-peaked preference profiles.

3Serizawa (2006) proposed a similar concept of bribe-proofness. Called effective pairwise
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Schummer (2000) and Mizukami (2003) studied bribe-proofness in the public good

economies with quasi-linear preferences, and proved that it is essentially impossible

to design a non-trivial bribe-proof rule on many domains. In contrast to their

negative results, we demonstrate that in allotment economies, there is a non-trivial

bribe-proof rule on a naturally restricted domain. We assume that the perfectly

divisible good is freely transferable among agents. As a result, the condition of bribe-

proofness is natural. In this paper, we provide a new characterization of the uniform

rule on the single-peaked domain by employing bribe-proofness. We show that the

uniform rule on the single-peaked domain is a unique bribe-proof and symmetric rule

(Theorem 1).

We then ask how much the single-peaked domain can be enlarged to maintain

the existence of bribe-proof and symmetric rules. Ching and Serizawa (1998) studied

a similar question in allotment economies.4 The model of Ching and Serizawa (1998)

is different from Sprumont (1991) in that rules have the amount of the good to be

allocated as a variable, and each economy is characterized by a pair of one prefer-

ence profile and the amount of the good. We adapt the same setting as Ching and

Serizawa (1998) in identifying maximal domains including the single-peaked one for

bribe-proofness and symmetry. They showed that the “single-plateaued domain”5 is

the unique maximal domain including the single-peaked one for strategy-proofness,

Pareto-efficiency, and symmetry. Bribe-proofness implies strategy-proofness and

Pareto-efficiency on the single-peaked domain. Thus, one might conjecture that the

single-plateaued domain is also the unique maximal domain including the single-

peaked one for bribe-proofness and symmetry. However, this conjecture is incorrect.

We demonstrate that the “convex domain,”6 which is strictly larger than the single-

plateaued domain, is the unique maximal domain including the single-peaked one

for bribe-proofness and symmetry (Theorem 2).

strategy-proofness, it requires that the rule must be immune to unilateral manipulation and self-
enforcing pairwise manipulation in the sense that no pair of agents has an incentive to betray the
partner. He provided an alternative characterization of the uniform rule by employing effective
pairwise strategy-proofness. In Appendix B, we examine the relationship between bribe-proofness
and effective pairwise strategy-proofness.

4In other environments, a number of articles have identified maximal preference domains al-
lowing for strategy-proof (or coalitionally strategy-proof) social choice functions. A partial list of
such articles includes Barberà et al. (1991), Serizawa (1995), Berga and Serizawa (2000) for voting
environments, and Ehlers (2002) for house allocation problems.

5“Single-plateaued preferences” are variants of single-peaked preferences for which the sets of
most preferred consumption levels are intervals. The “single-plateaued domain” is the set of all
single-plateaued preference profiles.

6A preference is “convex” if its upper contour set of any consumption level is convex. The
“convex domain” is the set of all convex preference profiles.
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Massò and Neme (2006) studied a problem similar to this paper. They inves-

tigated the set of strongly bribe-proof rules in allotment economies. Strong bribe-

proofness is the property that no coalition of agents can compensate another agent

to misrepresent her preferences, making all the members of the coalition better off

after an appropriate redistribution. They first considered the possibility of manip-

ulations through bribes in allotment economies. As mentioned earlier, collusion is

especially difficult for a large coalition. However, it is relatively easy for pairs of

agents to coordinate their preference revelations and to arrange transfers. Thus, in

this paper, we weaken strong bribe-proofness by restricting collusion to pairwise one.

The paper proceeds as follows: The next section provides notation and defini-

tions. Section 3 demonstrates the main results. Section 4 concludes with remaining

problems. Appendix A contains proofs omitted from the main text. Appendix B

examines the relationship between bribe-proofness and effective pairwise strategy-

proofness. Appendix C establishes the independence of axioms in Theorem 1.

2 Preliminaries

We consider the problem of allocating one perfectly divisible private good among

agents. We denote the set of agents by N = {1, 2, . . . , n}, where 2 ≤ n < +∞. Let

M ∈ R++ be the amount of the good that has to be distributed among agents. Note

that free disposal of the good is not allowed.

Let R+ = R+ ∪ {+∞}. Each agent i ∈ N has a preference relation Ri over

R+. By Ii, we denote the indifference relation associated with Ri; i.e., for each

x, y ∈ R+, xIiy if and only if xRiy and yRix. By Pi, we denote the strict preference

relation associated with Ri; i.e., for each x, y ∈ R+, xPiy if and only if xRiy and not

yRix. We assume that preferences are continuous; i.e., for each x ∈ R++, the sets

{y ∈ R+ : yRix} and {y ∈ R+ : xRiy} are closed. Let R be the set of all continuous

preferences. Given Ri ∈ R, let p(Ri) = {x ∈ R+ : xRiy for each y ∈ R+} be the set

of preferred consumption levels for Ri. Let p(Ri) = inf p(Ri) and p(Ri) = sup p(Ri).

If p(Ri) is a singleton, then we slightly abuse notation and denote by p(Ri) the

single element. Let Rn be the set of preference profile R = (R1, R2, . . . , Rn), where

Ri ∈ R for each i ∈ N . We often denote N \ {i} by “−i.” With this notation,

(R′
i, R−i) is the preference profile where agent i’s preference relation is R′

i, and the

preference relation of agent j 6= i is Rj. We name a pair (R,M) ∈ Rn × R++ an

economy.

Let Z(M) =
{
z = (z1, z2, . . . , zn) ∈ Rn

+ :
∑

i∈N zi = M
}

be the set of allocations
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for (R,M) ∈ Rn × R++, where agent i ∈ N receives zi. A subset Rn
a of Rn

represents a domain. A rule is a function ϕ : Rn
a ×R++ → Rn

+ associating with each

economy (R,M) ∈ Rn
a × R++ an allocation ϕ(R) ∈ Z(M). We denote by ϕi(R,M)

the amount of the good allocated to agent i ∈ N . When we want to emphasize the

domain of a rule, we name it a rule on Rn
a × R++.

In this paper, we focus on preferences with the following restrictions. A prefer-

ence relation Ri ∈ R is single-peaked if p(Ri) is a singleton and for each x, y ∈ R+,

we have xPiy whenever y < x ≤ p(Ri) or p(Ri) ≤ x < y. Let Rn
S ⊆ Rn be the

set of all single-peaked preference profiles. We name it the single-peaked domain. A

preference relation Ri ∈ R is single-plateaued if p(Ri) is an interval [p(Ri), p(Ri)]

and for each x, y ∈ R+ such that y < x ≤ p(Ri) and p(Ri) ≤ x < y, xPiy. Let

Rn
SP ⊆ Rn be the set of all single-plateaued preference profiles. We name it the

single-plateaued domain. A preference relation Ri ∈ R is convex if p(Ri) is an inter-

val [p(Ri), p(Ri)] and for each x, y ∈ R+ such that y < x ≤ p(Ri) and p(Ri) ≤ x < y,

xRiy. Let Rn
C ⊆ Rn be the set of all convex preference profiles. We name it the

convex domain. Note that Rn
S ⊂ Rn

SP ⊂ Rn
C .

We now introduce several axioms. Strategy-proofness is an incentive compat-

ibility property, which requires that no agent should be able to misrepresent her

preferences in a way that results in a direct gain to her, irrespective of the other

agents’ representations. Bribe-proofness, which was first introduced by Schummer

(2000), requires each agent to have no incentive to bribe another agent to misrepre-

sent in order to jointly benefit, irrespective of what the other agents represent.7

Strategy-proofness: For each (R,M) ∈ Rn
a ×R++, each i ∈ N , and each R′

i ∈ Ra,

ϕi(R,M)Riϕi(R
′
i, R−i,M).

Bribe-proofness: For each (R,M) ∈ Rn
a × R++ and each i, j ∈ N , there exist no

R′
i ∈ Ra and b ∈ R such that (ϕi(R

′
i, R−i,M)+ b)Piϕi(R,M) and (ϕj(R

′
i, R−i,M)−

b)Pjϕj(R,M).

Remark 1. By choosing i = j and b = 0, bribe-proofness implies strategy-proofness.

Next, we introduce the standard requirement of efficiency, Pareto-efficiency.

Pareto-efficiency: For each (R,M) ∈ Rn
a ×R++, there is no z ∈ Z(M) such that

for each i ∈ N , ziRiϕi(R,M), and for some j ∈ N , zjPjϕj(R,M).

We provide the following fact that will be useful.
7See Schummer (2000) for a more detailed discussion.
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Fact 1. If a rule ϕ on Rn
S × R++ is Pareto-efficient, then for each (R,M) ∈ Rn

S ×
R++, the following properties hold:

If
∑

i∈N p(Ri) ≤ M , then for each i ∈ N , p(Ri) ≤ ϕi(R,M). If
∑

i∈N p(Ri) ≥ M ,

then for each i ∈ N , p(Ri) ≥ ϕi(R,M).

Proof: Consider the case where
∑

i∈N p(Ri) ≤ M . Suppose, by way of contra-

diction, that there exists j ∈ N such that p(Rj) > ϕj(R,M). By feasibility,

there exists k ∈ N \ {j} such that p(Rk) < ϕk(R,M). Let ε = min{ϕk(R,M) −
p(Rk), p(Rj) − ϕj(R,M)}. Let z = (z1, z2, . . . , zn) be such that zj = ϕj(R,M) + ε,

zk = ϕk(R,M)− ε, and zi = ϕi(R,M) for each i ∈ N \{j, k}. Then the allocation z

Pareto-dominates ϕ(R,M). This is a contradiction. By the same way as the above,

we can prove the case where
∑

i∈N p(Ri) ≥ M .

Finally, we introduce the distributional requirement called symmetry. This con-

dition requires the rule that no agent be treated unfairly.

Symmetry: For each (R,M) ∈ Rn
a × R++ and each i, j ∈ N such that Ri = Rj,

ϕi(R,M)Iiϕj(R,M).

3 Main Results

3.1 Characterization

In this subsection, we seek rules satisfying bribe-proofness and symmetry on the

single-peaked domain. Ching (1994) showed that the following rule, known as the

uniform rule (Benassy, 1982), is the only rule on the single-peaked domain that

satisfies strategy-proofness, Pareto-efficiency, and symmetry.

Definition 1. The uniform rule U = (U1, U2, . . . , Un) is defined as follows: For each

(R,M) ∈ Rn
S × R++ and each i ∈ N ,

Ui(R,M) =

{
min{p(Ri), λ(R,M)} if M ≤

∑
i∈N p(Ri);

max{p(Ri), λ(R,M)} otherwise,

where λ(R,M) solves
∑

i∈N Ui(R,M) = M .

Ching’s (1994) characterization holds when M is fixed. The result also holds

when M is not fixed. That is, the characterization when M is fixed implies the

characterization when M is not fixed. Thus, we first demonstrate our characteriza-

tion when M is fixed.
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Before proceeding, let us introduce additional notation. Given M ∈ R++, we

define RS(M) as the set of single-peaked preferences obtained by restricting on

[0,M ] all preferences in RS. We denote by Ri(M) a generic element of RS(M).

When M is fixed and a domain is RS(M)n, we consider that agent i’s single-

peaked preference relation is defined only on [0,M ], an economy is represented

by a list R(M) = (R1(M), R2(M), . . . , Rn(M)) ∈ RS(M)n, and a rule is a function

ϕ(·,M) : RS(M)n → Z(M). Bribe-proofness, strategy-proofness, Pareto-efficiency,

and symmetry are similarly defined in this setting. Thus, we omit their definitions.

Fact 2. Let M ∈ R++. If a rule ϕ(·,M) on the single-peaked domain RS(M)n

satisfies bribe-proofness, then it satisfies Pareto-efficiency.

Proof: Suppose, by way of contradiction, that a solution ϕ(·,M) on the single-

peaked domain RS(M)n is not Pareto-efficient. Then, there exist R(M) ∈ RS(M)n

and (z1, z2, . . . , zn) ∈ Z(M) such that ziRi(M)ϕi(R(M),M) for each i ∈ N and

zjPj(M)ϕj(R(M),M) for some j ∈ N . Without loss of generality, zj > ϕj(R(M),M).

Then, by feasibility, there exists k ∈ N \ {j} such that zk < ϕk(R(M),M). By

Rj(M), Rk(M) ∈ RS(M), we have p(Rj(M)) > ϕj(R(M),M) and p(Rk(M)) <

ϕk(R(M),M). Let b = min{p(Rj(M))−ϕj(R(M),M), ϕk(R(M),M)−p(Rk(M))}.
Let R′

j(M) = Rj(M). Then we have (ϕj(R(M),M) + b)Pj(M)ϕj(R(M),M) and

(ϕk(R(M), M)− b)Pk(M)ϕk(R(M),M), which is a contradiction to bribe-proofness.

Remark 1 and Fact 2 convey that bribe-proofness implies strategy-proofness and

Pareto-efficiency on the single-peaked domain. However, it is interesting to note

that on the single-peaked domain, strategy-proofness and Pareto-efficiency do not

imply bribe-proofness (See Example 1 in Massò and Neme (2006)).

Now we offer a new characterization of the uniform rule on the single-peaked

domain.

Theorem 1. Let M ∈ R++. A rule ϕ(·,M) on the single-peaked domain RS(M)n

satisfies bribe-proofness and symmetry if and only if ϕ(R(M),M) = U(R(M),M)

for each R(M) ∈ RS(M)n.

Proof: The proof of the “if” part is tedious but not difficult. The proof of the

“if” part is in Appendix A. Thus, we prove the “only if” part. Suppose that a rule

ϕ(·,M) on the single-peaked domain RS(M)n satisfies bribe-proofness and symmetry.
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By Remark 1 and Fact 2, bribe-proofness implies strategy-proofness and Pareto-

efficiency. Hence, by Ching (1994), ϕ(R(M),M) = U(R(M),M) for each R(M) ∈
RS(M)n.

Theorem 1 states that when M is fixed, the uniform rule is the unique rule satis-

fying bribe-proofness and symmetry on the single-peak domain. The characterization

when M is not fixed is a corollary of Theorem 1.

Corollary 1. A rule ϕ on the single-peaked domain Rn
S × R++ satisfies bribe-

proofness and symmetry if and only if ϕ(R,M) = U(R,M) for each (R,M) ∈
Rn

S × R++.

3.2 Maximal Domain

In subsection 3.1, we characterized the set of all bribe-proof and symmetric rules

when each agent has single-peaked preferences. How much can the single-peaked

domain be enlarged to allow for the existence of bribe-proof and symmetric rules?

Following Ching and Serizawa (1998), we introduce the following notion to address

this question.

Definition 2. A domain Rn
m is a maximal domain for a list of axioms if

(i) Rn
m ⊆ Rn;

(ii) there is a rule on Rn
m × R++ satisfying the axioms;

(iii) there is no rule satisfying the same axioms on any Rn
a × R++ such that Rn

m ⊂
Rn

a ⊆ Rn.

Note that a maximal domain for a list of axioms may not be unique. However,

Ching and Serizawa (1998) proved that the single-plateaued domain is the unique

maximal domain including the single-peaked one for strategy-proofness, Pareto-

efficiency, and symmetry. On the single-peaked domain, based on Remark 1 and

Fact 2, bribe-proofness implies strategy-proofness and Pareto-efficiency. Taking ac-

count of Ching and Serizawa (1998), one might conjecture that the single-plateaued

domain is the unique maximal domain including the single-peaked one for bribe-

proofness and symmetry. However, this conjecture is incorrect. Before demonstrat-

ing this, we define the following rule, known as the extended uniform rule.
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Definition 3. The extended uniform rule U e = (U e
1 , U

e
2 , . . . , U

e
n) is defined as follows:

For each (R,M) ∈ Rn
C × R++ and each i ∈ N ,

U e
i (R,M) =


min{p(Ri), λ(R,M)} if M ≤

∑
i∈N p(Ri);

min{p(Ri), p(Ri) + λ(R,M)} if
∑

i∈N p(Ri) < M <
∑

i∈N p(Ri);

max{p(Ri), λ(R,M)} otherwise,

where λ(R,M) solves
∑

i∈N U e
i (R,M) = M .

Example 1 below illustrates that the extended uniform rule on the convex domain

is bribe-proof but not Pareto-efficient. This means that outside the single-plateaued

domain, bribe-proofness does not imply Pareto-efficiency. For this reason, the single-

plateaued domain is not a maximal domain including the single-peaked one for

bribe-proofness and symmetry.

Example 1. Let N = {1, 2, 3}. The extended uniform rule U e on R3
C×R++ satisfies

bribe-proofness, as shown by Claim 1 below. In this example, we want to demonstrate

that the extended uniform rule U e on R3
C × R++ does not satisfy Pareto-efficiency.

To demonstrate this, consider (R,M) ∈ R3
C × R++ such that M = 15 and for each

i ∈ N , Ri satisfies the following conditions:

• [p(Ri), p(Ri)] = [10, 12];

• for each x, y ∈ [5, 10] such that x > y, xPiy;

• for each x, y ∈ [0, 5], xIiy;

• for each x, y ∈ [12, 14] such that x < y, xPiy;

• for each x, y ∈ [14, +∞) ∪ {+∞}, xIiy;

• for each x ∈ [14, +∞) ∪ {+∞} and each y ∈ [0, 5], xPiy.

Since U e satisfies symmetry, U e(R) = (5, 5, 5). Let x = U e(R). Now, consider

an allocation y = (0, 7.5, 7.5). Then, x1I1y1, y2P2x2, and y3P3x3. Therefore, the

allocation y Pareto-dominates the allocation x. This denotes that U e on R3
C ×R++

does not satisfy Pareto-efficiency. ■

Theorem 2 below states that although bribe-proofness does not imply Pareto-

efficiency on the convex domain, the convex domain is the unique maximal domain

including the single-peaked one for bribe-proofness and symmetry. The maximal
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domain result of Ching and Serizawa (1998) states that there is no rule satisfying

strategy-proofness, Pareto-efficiency, and symmetry on any domain strictly larger

than the single-plateaued domain. However, Theorem 2 below denotes that there

is a rule satisfying bribe-proofness and symmetry on the convex domain. Thus, the

assumption of single-peakedness can be weakened if one insists on bribe-proofness

and symmetry.

Theorem 2. The convex domain is the unique maximal domain including the single-

peaked domain for bribe-proofness and symmetry.

The basic structure of the proof of Theorem 2 is similar to Ching and Ser-

izawa (1998). However, their proof method does not work for Theorem 2 since

bribe-proofness does not imply Pareto-efficiency outside the single-plateaued do-

main, as we demonstrated in Example 1.

Before proceeding to the proof of Theorem 2, we present a useful lemma. Lemma

1 below states that if a rule on a domain including the single-peaked domain sat-

isfies bribe-proofness, then symmetry implies strong symmetry, which requires that

whenever two agents have the same preference relation, they receive the same con-

sumption level; i.e., for each (R,M) ∈ Rn
a × R++ and each i, j ∈ N such that

Ri = Rj, ϕi(R,M) = ϕj(R,M).

Lemma 1. Let Rn
S ⊆ Rn

a ⊆ Rn. If a rule ϕ on Rn
a ×R++ satisfies bribe-proofness

and symmetry, then for each (R,M) ∈ Rn
a × R++ and each i, j ∈ N such that

Ri = Rj ∈ RS, ϕi(R,M) = ϕj(R,M).

Proof: Suppose, by contradiction, that there exist (R,M) ∈ Rn
a × R++ and i, j ∈

N such that Ri = Rj ∈ RS and ϕi(R,M) 6= ϕj(R,M). Since Ri = Rj ∈ RS

and ϕi(R,M) 6= ϕi(R,M), we have ϕi(R,M) 6= p(Ri) and ϕj(R,M) 6= p(Rj).

Otherwise, ϕi(R,M) = p(Ri) or ϕj(R,M) = p(Rj), and ϕi(R,M) 6= ϕj(R,M).

This is a contradiction to symmetry. Without loss of generality, ϕi(R,M) < p(Ri).

Since ϕi(R,M) 6= ϕj(R,M), by symmetry, we have ϕj(R,M) > p(Rj). Let b =

min{p(Ri) − ϕi(R,M), ϕj(R,M) − p(Rj)}. Then, by Ri = Rj ∈ RS, we have

(ϕi(R,M) + b)Piϕi(R,M) and (ϕj(R,M) − b)Pjϕj(R,M). This is a contradiction

to bribe-proofness.

Proof of Theorem 2: Let Rn
S ⊆ Rn

a ⊆ Rn. Suppose that there is a rule ϕ on

Rn
a × R++ satisfying bribe-proofness and symmetry. We will show that Rn

a ⊆ Rn
C .

Suppose, by contradiction, that there is R0 ∈ Ra \ RC . Let R0 ∈ Ra \ RC . Then,
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there exist three points x0 < y0 < z0 such that x0P0y0 and z0P0y0. Let

x∗
0 =

{
max{x′

0 ∈ [x0, y0] : x′
0I0x0} if z0R0x0

max{x′
0 ∈ [x0, y0] : x′

0I0z0} otherwise;

z∗0 =

{
min{z′0 ∈ [y0, z0] : z′

0I0x0} if z0R0x0

min{z′0 ∈ [y0, z0] : z′
0I0z0} otherwise.

Since R0 is continuous, x∗
0 and z∗0 are well-defined. Note that x0 ≤ x∗

0 < y0 <

z∗
0 ≤ z0, x∗

0I0z
∗
0 and for each x′

0 ∈ (x∗
0, z

∗
0), z∗

0P0x
′
0. Also, since R0 is continuous

and z∗0P0x
′
0 for each x′

0 ∈ (x∗
0, z

∗
0), there exists r ∈ (x∗

0, z
∗
0) such that x′P0x

′′ for each

x′, x′′ ∈ (x∗
0, r) with x′ < x′′. Pick any y ∈ (x∗

0, r). Let y = min{y′ ∈ (y, z∗0) : yI0y
′}.

Since R0 is continuous, y and y are well-defined. Note that yP0r and yI0y. By

definition, x0 ≤ x∗
0 < y < r < y < z∗

0 ≤ z0. This is illustrated in Figure 1.

Let M = ny. Let R′
0 ∈ RS be such that p(R′

0) ∈
(
y,

M−y

n−1

)
and MP ′

0y. See

Figure 2. Let R′ = (R′
1, R

′
2, . . . , R

′
n) be such that R′

i = R′
0 for each i ∈ N . By

Lemma 1, ϕ(R′,M) = (y, y, . . . , y). Let i ∈ N and Ri = R0. Without loss of

generality, assume that i = 1. We consider the allocation when agent 1 changes her

preferences from R′
1 to R1. We can distinguish two cases.

Case 1: ϕ1(R1,R
′
−1,M) = ϕ1(R

′,M).

Since ϕ1(R1, R
′
−1,M) = y,

∑
j∈N\{1} ϕj(R1, R

′
−1,M) = (n − 1)y. By Lemma

1, ϕj(R1, R
′
−1,M) = y for each j ∈ N \ {1}. Let b = ϕ1(R1, R

′
−1,M) − x∗

0 and

i ∈ N \ {1}. Then, (ϕ1(R1, R
′
−1,M) − b)P1ϕ1(R1, R

′
−1, M) and (ϕi(R1, R

′
−1,M) +

b)P ′
iϕi(R1, R

′
−1,M), contradicting bribe-proofness.

Case 2: ϕ1(R1,R
′
−1,M) 6= ϕ1(R

′,M).

We can also distinguish three subcases.

Subcase 2-1: y < ϕ1(R1,R
′
−1,M).

In this subcase, we have ϕ1(R1, R
′
−1,M)P ′

1ϕ1(R
′,M). Thus, agent 1 with pref-

erences R′
1 can gain by announcing false preferences R1, in violation of strategy-

proofness (hence contradicting bribe-proofness).

Subcase 2-2: y < ϕ1(R1,R
′
−1,M) < y.

In this subcase, we have ϕ1(R
′,M)P1ϕ1(R1, R

′
−1M). Thus, agent 1 with pref-

erences R1 can gain by announcing false preferences R′
1, in violation of strategy-

proofness (hence contradicting bribe-proofness).

11



Subcase 2-3: ϕ1(R1,R
′
−1,M) ≤ y.

Let R′′
1 ∈ RS be such that p(R′′

1) ≤ ϕ1(R1, R
′
−1,M). See Figure 3. By Corol-

lary 1, ϕ(R′′
1, R

′
−1,M) = U(R′′

1, R
′
−1,M). Since p(R′′

1) ≤ y and p(R′
j) ∈

(
y,

M−y

n−1

)
for each j ∈ N \ {1}, p(R′′

1) +
∑

j∈N\{1} p(R′
j) < M . By the definition of U ,

λ(R′′
1, R

′
−1,M) ≤ y. Otherwise, since y < λ(R′′

1, R
′
−1,M) ≤ Uj(R

′′
1, R

′
−1,M) for

each j ∈ N \ {1}, we have M <
∑

j∈N Uj(R
′′
1, R

′
−1,M) = M , a contradiction.

Therefore, ϕ1(R
′′
1, R

′
−1,M) = M − (n − 1)p(R′

0) and ϕj(R
′′
1, R

′
−1,M) = p(R′

j) for

each j ∈ N \ {1}. Thus, since p(R′
0) ∈

(
y,

M−y

n−1

)
, ϕ1(R

′′
1, R

′
−1,M) ∈ (y, y). Since

p(R′′
1) ≤ ϕ1(R1, R

′
−1,M) < ϕ1(R

′′
1, R

′
−1,M), ϕ1(R1, R

′
−1,M)P ′′

1 ϕ1(R
′′
1, R

′
−1,M). See

Figure 4. Thus, agent 1 with preferences R′′
1 can gain by announcing false preferences

R1, contradicting strategy-proofness (hence contradicting bribe-proofness).

Since we obtain contradiction in all cases, Rn
a ⊆ Rn

C .

The proof of Theorem 2 is completed by constructing a rule satisfying bribe-

proofness and symmetry on the convex domain. It can be easily verified that the

extended uniform rule defined in Definition 3 satisfies symmetry. Thus, to complete

the proof, it is sufficient to show that the extended uniform rule on the convex

domain satisfies bribe-proofness.8

Claim 1. The extended uniform rule U e on the convex domain Rn
C × R++ satisfies

bribe-proofness.

The rather tedious proof of Claim 1 is omitted but available in Appendix A.

Remark 2. We can easily demonstrate that if there exists a rule defined on a domain

satisfying bribe-proofness and strong symmetry, then that domain is a subdomain of

the convex domain. The proof of this result is in Appendix A.

4 Conclusion

This paper concludes with two main results. First, we obtained an alternative char-

acterization of the uniform rule by using bribe-proofness instead of strategy-proofness

and Pareto-efficiency (Theorem 1). Secondly, by exploiting our characterization, we

showed that the maximal domain including the single-peaked one for bribe-proofness

and symmetry is unique and it is the convex domain that is strictly larger than the

8Whether the extended uniform rule is the only rule satisfying bribe-proofness and symmetry
on the convex domain is open.
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single-plateaued domain (Theorem 2). Our maximal domain result means that the

assumption of single-peakedness can be weakened if one insists on bribe-proofness

and symmetry.

In the following, we discuss three remaining problems. First, to identify maximal

domains, we formulate rules as functions of preference profiles and the amounts of

the good. Thus, our maximal domain result does not apply when the amount of

the good is fixed and the rule is only a function of preference profile. Therefore, our

maximal domain result does not exclude the possibility that when the amount of

the good is fixed, there exist rules satisfying bribe-proofness and symmetry on larger

domain than the convex domain. Massò and Neme (2001) obtained maximal domain

for rules satisfying strategy-proofness, Pareto-efficiency, and strong symmetry when

the amount of the good is fixed. Thus, the following question requires an answer:

When the amount of the good is fixed, what domain is a maximal domain including

the single-peaked one for bribe-proofness and symmetry (or strong symmetry)?

Second, if a rule satisfies bribe-proofness on a domain, it also satisfies bribe-

proofness on any subdomain. In public good economies, Schummer (2000) demon-

strated that bribe-proofness is so strong on the rich domain that only the constant

rule can satisfy bribe-proofness. Thus, the larger the domain on which rules are

required to satisfy bribe-proofness, the stronger is the requirement. Similarly, sym-

metry is stronger on larger domains. Therefore, the smaller the domain, the more

rules satisfying bribe-proofness and symmetry potentially exist.9 Indeed, Schum-

mer (2000) demonstrated that the median voter rule satisfies bribe-proofness on

the extremely small domain. Mizobuchi and Serizawa (2006) considered minimal

domains on which strategy-proofness, Pareto-efficiency, and symmetry imply the

uniqueness of the rule. They established that a rule on a minimally rich domain10

satisfies strategy-proofness, Pareto-efficiency, and symmetry if and only if it is the

uniform rule. Thus, the following question requires an answer: How much can we

shrink the single-peaked domain while preserving the uniform rule as the unique

rule satisfying bribe-proofness and symmetry?

Third, Barberà et al. (1997) demonstrated that many rules on the single-peaked

domain satisfy strategy-proofness and Pareto-efficiency. They identified the func-

9Generally speaking, since the degrees of freedom in designing rules increase with the larger
domain, there might be an interesting rule satisfying axioms on the larger domain.

10A minimally rich domain is a small subset of the single-peaked domain satisfying the following
two conditions: (i) for each consumption level, there exists only one preference whose peak coincides
with the consumption level; (ii) given two distinct consumption levels, say x and y, there exists at
least one preference whose peak is between x and y such that x is preferred to y.
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tional form of all strategy-proof, Pareto-efficient, and replacement monotonic11 rules

on the single-peaked domain. It is the class of all sequential rules. Massò and

Neme (2006) demonstrated that the class of all strongly bribe-proof and peak-only12

rules on the single-peaked domain is strictly larger than the class of all sequential

rules. This paper does not identify the functional form of all bribe-proof rules on the

single-peaked domain.

11The condition of replacement monotonicity states that if an agent receives a larger consump-
tion level after changing her preference relation then all the other agents should receive smaller
consumption levels.

12The condition of peak-only states that the amount allocated to agents depends only on their
peaks.
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A Appendix: Proofs

A.1 Proof of the “if” Part of Theorem 1

To simplify notation, we denote RS(M) by RS throughout the proof of the “if” part

of Theorem 1. We denote a generic element of R(M) by R instead of R(M). For

the same reason, ϕ(R,M), U(R,M), and Z(M) are replaced by ϕ(R), U(R), and

Z, respectively.

Before proceeding to the proof, we introduce additional notation and provide

lemmas. For any three numbers α, β, γ ∈ [0,M ], define med{α, β, γ} as the number

z ∈ {α, β, γ} such that #{z′ ∈ {α, β, γ} : z′ ≥ z} ≥ 2 and #{z′ ∈ {α, β, γ} : z′ ≥
z} ≤ 2.13

Lemma 2 (Sprumont, 1991). Let a rule ϕ on the single-peaked domain Rn
S be

strategy-proof and Pareto-efficient. Then, for each i ∈ N and each R ∈ Rn
S , there

exist αi : Rn−1
S → [0,M ] and βi : Rn−1

S → [0,M ] such that αi(R−i) ≤ βi(R−i) and

ϕi(R) = med{αi(R−i), βi(R−i), p(Ri)}.

Proof: See Sprumont (1991).

Since the uniform rule U on the single-peaked domain Rn
S satisfies strategy-

proofness and Pareto-efficiency (Ching, 1994), Lemma 2 holds for the uniform rule.

Non-bossiness, which was introduced by Satterthwaite and Sonnenschein (1981),

requires that if an agent changes her preferences but her allocation is unchanged,

then the allocation of each agent should be unchanged.

Non-bossiness: For each R ∈ Rn, each i ∈ N , and each R′
i ∈ R, if ϕi(R) =

ϕi(R
′
i, R−i), then ϕ(R) = ϕ(R′

i, R−i).

Lemma 3. The uniform rule U on the single-peaked domain Rn
S satisfies non-

bossiness.

Proof: Let R ∈ Rn
S , i ∈ N , and R′

i ∈ RS be such that Ui(R) = Ui(R
′
i, R−i). We

only consider the case where
∑

j∈N p(Rj) ≥ M , since a similar argument holds when∑
j∈N p(Rj) < M . We can distinguish two cases.

Case 1:
∑

j∈N\{i} p(Rj) + p(R′
i) ≥ M .

13Given a set B, we denote the cardinality of B by #B.
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In this case, by the definition of U , we obtain that for each j ∈ N \ {i}, Uj(R) =

min{p(Ri), λ(R)} and Uj(R
′
i, R−i) = min{p(Ri), λ(R′

i, R−i)}. Thus, we have either

Uj(R) ≥ Uj(R
′
i, R−i) for each j ∈ N \ {i}, or

Uj(R) ≤ Uj(R
′
i, R−i) for each j ∈ N \ {i}.

If there exists k ∈ N \ {i} such that Uk(R) > Uk(R
′
i, R−i) or Uk(R) < Uk(R

′
i, R−i),

then
∑

j∈N Uj(R) >
∑

j∈N Uj(R
′
i, R−i) or

∑
j∈N Uj(R) <

∑
j∈N Uj(R

′
i, R−i). This is

a contradiction to feasibility. Hence, U(R) = U(R′
i, R−i).

Case 2:
∑

j∈N\{i} p(Rj) + p(R′
i) < M .

In this case, by the definition of U , we have Uj(R) = min{p(Ri), λ(R)} ≤
max{p(Ri), λ(R′

i, R−i)} = Uj(R
′
i, R−i) for each j ∈ N \{i}. If there exists k ∈ N \{i}

such that Uk(R) < Uk(R
′
i, R−i), then

∑
j∈N Uj(R) <

∑
j∈N Uj(R

′
i, R−i), which is a

contradiction to feasibility. Hence, U(R) = U(R′
i, R−i).

Lemma 4. The uniform rule U on the single-peaked domain Rn
S satisfies bribe-

proofness.

Proof: Suppose, by contradiction, that the uniform rule U on the single-peaked

domain Rn
S is not bribe-proof. Then, there exist R ∈ Rn

S , i, j ∈ N , R′
i ∈ RS, and

b ∈ R such that (Ui(R
′
i, R−i) + b)PiUi(R) and (Uj(R

′
i, R−i) − b)PjUj(R).

Now, assume that
∑

j∈N p(Rj) ≥ M . By the definition of the uniform rule U ,

p(Rk) ≥ Uk(R) for each k ∈ N . Then (Ui(R
′
i, R−i) + b)PiUi(R) and (Uj(R

′
i, R−i) −

b)PjUj(R) together imply Ui(R
′
i, R−i) + b > Ui(R) and Uj(R

′
i, R−i) − b > Uj(R).

Thus, by feasibility, we have

Ui(R
′
i, R−i) + Uj(R

′
i, R−i) > Ui(R) + Uj(R); (1)∑

k∈N\{i,j}

Uk(R
′
i, R−i) <

∑
k∈N\{i,j}

Uk(R). (2)

Agent i might have an incentive to be bribed only if p(Ri) > Ui(R). Thus, we have

Ui(R) = min{p(Ri), λ(R)} = λ(R).

If agent i reports R′
i ∈ RS such that p(R′

i) ≥ p(Ri), she gets Ui(R
′
i, R−i) =

min{p(R′
i), λ(R′

i, R−i)}. Since Ui(R) < p(Ri), it follows from Lemma 2 that Ui(R) =

med{αi(R−i), βi(R−i), p(Ri)} = βi(R−i). Also, since p(R′
i) ≥ p(Ri), it follows from

Lemma 2 that Ui(R
′
i, R−i) = med{αi(R−i), βi(R−i), p(R′

i)} = βi(R−i). Therefore,
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we obtain Ui(R) = Ui(R
′
i, R−i). Thus, by non-bossiness (Lemma 3), U(R) =

U(R′
i, R−i), which is a contradiction to (1) and (2).

Let R′
i ∈ RS be such that p(Ri) > p(R′

i). There are two cases.

Case 1:
∑

j∈N\{i} p(Rj) + p(R′
i) ≥ M.

Then, agent i gets min{p(R′
i), λ(R′

i, R−i)}. We can also distinguish two subcases.

Subcase 1-1: p(R′
i) ≥ λ(R).

Since Ui(R) < p(Ri), by the definition of U and Lemma 2, λ(R) = Ui(R) =

med{αi(R−i), βi(R−i), p(Ri)} = βi(R−i). Since p(R′
i) ≥ λ(R) = βi(R−i), it follows

from Lemma 2 that Ui(R
′
i, R−i) = med{αi(R−i), βi(R−i), p(R′

i)} = βi(R−i). There-

fore, we obtain Ui(R) = Ui(R
′
i, R−i). Thus, by non-bossiness (Lemma 3), we have

U(R) = U(R′
i, R−i), which is a contradiction to (1) and (2).

Subcase 1-2: p(R′
i) < λ(R).

In this subcase, we have Ui(R) = λ(R) > min{p(R′
i), λ(R′

i, R−i)} = Ui(R
′
i, R−i).

By feasibility, there exists h ∈ N \ {i} such that Uh(R) < Uh(R
′
i, R−i), that is,

min{p(Rh), λ(R)} < min{p(Rh), λ(R′
i, R−i)}. This implies that λ(R) < λ(R′

i, R−i).

Then, Uk(R
′
i, R−i) ≥ Uk(R) for each k ∈ N \ {i}, which implies that Ui(R

′
i, R−i) +

Uj(R
′
i, R−i) ≤ Ui(R) + Uj(R) and

∑
k∈N\{i,j} Uk(R

′
i, R−i) ≥

∑
k∈N\{i,j} Uk(R), con-

tradicting (1) and (2).

Case 2:
∑

k∈N\{i} p(Rj) + p(R′
i) < M.

In this case, Ui(R
′
i, R−i) = max{p(R′

i, R−i), λ(R′
i, R−i)}. By Lemma 2, Ui(R

′
i, R−i) =

med{αi(R−i), βi(R−i), p(R′
i)} ≤ βi(R−i) = Ui(R). Thus, we obtain Ui(R) = λ(R) ≥

max{p(R′
i), λ(R′

i, R−i)} = Ui(R
′
i, R−i). There are also two subcases.

Subcase 2-1: Ui(R) = Ui(R
′
i,R−i).

By non-bossiness (Lemma 3), U(R) = U(R′
i, R−i), contradicting (1) and (2).

Subcase 2-2: Ui(R) > Ui(R
′
i,R−i).

In this subcase, we have λ(R) > max{p(R′
i), λ(R′

i, R−i)}, that is, λ(R) > λ(R′
i, R−i).

This implies that for each k ∈ N \ {i}, Uk(R
′
i, R−i) = max{p(Rk), λ(R′

i, R−i)} ≥
min{p(Rk), λ(R)} = Uk(R). Since Ui(R) > Ui(R

′
i, R−i), it follows from feasibil-

ity that Ui(R
′
i, R−i) + Uj(R

′
i, R−i) ≤ Ui(R) + Uj(R) and

∑
k∈N\{i,j} Uk(R

′
i, R−i) ≥∑

k∈N\{i,j} Uk(R), contradicting (1) and (2).

A similar argument holds when
∑

j∈N p(Rj) < M , thus completing the proof.
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Let us prove the “if” part of Theorem 1.

Proof of the “if” Part of Theorem 1: By Lemma 4 and Ching (1994), the uni-

form rule U on Rn
S satisfies bribe-proofness and symmetry.

A.2 Proof of Claim 1

We distinguish three cases.

Case 1:
∑

k∈N p(Rk) ≥ M .

Suppose to the contrary that the extended uniform rule U e on the convex domain

Rn
C × R++ is not bribe-proof. Then, there exist (R,M) ∈ Rn

C × R++, i, j ∈ N , R′
i ∈

RC , and b ∈ R such that (U e
i (R′

i, R−i, M) + b)PiU
e
i (R,M) and (U e

j (R′
i, R−i, M) −

b)PjU
e
j (R,M). Then, by the definition of U e, p(Rk) ≥ U e

k(R,M) for each k ∈ N .

Thus, (U e
i (R′

i, R−i, M)+b)PiU
e
i (R,M) and (U e

j (R′
i, R−i,M)−b)PjU

e
j (R,M) together

imply U e
i (R′

i, R−i,M) + b > U e
i (R,M) and U e

j (R′
i, R−i,M) − b > U e

j (R,M). Then,

by feasibility, we have

U e
i (R′

i, R−i,M) + U e
j (R′

i, R−i,M) > U e
i (R,M) + U e

j (R,M); (3)∑
k∈N\{i,j}

U e
k(R′

i, R−i,M) <
∑

k∈N\{i,j}

U e
k(R,M). (4)

Agent i might have an incentive to be bribed only if p(Ri) > U e
i (R,M). Thus,

U e
i (R,M) = min{p(Ri), λ(R,M)} = λ(R,M).

If agent i reports R′
i ∈ RC such that p(R′

i) ≥ p(Ri), then
∑

k∈N\{i} p(Rk) +

p(R′
i) ≥ M . Thus, U e

i (R′
i, R−i,M) = min{p(R′

i), λ(R′
i, R−i,M)}.

Now we have either

(a) U e
i (R′

i, R−i,M) = p(R′
i) or

(b) U e
i (R′

i, R−i,M) = λ(R′
i, R−i,M).

Suppose (a) holds. Then, we have U e
i (R′

i, R−i,M) > U e
i (R,M). This means that

λ(R′
i, R−i,M) ≥ p(R′

i) ≥ p(Ri) > λ(R,M). Note that for each k ∈ N \ {i},

U e
k(R,M) = min{p(Rk), λ(R,M)};

U e
k(R′

i, R−i,M) = min{p(Rk), λ(R′
i, R−i,M)}.

Thus U e
k(R′

i, R−i, M) ≥ U e
k(R,M) for each k ∈ N \ {i}. This implies that M =∑

k∈N U e
k(R′

i, R−i,M) >
∑

k∈N U e
k(R,M) = M , a contradiction.
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Suppose (b) holds. If λ(R′
i, R−i,M) ≥ λ(R,M), then U e

k(R′
i, R−i,M) ≥ U e

k(R,M)

for each k ∈ N . If U e
j (R′

i, R−i,M) > U e
j (R,M) for some j ∈ N , then M =∑

k∈N U e
k(R′

i, R−i,M) >
∑

k∈N U e
k(R,M) = M , a contradiction. Thus, for each k ∈

N , U e
k(R′

i, R−i,M) = U e
k(R,M). However, this is a contradiction to (3) and (4). If

λ(R′
i, R−i,M) < λ(R,M), then U e

i (R′
i, R−i,M) < U e

i (R,M) and for each k ∈ N\{i},
U e

k(R′
i, R−i,M) ≤ U e

k(R,M). This implies that M =
∑

k∈N U e
k(R′

i, R−i,M) <∑
k∈N U e

k(R,M) = M , a contradiction.

Next, consider that agent i reports R′
i ∈ RC such that p(R′

i) < p(Ri). We also

distinguish three subcases.

Subcase 1-1:
∑

k∈N\{i} p(Rk) + p(R′
i) ≥ M .

Note that U e
i (R′

i, R−i,M) = min{p(R′
i), λ(R′

i, R−i,M)}. We further distinguish

three subsubcases.

Subsubcase 1-1-1: p(R′
i) > λ(R,M).

In this subsubcase, we obtain that λ(R,M) = λ(R′
i, R−i,M). Otherwise, M =∑

k∈N U e
k(R′

i, R−i,M) 6=
∑

k∈N U e
k(R,M) = M , a contradiction. Since λ(R,M) =

λ(R′
i, R−i,M), it follows from feasibility that for each k ∈ N , U e

k(R′
i, R−i,M) =

U e
k(R,M). However, this is a contradiction to (3) and (4).

Subsubcase 1-1-2: p(R′
i) = λ(R,M).

We have either

(a) U e
i (R′

i, R−i,M) = p(R′
i) or

(b) U e
i (R′

i, R−i,M) = λ(R′
i, R−i,M).

Suppose (a) holds. Then, U e
i (R′

i, R−i,M) = U e
i (R,M), that is, λ(R′

i, R−i,M) ≥
p(R′

i) = λ(R,M). This implies that U e
k(R′

i, R−i,M) ≥ U e
k(R,M) for each k ∈

N \ {i}. If there exists h ∈ N \ {i} such that U e
h(R′

i, R−i,M) > U e
h(R,M), then we

have M =
∑

k∈N U e
k(R′

i, R−i,M) >
∑

k∈N U e
k(R,M) = M , a contradiction. Thus, it

must be that U e
k(R′

i, R−i, M) = U e
k(R,M) for each k ∈ N \ {i}. However, this is a

contradiction to (3) and (4).

Suppose (b) holds. Then, U e
i (R′

i, R−i,M) ≤ U e
i (R,M), that is, λ(R′

i, R−i,M) ≤
p(R′

i) = λ(R,M). If λ(R′
i, R−i,M) < λ(R,M), then U e

i (R′
i, R−i,M) < U e

i (R,M)

and U e
k(R′

i, R−i,M) ≤ U e
k(R,M) for each k ∈ N \ {i}, which imply that M =∑

k∈N U e
k(R′

i, R−i,M) <
∑

k∈N U e
k(R,M) = M , a contradiction. If λ(R′

i, R−i, M) =

λ(R,M), U e(R,M) = U e(R′
i, R−i,M), which is a contradiction to (3) and (4).
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Subsubcase 1-1-3: p(R′
i) < λ(R,M).

In this subsubcase, we have U e
i (R,M) = λ(R,M) > min{p(R′

i), λ(R′
i, R−i,M)} =

U e
i (R′

i, R−i,M). By feasibility, there exists h ∈ N \ {i} such that

U e
h(R,M) < U e

h(R′
i, R−i,M). (5)

Now we have either

(a) U e
h(R,M) = p(Rh) or

(b) U e
h(R,M) = λ(R,M).

Suppose (a) holds. Then, we have U e
h(R′

i, R−i, M) = min{p(Rh), λ(R′
i, R−i, M)} ≤

U e
h(R,M), contradicting (5).

Suppose (b) holds. By (5), λ(R,M) < λ(R′
i, R−i,M). Then, U e

k(R′
i, R−i, M) ≥

U e
k(R,M) for each k ∈ N \ {i}, which implies that

∑
k∈N\{i,j} U e

k(R′
i, R−i,M) ≥∑

k∈N\{i,j} U e
k(R,M) and U e

i (R′
i, R−i,M)+U e

j (R′
i, R−i,M) ≤ U e

i (R,M)+U e
j (R,M).

This is a contradiction to (3) and (4).

Subcase 1-2:
∑

k∈N\{i} p(Rk) + p(R′
i) ≤ M .

In this subcase, U e
i (R′

i, R−i,M) = max{p(R′
i), λ(R′

i, R−i,M)} and U e
k(R′

i, R−i,M) =

max{p(Rk), λ(R′
i, R−i,M)} for each k ∈ N \ {i}. Note that for each k ∈ N \ {i},

U e
k(R,M) = min{p(Rk), λ(R,M)} ≤ p(Rk);

U e
k(R′

i, R−i,M) = max{p(Rk), λ(R′
i, R−i,M)} ≥ p(Rk),

that is,

U e
k(R′

i, R−i,M) ≥ U e
k(R,M) for each k ∈ N \ {i}. (6)

Now we have either

(a) U e
i (R′

i, R−i,M) = p(R′
i) or

(b) U e
i (R′

i, R−i,M) = λ(R′
i, R−i,M).

Suppose (a) holds. We further have either

(a-1) U e
i (R′

i, R−i,M) = p(R′
i) > λ(R,M) = U e

i (R,M) or

(a-2) U e
i (R′

i, R−i,M) = p(R′
i) ≤ λ(R,M) = U e

i (R,M).
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Suppose (a-1) holds. By (6), M =
∑

k∈N U e
k(R′

i, R−i,M) >
∑

k∈N U e
k(R,M) =

M , a contradiction.

Suppose (a-2) holds. Then, λ(R,M) ≥ λ(R′
i, R−i,M). Thus, by feasibility

and (6),
∑

k∈N\{i,j} U e
k(R′

i, R−i,M) ≥
∑

k∈N\{i,j} U e
k(R,M) and U e

i (R′
i, R−i,M) +

U e
j (R′

i, R−i,M) ≤ U e
i (R,M) + U e

j (R,M), contradicting (3) and (4).

Suppose (b) holds. We further have either

(b-1) U e
i (R′

i, R−i,M) = λ(R′
i, R−i,M) > λ(R,M) = U e

i (R,M) or

(b-2) U e
i (R′

i, R−i,M) = λ(R′
i, R−i,M) ≤ λ(R,M) = U e

i (R,M).

The proof of (b-1) is similar to that of (a-1). Also, by an argument similar to

(a-2), we can prove (b-2). Thus, we omit the details.

Subcase 1-3:
∑

k∈N\{i} p(Rk) + p(R′
i) < M <

∑
k∈N\{i} p(Rk) + p(R′

i).

In this subcase, we obtain that

for each k ∈ N \ {i}, U e
k(R′

i, R−i,M) = min{p(Rk), p(Rk) + λ(R′
i, R−i,M)};

U e
i (R′

i, R−i,M) = min{p(R′
i), p(R′

i) + λ(R′
i, R−i,M)}.

Then, we have U e
k(R′

i, R−i,M) ≥ U e
k(R,M) for each k ∈ N \ {i}, which im-

plies that
∑

k∈N\{i,j} U e
k(R′

i, R−i,M) ≥
∑

k∈N\{i,j} U e
k(R,M) and U e

i (R′
i, R−i,M) +

U e
j (R′

i, R−i,M) ≤ U e
i (R,M) + U e

j (R,M), contradicting (3) and (4).

Case 2:
∑

k∈N p(Rk) ≤ M .

Since the proof of Case 2 is similar to that of Case 1, we omit the details.

Case 3:
∑

k∈N p(Rk) < M <
∑

k∈N p(Rk).

It follows from the definition of U e that for each k ∈ N , p(Rk) ≤ U e
k(R,M) ≤

p(Rk). Thus, no agent k ∈ N has an incentive to be bribed. □

A.3 Proof of Remark 2

Let Rn
a ⊆ Rn. Suppose that there is a rule ϕ on Rn

a ×R++ satisfying bribe-proofness

and strong symmetry. We will show that Rn
a ⊆ Rn

C . Suppose, by contradiction,

that there is R0 ∈ Ra \ RC . Let R0 ∈ Ra \ RC . Then, there exist x0 < y0 < z0

such that x0P0y0 and z0P0y0. Without loss of generality, assume that x0R0z0. Let

x∗
0 = max{x′

0 ∈ [x0, y0] : x′
0I0z0} and z∗0 = min{z′

0 ∈ [y0, z0] : z′0I0z0}. Note that

x0 ≤ x∗
0 < y0 < z∗

0 ≤ z0, x∗
0I0z

∗
0 , and for each x′

0 ∈ (x∗
0, z

∗
0), x∗

0P0x
′
0.
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Let R = (R0, R0, . . . , R0) and M = n·
(

x∗
0+z∗0
2

)
. By strong symmetry, ϕi(R,M) =

x∗
0+z∗0
2

for each i ∈ N . Let i, j ∈ N and b = ϕi(R,M) − x∗
0. Then, (ϕi(R,M) −

b)Piϕi(R,M) and (ϕj(R,M) + b)Pjϕj(R,M). This is a contradiction to bribe-

proofness.

As we proved in Theorem 2, the extended uniform rule on the convex domain sat-

isfies bribe-proofness. Also, it is straightforward to verify that the extended uniform

rule on the convex domain satisfies strong symmetry. □

B Appendix: The Relation Between Bribe-proofness and

Effective Pairwise Strategy-proofness

In this paper, we explore the possibility of designing a non-trivial rule that is immune

manipulation by pairs of agents. It is natural to attempt to rule out situations where

two agents jointly misrepresent. Thus, let us introduce the following axiom.

Pairwise Bribe-proofness: For each (R,M) ∈ Rn
a × R++ and each i, j ∈ N ,

there exist no (R′
i, R

′
j) ∈ Ra × Ra and b ∈ R such that (ϕi(R

′
i, R

′
j, RN\{i,j},M) +

b)Piϕi(R,M) and (ϕj(R
′
i, R

′
j, RN\{i,j},M) − b)Pjϕj(R,M).

Serizawa (2006) examined the consequences of disallowing pairs of agents to

jointly misrepresent types with no transfers. He introduced the notion of effec-

tive pairwise strategy-proofness; it rules out only unilateral manipulation and self-

enforcing pairwise manipulation. This axiom is weaker than pairwise strategy-

proofness, which requires that the rule must be immune against misrepresenta-

tion by pairs of agents; i.e., for each (R,M) ∈ Rn
a × R++, each i, j ∈ N , and

each (R′
i, R

′
j) ∈ Ra × Ra, if ϕi(R

′
i, R

′
j, RN\{i,j},M)Piϕi(R,M), then ϕj(R,M)Rj

ϕj(R
′
i, R

′
j, RN\{i,j},M). To define effective pairwise strategy-proofness formally, we

introduce the additional notion. Let a rule ϕ, a preference profile and an amount

(R,M) ∈ Rn
a × R++, and a pair of agents {i, j} ⊆ N be given. Then a preference

profile of the pair (R′
i, R

′
j) ∈ Ra × Ra is a self-enforcing manipulation if

(i) ϕi(R
′
i, R

′
j, RN\{i,j},M)Riϕi(R,M) and ϕj(R

′
i, R

′
j, RN\{i,j},M)Rjϕj(R,M);

(ii) ϕi(R
′
i, R

′
j, RN\{i,j},M)Piϕi(R,M) or ϕj(R

′
i, R

′
j, RN\{i,j},M)Pjϕj(R,M);

(iii) for each R̂i ∈ Ra, ϕi(R
′
i, R

′
j, RN\{i,j},M)Riϕi(R̂i, R

′
j, RN\{i,j},M);

(iv) for each R̂j ∈ Ra, ϕj(R
′
i, R

′
j, RN\{i,j},M)Rjϕj(R

′
i, R̂j, RN\{i,j},M).
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Effective Pairwise Strategy-proofness: ϕ is strategy-proof and no pair of agents

has a self-enforcing manipulation.

Remark 3. By definitions, pairwise strategy-proofness is weaker than pairwise bribe-

proofness. Thus, effective pairwise strategy-proofness is weaker than pairwise bribe-

proofness.

This section shows that bribe-proofness and effective pairwise strategy-proofness

are logically independent on the single-peaked domain. So, bribe-proofness is not

equivalent to pairwise bribe-proofness on the single-peaked domain.

First, we demonstrate that there exists an effectively pairwise strategy-proof rule

on the single-peaked domain that does not satisfy bribe-proofness. To observe this,

we introduce the following rule.

Definition 4. The egalitarian rule E = (E1, E2, . . . , En) is defined as follows: For

each (R,M) ∈ Ra × R++ and each i ∈ N ,

Ei(R,M) =
M

n
.

It is easy to verify that the egalitarian rule on the single-peaked domain is effec-

tively pairwise strategy-proof but not bribe-proof.

Next, we describe an example of a rule on the single-peaked domain that is

bribe-proof but not effectively pairwise strategy-proof.

Example 2. Let N = {1, 2, 3}. Define the rule ϕ : R3
S ×R++ → Rn

+ as follows: For

each (R,M) ∈ R3
S × R++,

ϕ1(R,M) = min{p(R1),M};

ϕ2(R,M) =

{
min{p(R2),M − ϕ1(R,M)} if 0R11;

max{0,M − ϕ1(R,M) − ϕ3(R,M)} otherwise;

ϕ3(R,M) =

{
min{p(R3),M − ϕ1(R,M)} if 1P10;

max{0,M − ϕ1(R,M) − ϕ2(R,M)} otherwise.

We will check that the rule ϕ on R3
S × R++ is bribe-proof. Note that for each

(R,M) ∈ R3
S × R++, ϕ1(R,M) = min{p(R1),M}. If ϕ1(R,M) = M , ϕ1(R) <

p(R1), and for each i ∈ {2, 3}, ϕi(R,M) = 0. Then, for each i, j ∈ N , there exist no

R′
i ∈ RS and b ∈ R such that (ϕi(R

′
i, R−i,M)+b)Piϕi(R,M) and (ϕj(R

′
i, R−i,M)−

b)Pjϕj(R,M). If ϕ1(R,M) = p(R1), then agent 1 does not have an incentive to be
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bribed. Without loss of generality, assume that 0R11. If ϕ2(R,M) = p(R2), then

ϕ3(R,M) = ϕ3(R
′
3, R−3,M) for each R′

3 ∈ RS. If ϕ2(R,M) < p(R2), then ϕ3(R) =

ϕ3(R
′
3, R−3,M) = 0 for each R′

3 ∈ RS. Thus, for each i, j ∈ N , there exist no

R′
i ∈ RS and b ∈ R such that (ϕi(R

′
i, R−i,M)+b)Piϕi(R,M) and (ϕj(R

′
i, R−i,M)−

b)Pjϕj(R,M). Hence, we can conclude that the rule ϕ on R3
S × R++ is bribe-proof.

Observe that the rule ϕ on R3
S ×R++ does not satisfy effective pairwise strategy-

proofness. To see this, let (R,M) ∈ R3
S × R++ be such that M = 1, 1P10, and

(p(R1), p(R2), p(R3)) =
(

1
5
, 4

5
, 4

5

)
. Let R′

1 ∈ RS be such that p(R′
1) = 1

5
and 0P ′

11.

Then ϕ(R, 1) =
(

1
5
, 0, 4

5

)
and ϕ(R′

1, R−1, 1) =
(

1
5
, 4

5
, 0

)
. Hence, we have

ϕ1(R
′
1, R−1, 1)I1ϕ1(R, 1) and ϕ2(R

′
1, R−1, 1)P2ϕ2(R, 1);

ϕ1(R
′
1, R−1, 1)R1ϕ1(R̂1, R−1, 1) for each R̂1 ∈ RS;

ϕ2(R
′
1, R−1, 1)R2ϕ2(R

′
1, R̂2, R3, 1) for each R̂2 ∈ RS.

This indicates that ϕ on R3
S × R++ does not satisfy effective pairwise strategy-

proofness. ¥

By Remark 3, the solution ϕ defined in Example 2 above does not satisfy pairwise

strategy-proofness and pairwise bribe-proofness. This can be interpreted that on the

single-peaked domain, bribe-proofness is not equivalent to pairwise bribe-proofness.

C Appendix: Independence of Axioms

We will check the independence of axioms in Theorem 1. In what follows, we

exhibit a rule on the single-peaked domain RS(M)n that does not satisfy either

bribe-proofness or symmetry.

Example 3 (Dropping bribe-proofness). Let M ∈ R++. The egalitarian rule

E(·, M) on RS(M)n satisfies symmetry, but not bribe-proofness: Let i, j ∈ N

with i 6= j. Consider any preference (Ri(M), Rj(M)) ∈ RS(M) × RS(M) such

that p(Ri(M)) = 0 and p(Rj(M)) = M . Let b = M
n

. Then (Ei(R(M),M) −
b)Pi(M)Ei(R(M),M) and (Ej(R(M),M) + b)Pj(M)Ej(R(M),M). ■

Example 4 (Dropping symmetry). Let M ∈ R++. The queuing rule Q(·,M) =

(Q1(·, M), Q2(·,M), . . . , Qn(·,M)) is the rule such that there is a permutation π of

N , and for each R(M) ∈ Ra(M)n and each i ∈ N ,

Qπ(1)(R(M),M) = p(Rπ(1)(M));
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Qπ(2)(R(M),M) = min
{
p
(
Rπ(2)(M)

)
,M − Qπ(1)(R(M),M)

}
;

Qπ(3)(R(M),M) = min

p
(
Rπ(3)(M)

)
,M −

∑
j∈{π(1),π(2)}

Qj(R(M),M)

 ;

...

Qπ(n)(R(M),M) = M −
∑

j∈N\{π(n)}

Qj(R(M), M).

Then the rule Q(·,M) on RS(M)n satisfies bribe-proofness, but not symmetry. ■
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x∗
0

y r y z∗0 z0x0 y0

R0

Figure 1: Illustration of eight points in the proof of Theorem 2.
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M−y

n−1
Mp(R′

0)y

R′
0

e(M,R′
0)

Figure 2: Illustration of R′
0 ∈ RS in the proof of Theorem 2. Given R0 ∈ RS

and z0 ∈ (R+ ∪ {∞})\{p(R0)}, there is at most one element ẑ0 ∈ (R+ ∪ {∞})\{z0}
such that ẑ0I0z0 and we denote the element e(z0, R0) if it exists. Since MP ′

0y implies
e(M,R′

0)P
′
0y, e(M,R′

0) > y.
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R′′
1

ϕ(R1, R
′
−1,M)p(R′′

1) y

Figure 3: Illustration of R′′
1 ∈ RS in the proof of Theorem 2.
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ϕ1(R
′′
1, R

′
−1,M)p(R′′

1) y

ϕ1(R1, R
′
−1,M)

y M
M−y

n−1
ϕj(R

′′
1, R

′
−1,M)

R′′
1

R′
j j ∈ N \ {1}

Figure 4: Subcase 2-3 in the proof of Theorem 2.
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