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1 Introduction

In the actuarial literature, there have been developed many probability transforms for pricing

financial and insurance risks. Such methods include the variance loading, the standard

deviation loading, and the Esscher transform. Recently, Wang [14] proposed a universal

pricing method based on the following transformation from F (x) to F ∗(x):

F ∗(x) = Φ[Φ−1(F (x)) + θ], (1.1)

where Φ denotes the standard normal cumulative distribution function (CDF for short) and θ

is a constant. The transform is now called theWang transform and produces a risk-adjusted

CDF F ∗(x). The mean value evaluated under F ∗(x) will define a risk-adjusted “fair value”

of risk X with CDF F (x) at some future time, which can be discounted to time zero using

the risk-free interest rate. The parameter θ is considered to be a risk premium.

The Wang transform not only possesses various desirable properties as a pricing method,

but also has a sound economic interpretation. For example, the Wang transform (as well

as the Esscher transform) is the only distortion function, among the family of distortions,

that can recover CAPM (the capital asset pricing model) for underlying assets and the

Black-Scholes formula for options. See Wang [15] and Kijima [6] for details.

Among them, the most striking result on the transform (1.1) is that it is consistent

with Bühlmann’s economic premium principle. More precisely, Bühlmann [1] considered

risk exchanges among a set of agents. Each agent is characterized by his/her exponential

utility function uj(x) = −e−λjx, j = 1, 2, . . . , n, and faces a risk of potential loss Xj . In a
pure risk exchange model, Bühlmann [1] derived the equilibrium pricing formula

π(X) = E[ηX ], η =
e−λZ

E[e−λZ ]
, (1.2)

where Z =
Pn
j=1Xj is the aggregate risk and λ is given by

λ−1 =
nX
j=1

λ−1j , λj > 0.

The parameter λ is thought of the risk aversion index of the representative agent in the

market. Wang [16] showed that the transform (1.1) can be derived from the equilibrium

pricing formula (1.2) under some assumptions on the aggregate risk. The result is extended

to the multivariate setting by Kijima [6].

In this paper, we derive a class of transforms that are consistent with Bühlmann’s eco-

nomic premium principle (1.2), thereby extending the results of Wang [15]. Namely, based
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on the idea of Kijima [6], we obtain the transform

F ∗(x) = E[Φ(G−1(F (x))Y + θ)], (1.3)

where Y is any positive random variable and the expectation is taken with respect to Y .

Here, G(x) denotes the CDF of random variable U/Y and U represents a standard normal

random variable, independent of Y . In particular, when Y = 1 almost surely, we have

G(x) = Φ(x), so that the transform (1.3) is reduced to the Wang transform (1.1). The

transform (1.3) can be extended to the multivariate setting by using a Gaussian copula, in

order to preserve the linearity for the pricing functional.1 A multiperiod extension is also

possible within the equilibrium pricing framework.

It is often said that a drawback of the Wang transform (1.1) is the normal distributions,

that never match the fat-tailness observed in the actual markets. In fact, some empirical

studies suggest to use t distributions, whose CDF is denoted by Tν(x), with ν = 3 or 4 degree

of freedom for return distributions of financial and insurance assets (see, e.g., Platen and

Stahl [13]). Hence, it is natural to consider the case that Y =
q
χ2ν/ν, where χ

2
ν denotes a chi-

square random variable with ν degree of freedom. As Kijima and Muromachi [9] observed,

this case leads to the two-parameter transformation

F ∗(x) = Pν:−λ[T−1ν (F (x))], (1.4)

where Pν:δ denotes the CDF of non-central t distribution with ν degree of freedom and non-

centrality parameter δ. However, contrary to our intuition, the risk-adjusted distribution

(1.4) derived from t distributions is not fatter in tail parts than the original Wang transform

(1.1) that is derived from normal distributions.

The present paper is organized as follows. In the next section, we review the result of

Wang [16] and consider an alternative (and simple) derivation of the Wang transform (1.1).

Using the idea presented in Section 2, the general transform (1.3) is derived in Section 3. Of

interest is the comparison of tail distributions derived by the general transform. It is shown in

Section 4 that the original Wang transform (1.1) produces the fattest tail distribution among

the class of transforms (1.3) that are derived from Bühlmann’s economic premium principle

(1.2). While the result is further extended to a multivariate setting in Section 5, Section

6 states a multiperiod extension of our result within the equilibrium pricing framework.

Section 7 concludes the paper.

1The pricing functional π is said to be linear if π(aX + bY ) = aπ(X) + bπ(Y ) for all risks X, Y and

constants a, b. If it is not linear, arbitrage opportunities are not precluded. See, e.g., Harrison and Kreps

[2] and Kijima [5] for details.
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2 A pure risk exchange economy

Bühlmann [1] considered a single-period economy for risk exchanges among a set of agents

j = 1, 2, . . . , n. Each agent is characterized by an exponential utility function uj(x) =

−e−λjx, x ≥ 0, and initial wealth wj. Suppose that agent j faces a risk of potential loss Xj
and is willing to buy/sell a risk exchange Yj. If agent j is an insurance company, the risk

exchange Yj is thought of the sum of all insurance policies sold by j. While the original

risk Xj belongs to agent j, the risk exchange Yj can be freely bought/sold by the agents in

the market. Denoting the price of Yj by π(Yj), the equilibrium price for this risk exchange

economy is characterized by:

1. For any j, E[uj(wj −Xj + Yj − π(Yj))] is maximized with respect to Yj, and

2.
Pn
j=1 Yj = 0 for all possible states.

In this setting, Bühlmann [1] showed that the equilibrium price π(Y ) for the risk exchange

is given by (1.2).

2.1 The Wang transform

Wang [16] showed that the transform (1.1) can be derived from Bühlmann’s economic pre-

mium principle (1.2) under the following assumptions on the aggregate risk Z =
Pn
j=1Xj:

1. There are so many individual risks Xj in the market that the aggregate risk Z can be

approximated by a normal random variable, and

2. The correlation coefficient between Z0 = (Z−μZ)/σZ and U = Φ−1[F (X)] is ρ,2 where
μZ = E[Z] and σ

2
Z = V [Z].

Here, F (x) denotes the CDF of risk X of interest. For the sake of simplicity, it is assumed

that F (x) is strictly increasing in x. The inverse function of F (x) is denoted by F−1(x).

Recall that, if the random vector (Z0, U) follows a bivariate normal distribution with

correlation coefficient ρ, there exists a normal random variable ξ, independent of (Z0, U),

such that Z0 = ρU + ξ. Hence, from (1.2), it follows that

π(X) =
E[Xe−θU ]
E[e−θU ]

, θ = λσZρ.

2For any random variableX and its CDF F (x), the random variable Φ−1[F (X)] follows a standard normal

distribution. Hence, the second assumption can be stated that the random vector (F (X),Φ(Z0)) follows a

bivariate Gaussian copula with correlation coefficient ρ.
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Since U = Φ−1[F (X)] follows a standard normal distribution, we obtain

π(X) = e−θ
2/2E[Xe−θU ] = e−θ

2/2
Z
R
xe−θΦ

−1[F (x)]dF (x), (2.1)

where R stands for the real line.

We intend to write the pricing functional π(X) in terms of a transformed CDF F ∗(x)

such that

π(X) =
Z
R
xdF ∗(x) = E∗[X],

where E∗ stands for the expectation operator associated with the CDF F ∗(x). It follows

from (2.1) that

F ∗(x) = e−θ
2/2

Z x

−∞
e−θΦ

−1[F (y)]dF (y). (2.2)

After some algebraic manipulation, Wang [16] showed that the transform (2.2) is given by

(1.1), i.e.

F ∗(x) = Φ[Φ−1(F (x)) + θ], θ = λσZρ.

Hence, the mean value evaluated under the transformed CDF F ∗(x) will define a risk-

adjusted fair value of risk X .

2.2 Alternative derivation of the Wang transform

For any x, let Ix(y) = 1 if y ≤ x and Ix(y) = 0 otherwise. Then, using the function Ix(y),
(2.2) can be written as

F ∗(x) = e−θ
2/2E

h
Ix(X)e

−θΦ−1[F (X)]i
= e−θ

2/2E
h
Ix(F

−1(Φ(U)))e−θU
i
, (2.3)

where the second equality follows since U = Φ−1[F (X)] by assumption.

The following result is well known and useful for our purposes. See, e.g., Kijima and

Muromachi [8] for the proof.

Lemma 2.1 For any bivariate normal random vector (X, Y ) and any function h(x), we

have

E[h(X)e−Y ] = E[e−Y ]E[h(X − Cov[X,Y ])]
for which the expectations exist.

Applying the lemma to (2.3), we obtain

F ∗(x) = E
h
Ix(F

−1(Φ(U − θ)))
i
,
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since E[e−θU ] = eθ
2/2 and Cov[U, θU ] = θ. It follows from the definition of Ix(y) that

F ∗(x) = P{F−1(Φ(U − θ)) ≤ x}
= P{U − θ ≤ Φ−1(F (x))}
= Φ[Φ−1(F (x)) + θ], θ = λσZρ,

which is the Wang transform (1.1). Here, the third equality holds, since U follows a standard

normal distribution. In the next section, following the above idea, we obtain a more general

transformation.

3 An extension of the Wang transform

Given a CDF F (x) of risk X , suppose that there exist random variables U and Y > 0,

independent of each other, such that U follows a standard normal distribution and

F (X) = G(U/Y ), Y > 0,

where G(x) denotes the CDF of random variable U/Y . For example, when Y = 1, we have

G(x) = Φ(x) as for the univariate Wang transform. When Y =
q
χ2ν/ν as assumed by Kijima

and Muromachi [9], where χ2ν denotes a chi-square random variable with ν degree of freedom,

the random variable U/Y follows a t distribution with ν degree of freedom. However, at this

point, we do not specify the CDF G(x). We only assume that G(x) is strictly increasing in

x for the sake of simplicity. Note that, for any random variable X and its CDF F (x), F (X)

follows a uniform distribution on the interval [0, 1].

In summary, our assumption on the aggregate risk can be stated as

Z0 = ρU + ξ, U = Y α(X), (3.1)

where α(x) ≡ G−1(F (x)) and U and ξ are normally distributed random variables, indepen-

dent of each other.

3.1 The main result

As for (2.1), we have

π(X) = e−θ
2/2E

h
E
h
Xe−θY α(X)

¯̄̄
Y
ii

= e−θ
2/2E

∙Z
R
xe−θY α(x)dF (x)

¸
.
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It follows that (cf. (2.2))

F ∗(x) = e−θ
2/2E

∙Z x

−∞
e−θY α(z)dF (z)

¸
,

where the expectation is taken with respect to Y . Using the function Ix(y), where Ix(y) = 1

if y ≤ x and Ix(y) = 0 otherwise, we obtain

F ∗(x) = e−θ
2/2E

h
E
h
Ix(X)e

−θY α(X)
¯̄̄
Y
ii

= e−θ
2/2E

h
E
h
Ix(α

−1(U/Y ))e−θU
¯̄̄
Y
ii
.

Since Y and U are independent of each other by assumption, we obtain from Lemma 2.1

that

E
h
Ix(α

−1(U/Y ))e−θU
¯̄̄
Y
i
= eθ

2/2E
h
Ix(α

−1((U − θ)/Y ))
¯̄̄
Y
i
.

It follows from the definition of Ix(y) that

F ∗(x) = E
h
E
h
Ix(α

−1((U − θ)/Y ))
¯̄̄
Y
ii

= E
h
P
n
α−1((U − θ)/Y )) ≤ x

¯̄̄
Y
oi

= E
h
P
n
U ≤ α(x)Y + θ

¯̄̄
Y
oi
.

Therefore, we finally obtain the transformation (1.3), i.e.

F ∗(x) = E[Φ(α(x)Y + θ)], θ = λσZρ, α(x) = G−1(F (x)), (3.2)

since U follows the standard normal distribution.

For the CDF F ∗(x) given by (3.2), we denote the random variable associated with F ∗(x)

by X∗. Recall that the risk under consideration is the random variable X with CDF F (x).

If these random variables represent the amount of a profit/loss, we take θ > 0. The other

case can be treated similarly. In the next theorem, we call X greater than X∗ in the sense

of first order stochastic dominance, denoted by X ≥FSD X∗, if F (x) < F ∗(x) for all x.3

Theorem 3.1 If θ > 0, then X ≥FSD X∗. That is, the investor evaluates the loss worse
than the actual loss when pricing the risk X.

Proof. Note that, by definition, we have

F (x) = G(α(x)) = P{U/Y ≤ α(x)} = E[Φ(α(x)Y )]. (3.3)

Since θ > 0 and Φ(x) is increasing in x, it follows from (3.2) and (3.3) that

F ∗(x) = E[Φ(α(x)Y + θ)] > E[Φ(α(x)Y )] = F (x), x ∈ R,

whence the result.
3See Kijima and Ohnishi [10] for the application of stochastic dominance relations to finance.
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Remark 3.1 When the aggregated risk Z and U = Φ−1[F (X)] are uncorrelated, i.e. ρ = 0

in (3.1), so that θ = 0 in (3.2), we have F ∗(x) = F (x). That is, no distortion takes place for

the uncorrelated case, as expected.

3.2 Some special cases

Special cases of the transform (3.2) we consider are the following. Other cases can be treated

similarly, as far as the CDF G(x) of the random variable U/Y is obtained.

First, assume Y = 1. Then, we have G(x) = Φ(x) so that we obtain the Wang transform

(1.1). More generally, for a positive discrete random variable Y with

pi = P{Y = yi}, yi > 0, i = 1, 2, . . . , n,

we have

G(x) = E[Φ(xY )] =
nX
i=1

Φ(xyi)pi

so that we obtain

F ∗(x) =
nX
i=1

Φ(α(x)yi + θ)pi, θ = λσZρ,

where α(x) = G−1(F (x)).

Next, suppose that Y > 0 is a continuous random variable with probability density

function (PDF for short) g(x). In order to obtain the PDF of U/Y , we need to consider the

joint PDF of (U/Y, Y ). Denoting its joint PDF by h(x, y), we have

h(x, y) = φ(xy)g(y)y, y > 0, x ∈ R,

where φ(u) denotes the PDF of the standard normal distribution. Hence, the CDF of U/Y

is obtained as

G(x) =
Z x

−∞

Z ∞
−∞
h(u, v)dvdu.

The risk-adjusted CDF F ∗(x) is then calculated by (3.2).

In particular, when Y =
q
χ2ν/ν, it is well known that the random variable U/Y follows a

t distribution with ν degree of freedom, whose CDF is denoted by Tν(x), i.e. G(x) = Tν(x).

On the other hand, the transform (3.2) is written as

F ∗(x) = E[Φ(α(x)Y + θ)] = P

(
U − θ

Y
≤ α(x)

)
.

Recall that the random variable (U +δ)/Y follows a non-central t distribution with ν degree

of freedom and non-centrality parameter δ whose PDF is given by (see, e.g., Johnson and
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Kotz [4])

pν:δ(t) =
µ
1

2

¶ ν−1
2 e−

1
2
δ2

√
πνΓ(ν

2
)

Z ∞
0
xν exp

(
−1
2

"Ã
1 +

t2

ν

!
x2 − 2 tδ√

ν
x

#)
dx.

Denoting the CDF of the non-central t distribution by Pν:δ(x), we arrive at the two-parameter

transformation (1.4), i.e.

F ∗(x) = Pν:−θ[T−1ν (F (x))], θ = λσZρ. (3.4)

Note that, when F (x) = Tν(x), the transform (3.4) distorts the t distribution with ν degree

of freedom to a non-central t distribution with the same degree of freedom and non-centrality

parameter −θ, where θ represents the risk premium. A more elementary derivation of (3.4)
is given by Kijima and Muromachi [9].

Remark 3.2 Since χ2ν/ν converges to unity as ν → ∞, the non-central t distribution con-
verges to a shifted normal distribution with shift parameter δ. It follows that the new

transformation (3.4) converges to the Wang transform (1.1) as ν →∞.

4 Comparison of tail distributions

Return distributions of financial and insurance assets are often claimed that they are fat-

tailed. In fact, some empirical studies suggest to use t distributions with 3 or 4 degree of

freedom for asset returns (see, e.g., Platen and Stahl (2003)). Of interest is therefore how

fat-tailed the transformed CDF F ∗(x) is. In this section, we compare the tail distributions

of the new transform (3.4) with the Wang transform (1.1).

For a given CDF F (x), let β(x) = Φ−1(F (x)) in the Wang transform (1.1). Also, let

Kx(θ) ≡ Φ(β(x) + θ)− E[Φ(α(x)Y + θ)], θ ≥ 0.

Note that, from (3.3), we obtain

Kx(0) = Φ(β(x))− E[Φ(α(x)Y )] = F (x)− F (x) = 0. (4.1)

The next theorem shows that Kx(θ) ≥ 0 for all x such that F (x) < 1/2. Hence, the

Wang transform (1.1) produces the fattest tail distributions among the class of probability

transforms given by (3.2).

Theorem 4.1 Suppose θ ≥ 0. Then, for all x such that F (x) < 1/2, we have Kx(θ) ≥ 0,
i.e.

Φ[Φ−1(F (x)) + θ] ≥ E[Φ(G−1(F (x))Y + θ)]

for all Y > 0, where G(x) is the CDF of random variable U/Y .
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Proof. Let A = {α(x)Y ≤ β(x)}. Then, we have
Kx(θ) = E [Φ(β(x) + θ)− Φ(α(x)Y + θ)]

= E

"
1A

Z β(x)+θ

α(x)Y+θ
φ(s)ds− 1Ac

Z α(x)Y+θ

β(x)+θ
φ(s)ds

#
, (4.2)

where φ(s) denotes the PDF of standard normal distributions. Since θ ≥ 0, we observe that
φ(s+ θ)/φ(s) is decreasing in s. It follows from (4.2) that

Kx(θ) = E

"
1A

Z β(x)

α(x)Y

φ(s+ θ)

φ(s)
φ(s)ds− 1Ac

Z α(x)Y

β(x)

φ(s+ θ)

φ(s)
φ(s)ds

#

≥ E

"
1A

Z β(x)

α(x)Y

φ(β(x) + θ)

φ(β(x))
φ(s)ds− 1Ac

Z α(x)Y

β(x)

φ(β(x) + θ)

φ(β(x))
φ(s)ds

#

=
φ(β(x) + θ)

φ(β(x))
E

"
1A

Z β(x)

α(x)Y
φ(s)ds− 1Ac

Z α(x)Y

β(x)
φ(s)ds

#

=
φ(β(x) + θ)

φ(β(x))
Kx(0).

The theorem follows since Kx(0) = 0 from (4.1).

Theorem 4.1 provides the comparison of tail distributions between the cases of Y > 0 and

Y = 1 (the Wang transform), but does not state any result on the comparison among positive

random variables Y . In the rest of this section, we compare the tail parts of the transformed

CDF F ∗(x) obtained by (3.4), i.e. the case of non-central t distributions, numerically. For

this purpose, we invoke the result of Lenth [11] in order to calculate the tail parts of non-

central t distributions.

Let T be a random variable that follows a non-central t distribution with ν degree of

freedom and non-centrality parameter δ. According to Lenth [11], we have the following

expansion:4

P{0 < T < t} =
∞X
j=0

∙
pjIx

µ
j +

1

2
,
ν

2

¶
+ qjIx

µ
j + 1,

ν

2

¶¸
(4.3)

where

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

Z x

0
ta−1(1− t)b−1dt,

x =
t2

t2 + ν
, pj =

1

2
e−δ

2/2

³
δ2

2

´j
j!

, qj =
1

2
δe−δ

2/2

³
δ2

2

´j
√
2Γ(j + 3

2
)
.

Note that, once the first term in the right-hand side of (4.3) is obtained, the remaining terms

are calculated recursively using the facts that Γ(a+ 1) = aΓ(a) and

Ix(a+ 1, b) = Ix(a, b)− Γ(a+ b)

Γ(a+ 1)Γ(b)
xa(1− x)b.

4In the Lenth algorithm, 100 terms are enough to guarantee the accuracy within ±10−6 errors for −11.0 ≤
δ ≤ 11.0. It is reported that no errors larger than 10−6 were observed using his algorithm.
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The CDF Pν:δ(x) can be evaluated from (4.3) and the relation

Pν:δ(x) = P{T ≤ 0}+ P{0 < T < x} = Φ(−δ) + P{0 < T < x}.

In the following numerical experiments, we consider the two cases: (1) θ = 0.2 and (2)

θ = 0.7. Case (1) corresponds to the case of low risk premium, while Case (2) the case of a

relatively high risk premium. For each case, we consider the degrees of freedom ν = 3, 5, 10

and ∞, where ν =∞ corresponds to the case of normal distributions.

Figure 1: CDFs of non-central t distrinution for Case (1).

Figure 2: CDFs of non-central t distrinution for Case (2).

First, we check the fat-tailness of non-central t distributions Pν:−θ(x) using the Lenth

algorithm. Fig. 1 and Fig. 2 depict the tail parts of the CDF’s for Cases (1) and (2),

respectively. Recall that we take θ > 0, since we assume that the random variable X
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represents the amount of a profit/loss. Hence, we are interested in values of large negative x.

The other case can be treated similarly. From these figures, we observe that a non-central t

distribution has fatter tails with a smaller degree ν of freedom.

Figure 3: Risk adjusted CDFs when risk X follows T3 for Case (1).

Figure 4: Risk adjusted CDFs when risk X follows T3 for Case (2).

Now, we consider the risk-adjusted CDF F ∗(x) for a given CDF F (x) of risk X. Fig.

3 depicts the risk-adjusted CDF F ∗(x) when the original risk follows a t distribution with

ν = 3 degree of freedom, i.e. F (x) = T3(x), for Case (1). Recall that empirical studies

suggest to use such distributions for actual asset returns. The transformed CDF calculated

by (3.4) is denoted by

F tν(x) = Pν:−θ[T
−1
ν (T3(x))].
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Note that, for ν = 3, the transformation (3.4) produces a non-central t distribution, i.e.

F t3(x) = P3:−θ(x). For other ν, the transformed CDF F
t
ν(x) is not necessarily a non-central

t distribution. Fig. 3 shows that the tail parts of the risk-adjusted distributions F tν(x) are

increasing in ν. That is, the transformation (3.4) produces fatter risk-adjusted CDF as Y

becomes less variable. Note that this result is consistent with Theorem 4.1. For the high

premium case, the situation remains the same. Fig. 4 depicts the risk-adjusted CDF F tν(x)

for Case (2).

Figure 5: Risk adjusted CDFs when risk X follows Φ for Case (1).

Figure 6: Risk adjusted CDFs when risk X follows Φ for Case (2).

We next consider the case that the original risk is normally distributed, i.e. F (x) = Φ(x).

In this case, the Wang transform (1.1) becomes F ∗(x) = Φ(x+ θ), while the transformation
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(3.4) produces the risk-adjusted CDF

F nν (x) = Pν:−θ[T
−1
ν (Φ(x))].

We expected that the transformation (3.4) produces a fatter tail than the normal counterpart,

because it involves a non-central t distribution. Contrary to our intuition, but consistent

with Theorem 4.1, the tail parts of the risk-adjusted distributions F nν (x) are increasing in ν,

as Fig. 5 (Case 1) and Fig. 6 (Case 2) reveal.

According to our numerical experiments, we conclude that the Wang transform (1.1)

produces the fattest tail distributions among the class of t distributions. However, as Wang

[15] reported, the one-parameter transform (1.1) is not flexible enough to match the actual

market data. Thus, Wang [15] proposed the two-parameter transformation

F ∗(x) = Tν [Φ−1(F (x)) + θ], (4.4)

and reported that (4.4) is much better to fit, although the two-parameter transform is not

consistent with the economic premium principle (1.2), thereby lacking a sound economic

interpretation.

Fig. 7 compares the tail distributions of the one-parameter and the two-parameter Wang

transforms with ν = 5 and θ = 0.2. As expected, the two-parameter transformation (4.4)

has fatter tails than the one-parameter counterpart.

Figure 7: One-parameter and two-parameter Wang Transforms.

5 A multivariate extension

In the following two sections, we consider two extensions of the new transformation (3.2);

one is a multivariate extension, and the other is a multiperiod case. In this section, we
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extend the transform (3.2) to the multivariate setting.

For this purpose, as in Kijima [6], suppose that the underlying risks are described by

a multivariate random vector X = (X1, X2, . . . , Xn) and the σ-algebra is given by F =

σ(X1, X2, . . . , Xn). Note that a particular risk, Y say, is an F -measurable random variable.

That is, there exists an n-variate function h(x), x = (x1, x2, . . . , xn), such that Y = h(X)

in general. Then, Bühlmann’s economic premium principle is given by

π(Y ) =
E[h(X)e−λZ ]
E[e−λZ ]

, Z =
nX
j=1

Xj. (5.1)

It is clear that this pricing functional π(X) is linear.

The pricing formula (5.1) can be described in terms of the probability distortion (or the

change of measures in other words). For the sake of simplicity, suppose that the joint PDF

of X exists, which is denoted by f(x). The PDF defined by

f ∗(x) =
e−λz

E[e−λZ ]
f(x), z =

nX
j=1

xj, (5.2)

provides the risk-adjusted distortion.5 That is, Bühlmann’s equilibrium price is obtained as

π(Y ) =
Z
Rn

h(x)e−λz

E[e−λZ ]
f(x)dx =

Z
Rn
h(x)f∗(x)dx = E∗[h(X)],

where E∗ denotes the expectation operator associated with f∗(x).

5.1 The multivariate Wang transform

We first derive the multivariate Wang transform proposed by Kijima [6] using the idea de-

scribed in Section 2.2. Consider a Gaussian copula6 for the underlying risksX = (X1, X2, . . . , Xn).

That is, define

Uj ≡ Φ−1[Fj(Xj)], j = 1, 2, . . . , n, (5.3)

where Fj(x) is the marginal CDF of Xj. For the sake of simplicity, it is assumed that Fj(x)

is strictly increasing in x for all j. A Gaussian copula assumes that U = (U1, U2, . . . , Un)

follows an n-variate standard normal distribution with correlation matrix Σρ = (ρij).

Now, as in the univariate case, suppose that the standardized aggregate risk Z0 = (Z −
μZ)/σZ is expressed as (cf. (3.1))

Z0 = ξ + ρ
nX
j=1

wjUj, Uj = Φ
−1[Fj(Xj)], (5.4)

5Kijima [6] called the distortion (5.2) the multivariate Esscher transform.
6See Nelsen [12] for details of copulas.
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where ξ is a normal random variable, independent of the other random variables. A justifi-

cation of this assumption is found in Kijima [6]. It follows from (5.1) and (5.4) that

π(Y ) =
E[h(X)e−

Pn

j=1
θjUj ]

E[e−
Pn

j=1
θjUj ]

, θj = λσZρwj.

Since U ≡ Pn
j=1 θjUj is normally distributed with mean 0 and variance σ

2
U =

P
i,j θiθjρij by

assumption, π(Y ) can be written as

π(Y ) = e−σ
2
U/2E

∙
h(X)e−

Pn

j=1
θjUj

¸
. (5.5)

It follows from (5.3) and (5.5) that the risk-adjusted PDF is given by

f ∗(x) = e−σ
2
U/2e−

Pn

j=1
θjαj(xj)f(x), αj(xj) = Φ

−1[Fj(xj)]. (5.6)

As for the univariate case, let Ix(y) = 1 if yj ≤ xj for all j = 1, 2, . . . , n and Ix(y) = 0
otherwise. Then, integrating (5.6) from −∞ to xj for each component j and using the

function Ix(y), the risk-adjusted CDF F
∗(x) can be written as

F ∗(x) = e−σ
2
U/2E

∙
Ix(X)e

−
Pn

j=1
θjαj(Xj)

¸
= e−σ

2
U/2E

h
Ix(β(U ))e

−Ui , (5.7)

where U =
Pn
j=1 θjUj and β(U ) = (F−11 (Φ(U1)), . . . , F

−1
n (Φ(Un))). The second equality is

derived from (5.3).

On the other hand, it is well known that the result in Lemma 2.1 can be extended to the

multivariate setting.7 That is, for any multivariate normal random vector (X, Y ) and any

function h(x), we have

E[h(X)e−Y ] = E[e−Y ]E[h(X − Cov[X, Y ])] (5.8)

for which the expectations exist. Here, Cov[X, Y ] means the vector with components

Cov[Xj, Y ].

Applying this result to (5.7), we obtain

F ∗(x) = E [Ix(β(U − θρ))] , θρ = (θ
ρ
1, θ

ρ
2, . . . , θ

ρ
n),

since E[e−θU ] = eσ
2
U/2 and θρj ≡ Cov[Uj, U ] =

Pn
i=1 θiρij. It follows from the definition of

Ix(y) that the risk-adjusted CDF F
∗(x) is obtained as

F ∗(x) = P
n
U1 ≤ Φ−1[F1(x1)] + θρ1, . . . , Un ≤ Φ−1[Fn(xn)] + θρn

o
= Φn

³
Φ−1[F1(x1)] + θρ1, . . . ,Φ

−1[Fn(xn)] + θρn
´
, θρj =

nX
i=1

θiρij. (5.9)

7See Kijima and Miyake [7] for the trivariate case. Their proof can be extended to the multivariate case

with ease.
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Note that, when n = 1, (5.9) coincides with the Wang transform (1.1) since ρ11 = 1. Thus,

Kijima [6] called (5.9) the multivariate Wang transform.

5.2 An extension of the multivariate Wang transform

The idea employed in this section is the same as the univariate case. That is, given

the underlying risks X = (X1, X2, . . . , Xn), suppose that there exist a Gaussian copula

U = (U1, U2, . . . , Un) with correlation matrix Σρ = (ρij) and a positive random variable Y ,

independent of U , such that

Fj(Xj) = Gj(Uj/Y ), j = 1, 2, . . . , n, (5.10)

where Fj(xj) is the marginal CDF of risk Xj and Gj(x) denotes the CDF of random variable

Uj/Y . It is assumed that each Gj(x) is strictly increasing in x for the sake of simplicity.

Note that, when Y = 1 almost surely, the assumption (5.10) agrees with (5.3).

Now, as in (5.4), suppose that the standardized aggregate risk Z0 = (Z − μZ)/σZ is

expressed as

Z0 = ξ + ρ
nX
j=1

wjUj, Uj = Y αj(Xj),

where αj(x) = G−1j (Fj(x)) and ξ is a normal random variable, independent of the other

random variables. Since nothing has been changed except the definition of Uj, the risk-

adjusted CDF F ∗(x) is expressed as in (5.7). That is, we have

F ∗(x) = e−σ
2
U/2E

h
Ix(β(U , Y ))e

−Ui , (5.11)

where U =
Pn
j=1 θjUj and, in turn, β(U , Y ) ≡ (α−11 (U1/Y ), . . . ,α−1n (Un/Y )) for this case.

At this point, we apply the result (5.8) to (5.11). Since Y and U = (U1, U2, . . . , Un) are

independent of each other by assumption, we obtain from (5.8) that

E
h
Ix(β(U , Y )e

−Ui = eσ
2
U/2E

h
E
h
Ix(β(U − θρ, Y ))

¯̄̄
Y
ii
, θρ = (θ

ρ
1, θ

ρ
2, . . . , θ

ρ
n).

It follows from the definition of Ix(y) that

F ∗(x) = E
h
E
h
Ix(β(U − θρ, Y ))

¯̄̄
Y
ii

= E
h
P
n
β(U − θρ, Y ) ≤ x

¯̄̄
Y
oi

= E
h
P
n
U1 ≤ α1(x1)Y + θρ1, . . . , Un ≤ αn(xn)Y + θρn

¯̄̄
Y
oi
.

Therefore, we obtain the multivariate extension of the generalized transform as

F ∗(x) = E [Φn (α1(x1)Y + θρ1, . . . ,αn(xn)Y + θρn)] , (5.12)
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where αj(xj) ≡ G−1j (Fj(xj)) and θρj =
Pn
i=1 θiρij. Note that, when Y = 1, we obtain (5.9).

Special cases of the generalized transform (5.12) can be considered as for the univariate

case. Among them, when Y =
q
χ2ν/ν as in Kijima and Muromachi [9], we obtain the

following multivariate transform with t copula:

F ∗(x) = P (β;n, ν,−θ,Σρ) =
Z β

p(u;n, ν,−θ,Σρ)du,

where β = (β1, · · · , βn) with βj = T−1ν (Fj(xj)), j = 1, · · · , n. Here,

p(u;n, ν, δ,Σρ) ≡
µ
1

2

¶ ν+n
2
−1 exp

n
−1
2
δ>Σρδ

o
(πν)n/2Γ(ν

2
)

1q
|Σρ|

×
Z ∞
0
zν+n−1 exp

(
−1
2

"Ã
1 +

u>Σ−1ρ u
ν

!
z2 − 2u

>δ√
ν
z

#)
dz,

where δ = (δ1, · · · , δn) and Σρ = (ρij) is a correlation matrix.

6 A multiperiod extension

The Wang transform and its variants can be extended to the multiperiod setting based on

the results in Iwaki et al. [3].

Iwaki et al. [3] considered a multiperiod economy to derive the multiperiod extension of

the economic premium principle of Bühlmann [1]. They constructed a consumption/portfolio

model in which each agent is characterized by his/her utility function and income and invests

his/her wealth in both insurance and financial markets so as to maximize the expected,

discounted total utility from consumption. The state price density in equilibrium is obtained

in terms of the Arrow—Pratt index of absolute risk aversion for the representative agent in

the general setting. As a special case of exponential utilities, it is shown that the state price

density φ(t) at time t coincides with that of Bühlmann [1]. Namely,

φ(t) = exp {−λ(Z(t)− Z(0))} , t = 0, 1, . . . , T,

where λ−1 =
Pn
j=1 λ

−1
j and Z(t) =

Pn
j=1Xj(t) is the aggregate risk at time t. In particular,

when the risk-free interest rates are deterministic, the time t equilibrium price of the risk

X(s), s > t, is given by

πt(X(s)) =
Et
h
X∗(s)e−λZ(s)

i
Et [e−λZ(s)]

, t < s,

where X∗(s) = X(s)/B(s) with B(s) being the money-market account at time s. Here, Et

denotes the conditional expectation operator given the information available at time t.
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Suppose for the sake of simplicity that B(t) = 1, i.e., interest rates are zero. Let X(t) =

(X1(t), . . . , Xn(t)) and define the σ-algebra by Ft = σ(X(u), u ≤ t). Given the filtration
Ft, all the information necessary to calculate the multivariate transform (5.12) for the risk

X(t + 1) can be determined. For example, the marginal CDF F tj (x) of Xj(t + 1) as well

as the risk premium θρj (t) at time t determines the transformation (5.12). Summarizing,

provided that the stochastic process {X(t); t = 0, 1, . . .} for the underlying risks is specified,
we can use the Wang transform and/or its variants in the multiperiod setting for the pricing

of financial and insurance risks.

7 Concluding remarks

In this paper, we derive a class of probability transform (1.3) that are consistent with

Bühlmann’s economic premium principle (1.2), thereby extending the result of Wang [15].

The transform is further extended to the multivariate setting by using a Gaussian copula,

in order to preserve the linearity for the pricing functional, and to the multiperiod setting

within the equilibrium pricing framework.

We compare the tail parts of the risk-adjusted distributions and conclude that the original

Wang transform (1.1) produces the fattest tail in the class of the probability transform

(1.3). However, as Wang [15] reported, the one-parameter transform (1.1) is not flexible

enough to match the actual market data. Although Wang [15] proposed the two-parameter

transformation (4.4) to fit the market data, it is not consistent with the economic premium

principle (1.2). It is therefore important to derive probability transforms that can produce

fatter tail distributions and, at the same time, has a sound economic interpretation. This

will be our future research.
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