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1 Introduction

This paper proposes a method based on Dupire (1994) to estimate the local volatility of

discount bonds, when only the prices of coupon bond options are observed in the market.

Note that, in order to price derivatives traded in the bond market correctly, we need to

model the dynamics of the discount bond prices, in particular the volatility structure, to be

consistent with the observed market prices.

It is well known that the volatility smiles and skews are observed not only in the stock

options markets but also in the bond options market.1 Furthermore, in the Japanese bond

market, implied volatility curves become very steep with respect to the maturity after the

introduction of the so-called “Zero-Interest Rate Policy” by the Bank of Japan.2 Therefore,

it is important to develop models that capture such volatility structures from both theoretical

and practical points of view.

The volatility models that deal with the volatility smiles or skews are roughly categorized

into three groups. The first group is to use stochastic volatility models. In this approach,

the volatility is typically assumed to follow a mean reverting diffusion process. Depending

on the parameters of the processes of the underlying asset and the volatility, in particular

on the correlation between them, a variety of volatility structure can be generated through

this approach. See, e.g., Hull and White (1987) and Heston (1993).

The second group is to add jumps to the underlying asset process. This approach was

originally proposed by Merton (1976) and is known as jump-diffusion models. By modeling

the jump intensity and the jump size distribution appropriately, jump-diffusion models can

generate the volatility smiles. See, e.g., Kou (2003) and references therein for details of

jump-diffusion models.

The third group is known as local volatility models. In this approach, the volatility is

supposed to be a deterministic function of time to maturity and the price of the underlying

asset. This approach was first proposed by Dupire (1994) and becomes popular for stock

market practitioners because of its simplicity. Rubinstein (1994) as well as Derman and Kani

(1994) provided a binomial tree model that capture the local volatility effect to be consistent

with observed market data. Li (2000) extended the binomial tree model and proposed a new

algorithm to build the extended tree.

Our method is based on the third approach. As Li (2000) noted, the advantages of this

1 Rubinstein (1994) pointed out that the effect from the volatility smiles and skews becomes more signif-

icant after the October 1987 crash in the US market.
2 The Bank of Japan quit the Zero-Interest Rate Policy on July 14, 2006. However, the short rate still

stays in the lowest range.
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approach are: (1) it is a preference-free approach, (2) all contingent claims are priced based

on the single model consistent with the market data, and (3) no assumption is made on the

form of the local volatility function.

In the Japanese Government Bond (JGB) market, only options of coupon bond futures

with short maturities are actively traded. There is no market quotation for discount bond

options, whereas coupon bond options with longer maturities are rarely traded. Therefore,

we want to construct a model that requires only a few parameters to be estimated; but still

consistent with the market data. For such a market, the local volatility model can be a

useful tool to estimate the volatility structure of discount bonds.

The method we propose in this paper consists of two parts, estimation of the local

volatility function of coupon bonds using small samples, and estimation of the local volatility

function of discount bonds using the volatility structure of coupon bonds.

As to the first part, the local volatility function of coupon bonds can be determined by

Dupire’s method (1994) if the prices of coupon bond options with all maturities and all strike

prices are observed in the market. In the actual JGB market, however, only a few options are

traded. To avoid this unrealistic requirement, we first estimate the implied volatility function

from the observed option prices and then, based on Black’s formula (1976), calculate the

prices of coupon bond options for all maturities and strike prices consistent with the observed

implied volatility. The local volatility function of coupon bonds can then be determined.

For the second part, we assume that the volatility functions of coupon bonds and discount

bonds differ each other only by their multiplicative factors. This assumption may be justified

when the underlying term structure assumes a single-factor model. With the volatility

structure of discount bonds at hand, we can calculate the theoretical prices of coupon bond

options by Monte Carlo simulation. The multiplicative factors are determined so that the

squared errors between the theoretical option prices and the market prices are minimized.

This paper is organized as follows. In the next section, we review Dupire’s local volatility

model to be applied for the estimation of volatility structure of discount bonds. The forward-

neutral method is a key tool for this purpose. Section 3 states the method to convert the

volatility function of coupon bonds to that of discount bonds. The performance of the method

is verified by a simulation study. We then apply our method for the options in the JGB

market in Section 4. The numerical results show that our method works reasonably well even

for the actual market. Section 5 concludes the paper. The calculation of volatility function

by Dupire’s method (1994) is provided in Appendix A for the reader’s convenience, while

Appendix B calculates the volatility function of coupon bonds when the implied volatility

function is given.
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2 The Local Volatility Model

Dupire (1994) considered the pricing problem of stock options when the risk-free interest

rate is constant. That is, let us denote the time t price of a risky asset by S(t), and suppose

that S(t) follows the following stochastic differential equation (SDE for short) under the

risk-neutral measure Q:
dS(t)

S(t)
= rdt + σdWQ

t , (2.1)

where r is the risk-free interest rate, σ is the volatility, and W Q
t denotes the standard

Brownian motion under Q.

When both r and σ are constant, the prices of European call options (as well as put

options) are given by the Black-Scholes formula (1976). However, it is well known that the

implied volatilities calculated from the Black-Scholes formula exhibit the volatility smiles or

skews in practice, meaning that the assumption that σ is constant may fail in the actual

market. Hence, as Dupire (1993) assumed, it is natural to consider the model in which the

volatility is a function of time t and the underlying asset price S. That is, suppose that S(t)

follows the SDE
dS(t)

S(t)
= rdt + σ(t, S(t))dWQ

t , (2.2)

rather than (2.1), under the risk-neutral measure Q.

Now consider European put options and suppose that options with all maturities and all

strike prices are traded in the market. Denoting the put option price with maturity T and

strike price K by p(T, K), Dupire (1994) showed under the differentiability assumption that

the volatility function σ(t, S) must be given by

σ2(T, K) =
2

K2 ∂2p(T,K)
∂K2

(
∂p(T, K)

∂T
+ rK

∂p(T, K)

∂K

)
(2.3)

in order for the model (2.2) to be consistent with the market prices p(T, K). The derivation

of (2.3) in a general setting is given in Appendix A for the reader’s convenience.

Of course, not all put options are traded in the actual market. However, equation (2.3)

suggests that at least we can obtain an approximated volatility function σ(T, S) when a

functional form of the put prices with respect to T and K is estimated. This is the reason

why Dupire’s method is so popular for stock market practitioners.

Next, consider the pricing problem of bond options. Then, it is necessary to consider

a stochastic interest rate model. A prominent tool in this setting is the forward-neutral

method.
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Denote the time t price of a non-defaultable (government) discount bond with maturity

T by v(t, T ). For τ ≥ T , the T -forward price of the discount bond v(t, τ) at time t is given

by

vT (t, τ) :=
v(t, τ)

v(t, T )
, t < T ≤ τ. (2.4)

It is well known that the T -forward price vT (t, τ) is a martingale under the T -forward measure

QT . That is, for some volatility process σ(t), the SDE for the T -forward price vT (t, τ) is

given by
dvT (t, τ)

vT (t, τ)
= σ(t)dW T

t , (2.5)

where W T
t denotes the standard Brownian motion under QT . Moreover, the put option price

with maturity T and strike price K written on the discount bond v(t, τ) is given by

p(T, K) = v(0, T )ET [{K − v(T, τ)}+],

where the current time is 0, {x}+ = max{x, 0} and ET is the expectation operator under

the T -forward measure. Since v(T, τ) = vT (T, τ), we obtain

pT (T, K) :=
p(T, K)

v(0, T )
= ET [{K − vT (T, τ)}+], (2.6)

where pT (T, K) denotes the current T -forward price of the put option. See, e.g., Kijima

(2002) for details of the forward-neutral method.

In order to obtain the local volatility function of discount bonds, we follow the idea of

Dupire (1994). That is, consider the SDE (2.5) with a deterministic volatility function σ(t)

in time t. When the Vasicek model (1977) is assumed for the risk-free interest rate r(t), the

volatility function σ(t) is given by3

σ(t) = σT (t, τ) :=
σ

a

(
e−a(τ−t) − e−a(T−t)

)
, t < T ≤ τ. (2.7)

In this setting, the current T -forward prices of European options (call and put options) are

given by Black’s formula (1976) with constant volatility ν where

ν2 =
∫ T

0
σ2

T (s, τ)ds.

However, again, the implied volatilities calculated from Black’s formula exhibit the volatility

smiles or skews in practice.
3 We take the Vasicek model as the basis of the local volatility model, since it seems the simplest model in

the stochastic interest rate setting. Of course, it is possible to assume other volatility functions as the basis.

Note that the Hull–White model (1990) produces the same volatility function, since the mean-reverting level

does not contribute to derivative prices. Also, recall that the Hull–White model is a special case of the HJM

model (1992) with constant volatility structure. See Inui and Kijima (1998) for details.
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Suppose that the volatility is not only a function of time t but also a function of the

underlying asset vT (t, τ). It is assumed that the T -forward price follows the SDE

dvT (t, τ)

vT (t, τ)
= σ(t, vT (t, τ))dW T

t , t ≤ T, (2.8)

under the T -forward measure QT . The current T -forward price of put option with maturity

T and strike price K is given by (2.6). Hence, following the idea of Dupire (1994) presented

in Appendix A, we obtain the local volatility function of the T -forward price vT (t, τ) as

σ2(T, K) =
2∂pT (T,K)

∂K

K2 ∂2pT (T,K)
∂K2

(2.9)

in order for the model (2.8) to be consistent with the market prices pT (T, K). However, this

formula is valid only when discount bond options with all maturities and strike prices are

actively traded in the market.

3 Main Results

In this section, we consider the case that only coupon bond options are traded in the market.

For this purpose, we first obtain the volatility function of coupon bonds, assuming that the

prices of coupon bond options with all maturities and all strike prices are observed in the

market. The volatility function is then converted to that of discount bonds under some

assumptions on the relationship between them. For notational simplicity, we denote in what

follows the T -forward price vT (t, Ti) by vi(t), where T < T1 < T2 < · · · < TN for some

N ≥ 1.

Suppose, rather than (2.8), that the T -forward price vi(t) follows the SDE

dvi(t)

vi(t)
= σT (t, Ti)ηi(t, vi(t))dW T (t) (3.1)

under the T -forward measure QT , where σT (t, τ) is given by (2.7). Note that the volatility

structure for the T -forward price vT (t, τ) may depend on the term structure of the maturity

τ .4 In order to take this effect into account, we leave σT (t, τ) in the SDE (3.1) and determine

the volatility function ηi(t, v) from the market data; see the assumption (3.7).

4 Of course, the dependence on τ appears implicit in the formula (2.9).
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3.1 Volatility function of coupon bonds

Suppose that a coupon bond pays constant cash flows Ci at Ti, i = 1, · · · , N . The time t

price of the coupon bond is then given by

Θ(t, TN) =
N∑

i=1

Civ(t, Ti), t < T.

The T -forward price of the coupon bond at time t is expressed as

Θ(t) :=
Θ(t, TN)

v(t, T )
=

N∑
i=1

Civi(t). (3.2)

Note that practitioners use Black’s formula (1976) for the pricing of coupon bond options.

This means that they assume the SDE (2.5) with a deterministic volatility function σ(t) for

the T -forward price Θ(t). Hence, it is natural to assume the following SDE for Θ(t):

dΘ(t)

Θ(t)
= σBξ(t, Θ(t))dW T (t), t ≤ T, (3.3)

where σB is a constant and ξ(t, Θ) is a deterministic function that characterizes the local

volatility of the T -forward price of coupon bonds. We leave the constant σB in (3.3) to

match the implied volatility function (4.1) defined later.

Consider plain options (call or put options) written on the coupon bond. We denote

the put option price with maturity T and strike price K by p(T, K). Let q(T, K) =

p(T, K)/v(0, T ) denote the current T -forward price of the put option. Since

q(T, K) = ET [{K − Θ(T )}+] (3.4)

according to the forward-neutral method, it is readily seen from Appendix A that q(T, K)

satisfies the partial differential equation (PDE for short)

∂q(T, K)

∂T
=

1

2
K2σ2

Bξ2(T, K)
∂2q(T, K)

∂K2
. (3.5)

It follows that

ξ2(T, K) =
2∂q(T,K)

∂T

σ2
BK2 ∂2q(T,K)

∂K2

. (3.6)

Appendix B provides the calculation of the volatility function ξ(T, K) when an implied

volatility function is given.

Consider next call options written on the coupon bond. The price of the call option with

maturity T and strike price K is denoted by c(T, K). Let cT (T, K) = c(T, K)/v(0, T ). Since

cT (T, K) = ET [{Θ(T ) − K}+] = q(T, K) + Θ(0) − K

due to the put-call parity, the T -forward price cT (T, K) also satisfies the PDE (3.5). Hence,

in either cases, we can derive the functional form of ξ(T, K) from the observed prices of

coupon bond (put and call) options using the equation (3.6).
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3.2 Volatility function of discount bonds

To link the volatility function ξ(t, Θ) of the coupon bond to the volatility functions ηi(t, v) of

the discount bonds, we assume that they differ each other only by the multiplicative factors.

That is, suppose that

ηi(t, x) = αiξ(t, x), i = 1, . . . , N, (3.7)

where αi are some constants to be determined. This assumption may be plausible since

discount bond prices are perfectly correlated in the single-factor term structure model.5

When the coupon size is small compared to the principal, the dominant term of the coupon

bond price Θ(t, TN) is the discount bond price v(t, TN).

We determine the unknown factors αi as follows. First, note that the functional form

of ξ(t, Θ) is estimated by (3.6). Hence, assuming some values for αi, we can generate the

sample paths of vi(t) using (3.1) and (3.7). Using these sample values, we can determine

sample values of Θ(T ) from (3.2). Hence, theoretical option values can be obtained, based

on (3.4), by the simple Monte Carlo method. The unknown parameters αi are determined

so that the squared errors between the theoretical values and the observed option prices are

minimized.

More specifically, let Nsim be the number of samples in the Monte Carlo simulation.

Given the parameter set α = {αi}, let {vk
i (T ; α)}Nsim

k=1 be the set of the T -forward prices

of the discount bond with maturity Ti. Each value vk
i (T ; α) is generated by simulating the

sample path vk
i (t) according to (3.1). Namely, we apply the Euler approximation for (3.1):

vi(tn+1) = vi(tn) exp
(
−1

2
σ2

T (tn, Ti)α
2
i ξ

2(tn, vi(tn))Δtn + σT (tn, Ti)αiξ(tn, vi(tn))
√

Δtnεn

)
,

where Δtn := tn+1 − tn, and εn are independent, identically distributed random variables

that follow the standard normal distribution. Using the samples, the T -forward price of the

coupon bond with maturity TN is calculated as

Θk(T ; α) =
N∑

i=1

Civ
k
i (T ; α)

for the given parameter set α = {αi}.
We compute {αi} as

{αi}N
i=1 = arg min{αi}

Mop∑
j=1

(qobs(Tj , Kj) − qsim(Tj , Kj))
2 , (3.8)

5 Empirical studies suggest the use of multi-factor term structure models (see, e.g., Rebonato (1996)).

However, because we chose the local volatility model to explain the volatility smiles and skews observed

in the bond options market, we decided to start with the single-factor Vasicek model. Development of

multi-factor local volatility models will be our future research.
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where

qsim(Tj , Kj) =
1

Nsim

Nsim∑
k=1

{Kj − Θk(Tj ; α)}+

are the theoretical option values obtained by simulation, and where qobs(Tj , Kj) are the

option prices observed in the market, respectively.

3.3 Numerical experiments

In order to verify the applicability of our method, we perform the following simulation study.

Namely, we assume that the current yield curve is flat at 2%. The underlying asset is the

10-year bond with annual coupons of 2%. The maturity of options are all 0.5 year (T = 0.5).

We set σB = 0.2 in (3.3) and a = σ = 0.01 in (2.7). Furthermore, we assume that the

volatility function for the coupon bonds is given by

ξ(K, T ) = exp
(
1 − K

100

)
. (3.9)

The volatility functions ηi(t, x) for discount bonds are determined by (3.7).

In this setting, we first generate the T -forward price Θ(T ) by the Monte Carlo simulation

using (3.3) to obtain the theoretical prices of put options using (3.4). Note that this is

possible since we assume the local volatility function (3.9) for the coupon bonds. In the

actual calculation, we compute the put option values with strike prices 80, 81, 82, . . ., 100.

Next, we apply our method to compute the multiplicative factors {αi} using (3.8). Table

1 lists the estimated multiplicative factors {αi}. Note that the factors are quite different

but, in general, αi is smaller for short maturity discount bonds than that for longer ones.

This means that the investors are more sensitive to risks of discount bonds with shorter

maturities.

(Table 1 is inserted here)

Table 2 shows the put option prices written on the coupon bond. The column “Sim”

indicates that the prices are obtained by the Monte Carlo simulation using (3.4). The

number of simulation runs is ??????, and we suppose that these option prices are true. On

the other hand, the column “FKN” indicates that the prices are calculated by our method.

The absolute differences between the theoretical prices and those obtained by our method

are listed in the column “Diff”. In this numerical experiments, the absolute errors are less

than 0.06 and we believe that our method is quite useful to estimate the local volatility of

discount bonds as far as the volatility function of coupon bonds is estimated correctly.
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(Table 2 is inserted here)

4 Application to the JGB Market

In this section, we apply our method to estimate the local volatility functions of discount

bonds for the actual market, namely for the JGB market. As explained in the introductory

section, the JBG market has a number of special features that make it difficult to determine

the accurate volatility model.6 In the authors’ best knowledge, this is the first paper that

analyses the local volatility structure of the JGB market.

4.1 Market data

In the JGB market, options written on the 10-year bond futures are actively traded and the

volatility skews are observed. We provide the market quotations of the put options with

times to maturity 0.104 year and 0.274 year on the 10-year bond futures on the date May

23, 2006 in Table 3. For convenience, we express the options with time to maturity 0.104

year as “option 1” and the options with time to maturity 0.274 year as “option 2”. In either

case, a significant volatility skew is observed.

(Table 3 is inserted here)

The cheapest deliverable bond of the underlying 10-year bond futures in Table 3 is the

JGB 10-year bond series #253 (JGB # 253 for short). Thus, the options written on the

10-year bond futures are considered as the options written on the JGB #253 by using the

conversion factor. We provide the details of the JGB # 253 in Table 4.

(Table 4 is inserted here)

6 The JGB yield curve exhibits the so-called S shape. Recently, many attempts have been made to

construct term structure models that can capture the special shape of the yield curve. See Kabanov, Kijima

and Rinaz (2005) and references therein for details.
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4.2 Implied volatilities of the coupon bond options

In order to estimate the volatility function ξ(t, Θ) of the coupon bond, option prices for

all strikes and all maturities are required. To avoid this unrealistic requirement, we first

estimate the implied volatility function using the observed option prices and then, based

on Black’s formula (1976), calculate the prices of coupon bond options for all maturities

and strike prices consistent with the observed implied volatility. The volatility function of

coupon bonds can then be determined.

Suppose that the functional form of the implied volatility is given by

σmkt(T, K) = σB exp

(
M∑

n=1

an

(
K

KATM(T )
− 1

)n)
, (4.1)

where KATM(T ) is the at-the-money option strike with maturity T . We estimate the pa-

rameters σB , an by the least square fitting to the observed implied volatilities. Because we

have only a few options traded in the JGB market, we take M = 2 to avoid the overfitting

problem. That is, the number of parameters to be estimated is 3 for 12 data in option 1 and

8 data in option 2. The estimated parameters are listed in Table 5, while the fitting results

are shown in Table 6. The volatility function of the coupon bond calculated from the the

implied volatility model (4.1) is given in Appendix B.

(Tables 5 and 6 are inserted here)

4.3 Volatility function of discount bonds

Once we obtain the volatility function ξ(t, Θ) of the coupon bond, we can estimate the local

volatility of discount bonds using the procedure presented in the previous section.

For the JGB #253, the number of coupon payments is 15 (N = 15). We use a = 0.01508

and σ = 0.007 for σT (t, τ) in (2.7). These values are obtained by fitting the swaption

volatilities using the Hull–White model (1990). Moreover, we use the implied volatility

parameters (a1, a2, σB) of option 1 for t < 0.104 and those of option 2 for t > 0.104.

The estimated multiplicative factors {αi} are presented in Table 7. It is observed that,

as in the previous case (see Table 2) where the yield curve is flat, the factor αi is decreasing

in i except i = 1, 2. In particular, the factor α1 is very small, meaning that the discount

bond with short maturity (T1 = 0.33) has a very low volatility. Recall that the factor αi

describes the magnitude of the volatility of the discount bond with maturity Ti. This result

is consistent with the actual JGB market where the short rate stays near zero under the

“Zero-Interest Rate Policy” by the Bank of Japan.
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(Table 7 is inserted here)

On the other hand, Table 8 presents the option prices calculated by the Monte Carlo

simulation using the estimated volatility functions of discount bonds. It is observed that

the absolute differences between the observed prices and the estimated prices are less than

0.9. When the relative differences are used, the fitness becomes better for option 2 (with a

longer maturity), while it becomes poor for the out-of-the-money option 1. This is because

we used the absolute error in option prices in the fitting procedure (3.7).

(Table 8 is inserted here)

5 Conclusion

In this paper, we proposed a methodology to estimate the local volatility of discount bonds,

when only the prices of coupon bond options are observed in the market. Note that, in order

to price derivatives traded in the bond market correctly, we need to model the dynamics

of the discount bond prices, in particular the volatility structure, to be consistent with the

observed market prices. Recent empirical studies reveal that the effect from the volatility

smiles and skews becomes more significant in the bond options market than ever. It is

therefore important to develop such models that capture the volatility structure from both

theoretical and practical points of view.

Our method consists of two parts, estimation of the volatility function of coupon bonds

using small samples, and estimation of the volatility function of discount bonds using the

volatility structure of coupon bonds.

As to the first part, given the prices of coupon bond options, the volatility function of

coupon bonds can be determined by Dupire’s method (1994). For this purpose, we first

estimate the implied volatility from the observed option prices and then, based on Black’s

formula (1976), calculate the prices of coupon bond options for all maturities and strikes

consistent with the observed implied volatility.

For the second part, we assume the relationship (3.7) between the volatility functions of

coupon bonds and discount bonds. This assumption may be justified when the underlying

term structure assumes a single-factor model. However, it is well known that all bond

price dynamics of different maturities are perfectly correlated. Thus, many empirical studies

suggest the use of multi-factor term structure models in order to make the model more

flexible. Development of multi-factor local volatility models will be our future research.
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A Duprire’s Local Volatility Model

As in Dupire (1993), suppose that S(t) follows the following SDE under the risk-neutral

measure Q:
dS(t)

S(t)
= (r − δ)dt + σ(t, S(t))dWQ

t ,

where δ is an instantaneous dividend rate.

Let φ(T, S) be the density function of S(T ). From the forward Kolmogorov equation, we

have
∂φ

∂T
+

∂

∂S
{(r − δ)Sφ(T, S)} − 1

2

∂2

∂S2
{σ2(T, S)S2φ(T, S)} = 0.

Twice integrating the above equation with respect to S yields

1

2
σ2(T, S)S2φ(T, S) =

∂

∂T

∫ S

0

∫ v

0
φ(T, u)dudv + (r − δ)

∫ S

0
vφ(T, v)dv. (A.1)

On the other hand, consider a European put option with maturity T and strike price K,

and denote its time t price by p(T, K). Then, it is readily seen that p(T, K) can be expressed

as

p(T, K) = e−r(T−t)
∫ K

0
(K − S)φ(T, S)dS (A.2)

= e−r(T−t)

(
K
∫ K

0
φ(T, S)dS −

∫ K

0
Sφ(T, S)dS

)
. (A.3)

By differentiating (A.2) with respect to K, we get

∂p(T, K)

∂K
= e−r(T−t)

∫ K

0
φ(T, u)du. (A.4)

Therefore, from (A.3), we have an expression for p(T, K) as

p(T, K) = K
∂p(T, K)

∂K
− e−r(T−t)

∫ K

0
Sφ(T, S)dS,

or equivalently, ∫ K

0
vφ(T, v)dv = er(T−t)

[
K

∂p(T, K)

∂K
− p(T, K)

]
. (A.5)

Once again, differentiating (A.4) with respect to K yields

∂2p(T, K)

∂K2
= e−r(T−t)φ(T, K). (A.6)

Equation (A.6) indicates that the price of the European put option satisfies

∫ K

0

∫ v

0
φ(T, u)dudv =

∫ K

0

∫ v

0
er(T−t) ∂

2p(T, u)

∂u2
dudv = er(T−t)p(T, K), (A.7)
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since
∂p(T, u)

∂u
= p(T, u) = 0 at u = 0.

Finally, setting S = K and substituting (A.5)–(A.7) into (A.1), we have

1

2
σ2(T, K)K2er(T−t) ∂

2p(T, K)

∂K2
(A.8)

= er(T−t)

[
∂p(T, K)

∂T
+ rp(T, K) + (r − δ)

{
K

∂p(T, K)

∂K
− p(T, K)

}]
.

Solving (A.8) with respect to the volatility function, we get

σ2(T, K) =

2

[
∂p(T, K)

∂T
+ δp(T, K) + (r − δ)K

∂p(T, K)

∂K

]

K2∂2p(T, K)

∂K2

. (A.9)

B Volatility Function of Coupon Bonds

In this appendix, we derive the volatility function of the coupon bond ξ(T, Φ) when we

assume the implied volatility function (4.1). We only demonstrate the calculation for the

case of put options, since the calculation for call options is similar.

Under the implied volatility model (4.1), it follows from (3.4) that the option price is

expressed as

q(K, T ) = KN(εK) − Θ(0)N(εK − σmkt(K, T )
√

T ),

where

εK =
log K − log Θ(0)

σmkt(K, T )
√

T
+

1

2
σmkt(K, T )

√
T .

Here, N(x) denotes the cumulative distribution function of the standard normal distribution.

Using the above expression, the derivatives in the right-hand-side of (3.6) are calculated

as

∂q(K, T )

∂T
= KN ′(εK)

∂εK

∂T
− ∂Θ(0)

∂T
N(εK − σmkt(K, T )

√
T )

− Θ(0)N ′(εK − σmkt(K, T )
√

T ) (B.1)

×
(

∂εK

∂T
− ∂σmkt(K, T )

∂T

√
T − σmkt(K, T )

2
√

T

)

and

∂2q(K, T )

∂K2
= 2N ′(εK)

∂εK

∂K
+ KN ′′(εK)

(
∂εK

∂K

)2

+ KN ′(εK)
∂2εK

∂K2

−Θ(0)N ′′(εK − σmkt(K, T )
√

T )

(
∂εK

∂K
− ∂σmkt(K, T )

∂K

√
T

)2

(B.2)

−Θ(0)N ′(εK − σmkt(K, T )
√

T )

(
∂2εK

∂K2
− ∂2σmkt(K, T )

∂K2

√
T

)
.

13



Here, the first and second derivatives of N(x) are given by

N ′(x) =
1√
2π

e−
1
2
x2

, N ′′(x) =
−x√
2π

e−
1
2
x2

respectively.

The partial derivatives in (B.1) and (B.2) are expressed as

∂εK

∂T
= −

∂Θ(0)
∂T

σmkt(K, T )
√

TΘ(0)

− log K − log Θ(0)

σ2
mkt(K, T )T

(
σmkt(K, T )

∂T

√
T +

σmkt(K, T )

2
√

T

)
(B.3)

+
1

2

∂σmkt(K, T )

∂T

√
T +

σmkt(K, T )

4
√

T
,

∂εK

∂K
=

1

σmkt(K, T )K
√

T
−
[
log K − log Θ(0)

σ2
mkt(K, T )

√
T

−
√

T

2

]
∂σmkt(K, T )

∂K
, (B.4)

∂2εK

∂K2
=

−1

σ2
mkt(K, T )K2

√
T

[
σmkt(K, T ) + 2K

∂σmkt(K, T )

∂K

+K2 log

(
K

Θ(0)

)
∂2σmkt(K, T )

∂K2

]
(B.5)

+2
log K − log Θ(0)

σ3
mkt(K, T )

√
T

(
∂σmkt(K, T )

∂K

)2

+
1

2

∂2σmkt(K, T )

∂K2

√
T

and
∂Θ(0)

∂T
= R(T )Θ(0),

where R(T ) = − log P (0, T )

T
is the spot rate.

Finally, from (4.1), the derivatives appeared in (B.3)–(B.5) are calculated as

∂σmkt(K, T )

∂T
= −σmkt(K, T )

K

K2
ATM(T )

∂KATM(T )

∂T

M∑
n=1

ann

(
K

KATM(T )
− 1

)n−1

,

∂σmkt(K, T )

∂K
=

σmkt(K, T )

KATM(T )

M∑
n=1

ann

(
K

KATM(T )
− 1

)n−1

,

∂2σmkt(K, T )

∂K2
=

σmkt(K, T )

K2
ATM(T )

⎡
⎣ M∑

n=2

ann(n − 1)

(
K

KATM(T )
− 1

)n−2

+

⎛
⎝ M∑

n=1

ann

(
K

KATM(T )
− 1

)n−1
⎞
⎠

2
⎤
⎥⎦ ,

and

KATM(T ) =
Θ(0, TN)

v(0, T )
= Θ(0).

Thus, we can express ξ(T, Φ) by substituting (B.3)–(B.5) into (3.6).
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Table 1: Estimated multiplicative factors αi. The factor αi is in general smaller for discount

bonds with shorter maturities than that for longer maturities.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

41.469 27.154 19.326 15.431 11.510 13.673 12.017 17.152 12.571 2.171

Table 2: Put option prices written on the coupon bond. The column “Sim” indicates the the-

oretical prices obtained by simulation, while the column “FKN” shows the prices calculated

by our method. The absolute errors are listed in the column “Diff”.

Strike Sim FKN Diff Strike Sim FKN Diff

80 0.41 0.37 0.05 91 2.02 1.97 0.05

81 0.49 0.44 0.05 92 2.28 2.23 0.04

82 0.57 0.52 0.05 93 2.56 2.52 0.04

83 0.67 0.62 0.06 94 2.86 2.83 0.03

84 0.78 0.72 0.06 95 3.19 3.17 0.02

85 0.91 0.85 0.06 96 3.54 3.54 0.01

86 1.05 0.99 0.06 97 3.92 3.93 (0.01)

87 1.20 1.14 0.06 98 4.33 4.35 (0.02)

88 1.38 1.32 0.06 99 4.77 4.80 (0.03)

89 1.57 1.51 0.06 100 5.23 5.27 (0.04)

90 1.78 1.73 0.05
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Table 3: Market quotations of the put options written on the 10-year bond futures on

the date May 23, 2006. The implied volatilities are presented in the column IV. Note the

significant volatility skews.

option 1 option 2

Time to Maturity: 0.104 year Time to Maturity: 0.274 year

Strike IV Strike IV

127.5 6.45 % 127 5.13 %

128 6.22 % 128 4.92 %

128.5 6.04 % 129 4.89 %

129 5.23 % 130 4.80 %

129.5 5.05 % 131 4.62 %

130 4.67 % 132 4.41 %

130.5 4.74 % 133 3.98 %

131 4.58 % 134 3.83 %

131.5 4.13 %

132 3.86 %

132.5 3.56 %

133 3.39 %

Table 4: Details of JGB # 253 on the date May 23, 2006. This JGB is the cheapest

deliverable bond, and so we can think that the bond options traded in the market are

written on this bond.

Maturity date September 20, 2013

Time to Maturity 7.33 year

Coupon rate 1.6 %

Conversion Factor 0.751486

Market price 99.459
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Table 5: Estimated parameters of the implied volatility function.

option 1 option 2

a1 −17.19 −6.05

a2 −25.25 −9.06

σB 0.036 0.042

Table 6: Fitting results of the estimated volatilities. The column “IV” means the observed

implied volatility, while the column “Model” represents the volatility calculated from (4.1)

using the parameter values listed in Table 5.

option 1 option 2

Strike IV Model Strike IV Model

127.5 6.45 % 6.54 % 127 5.13 % 5.27 %

128 6.22 % 6.17 % 128 4.92 % 5.06 %

128.5 6.04 % 5.82 % 129 4.89 % 4.85 %

129 5.23 % 5.48 % 130 4.80 % 4.65 %

129.5 5.05 % 5.16 % 131 4.62 % 4.45 %

130 4.67 % 4.85 % 132 4.41 % 4.25 %

130.5 4.74 % 4.56 % 133 3.98 % 4.06 %

131 4.58 % 4.28 % 134 3.83 % 3.88 %

131.5 4.13 % 4.02 %

132 3.86 % 3.77 %

132.5 3.56 % 3.53 %

133 3.39 % 3.31 %
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Table 7: Estimated multiplicative factors αi. The factor αi is decreasing in i except i = 1, 2

i Ti αi i Ti αi

1 0.33 0.100 9 4.33 1.352

2 0.83 0.336 10 4.83 1.226

3 1.33 2.511 11 5.33 1.135

4 1.83 2.459 12 5.83 1.052

5 2.33 2.256 13 6.33 0.975

6 2.83 1.950 14 6.83 0.915

7 3.33 1.689 15 7.33 0.852

8 3.83 1.496

Table 8: Option prices calculated by the Monte Carlo simulation using the estimated volatil-

ity functions of discount bonds. It is observed that the absolute differences between the

observed prices and the estimated prices are sufficiently small.

option 1 Time to Maturity: 0.104 option 2 Time to Maturity: 0.274

Strike Observation Estimation Strike Observation Estimation

127.5 0.0318 0.0402 127 0.0793 0.0780

128 0.0375 0.0479 128 0.1276 0.1215

128.5 0.0455 0.0644 129 0.2039 0.1894

129 0.0569 0.0843 130 0.3219 0.2915

129.5 0.0733 0.1066 131 0.4995 0.4485

130 0.0969 0.1366 132 0.7569 0.6882

130.5 0.1312 0.1795 133 1.1124 1.0299

131 0.1823 0.2374 134 1.5766 1.4953

131.5 0.2564 0.3182

132 0.3622 0.4249

132.5 0.5113 0.5796

133 0.7131 0.7774
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