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Overview

Topic: Markovian Approximation for Rough Volatility Models

Contribution: Introduce stochastic nodes and weights.
I Nodes and weights are chosen for each sample path.
I L2-error minimization reduces to minimizing the

time-integrated variance of a certain random variable.
I This framework naturally incorporates variance reduction

techniques.

Results: When the number of nodes is small, this approach
outperforms all other deterministic methods (except BL2).

Natsuno Sawamura (Graduate School of Business Administration, Tokyo Metropolitan University)Randomized Markovian approximation for rough volatility models 2 / 28



Classical Stochastic Volatility Models

Volatility follows a stochastic differential equation (SDE):

Vt = V0 +

∫ t

0
b(Vs) ds +

∫ t

0
σ(Vs) dWs . (1)

Markovian: Future volatility depends only on its current state.

Example: Heston model, SABR model
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Rough Volatility Models (RVM)
Volatility follows a stochastic Volterra equation:

Vt = V0 +

∫ t

0
K(t − s)b(Vs) ds +

∫ t

0
K(t − s)σ(Vs) dWs , (2)

where the kernel K(t) is typically given by the fractional kernel:

K(t) = tH−1/2

Γ(H + 1/2) , 0 < H < 1/2. (3)

Reduces to a fractional Brownian motion with Hurst
parameter H when b = 0 and σ = 1.

Non-Markovian: Exhibits memory effects.

Highly irregular and rougher than classical models.

If H = 1
2 , the kernel reduces to K(t) ≡ 1.
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Example: Rough Heston Model

The Rough Heston Model extends the classical Heston model:

dSt = St
√

Vt dBt , S0 > 0, (4)

Vt = V0 +

∫ t

0
K(t − s)(θ − λVs) ds +

∫ t

0
K(t − s)η

√
Vs dWs , (5)

where Wt and Bt are ρ-correlated Brownian motions.

Admits a semi-analytical characteristic function [El Euch and
Rosenbaum, 2019], allowing Fourier pricing techniques.
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Volatility Path Vt in the Rough Heston Model
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Why RVM?

Empirical Motivation: Empirical studies [Gatheral et al.,
2018] show that volatility exhibits rough behavior, resembling
fractional Brownian motion.

Better Fit for IV Smiles: RVM explains the steep implied
volatility (IV) smiles observed in short-maturity options
[Fukasawa, 2021].
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Challenges in RVM

Non-Markovian Nature:
The fractional kernel K(t) introduces memory effects, making the
process Vt depend on its entire past.

Significantly increases the computational cost
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Addressing the Non-Markovian Challenge

Key Idea:
Approximate the fractional kernel K(t) using a sum of exponentials:

K(t) =
∫ ∞

0
cHy−H− 1

2 e−yt dy ≈
n∑

i=1

wie−yi t =: K n(t). (6)

This approximation, known as a Markovian approximation
[Abi Jaber and El Euch, 2019], transforms the original model
into an n-dimensional Markov process.

Enable the use of standard numerical methods for efficient
simulation.
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Markovian Approximation
The Markovian approximation is defined as:

V n
t = V0 +

∫ t

0
K n(t − s)b(V n

t ) dt +
∫ t

0
K n(t − s)σ(V n

t ) dWt (7)

V n
t is a n-dimensional Markovian process since:

V n
t can be expressed as V n

t = V0 +
∑n

i=1 wiV n,i
t , where

(V n,1
t , · · · ,V n,n

t ) is a solution to the n-dimensional SDE [Alfonsi
and Kebaier, 2024]:

V n,i
t = −

∫ t

0
yiV n,i

s ds +
∫ t

0
b(V0 +

n∑
i=1

wiV n,i
s ) ds

+

∫ t

0
σ(V0 +

n∑
i=1

wiV n,i
s ) dWs .

(8)
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L2-error of Markovian Approximation

Proposition ([Alfonsi and Kebaier, 2024])
For every T > 0, there exists some C > 0 (depending on T , V0, b,
σ), such that

E[|VT − V n
T |2] ≤ C

∫ T

0
|K(t)− K n(t)|2dt. (9)

The choice of weights (wi)
n
i=1 and nodes (yi)

n
i=1 plays a crucial

role in reducing the kernel approximation error∫ T
0 |K(t)− K n(t)|2dt.

Natsuno Sawamura (Graduate School of Business Administration, Tokyo Metropolitan University)Randomized Markovian approximation for rough volatility models 11 / 28



Trade-off Accuracy and Efficiency

Increasing n improves approximation accuracy by providing
more weights and nodes for a better integral approximation.

However, a larger n increases the dimensionality of the
SDE, leading to higher computational cost and greater
discretization error.

Achieving good accuracy with small n is crucial
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Selection of Weights and Nodes
Deterministic Approaches:

Use quadrature rules to approximate the kernel.

Use same nodes and weights for all sample paths.

Consequently, the bias introduced by the approximation is the
same for every path.

This effect is especially pronounced when n is small.

Introducing stochastic selection of nodes
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Construction of Randomized Approximation Kernel
Let Y be a random variable with density fY supported on
(0,∞).
The kernel K(t) can be expressed as an expectation:

K(t) =
∫ ∞

0
cHy−H− 1

2 e−yt dy =

∫ ∞

0
cHy−H− 1

2 e−yt 1
fY (y)

fY (y) dy

= E[
cHY −H− 1

2

fY (Y )
e−Yt ].

(10)

Let ZY (t) := cHY −H− 1
2

fY (Y )
e−Yt . By the law of large numbers,

approximate this expectation by K n,Y (t) as a finite sum:

K n,Y (t) := 1
n

n∑
i=1

ZYi (t), (11)

where Yi ∼ Y are i.i.d.
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Randomized Markovian Approximation
A randomized Markovian approximation is defined as:

V n,Y
t = V0+

∫ t

0
K n,Y (t − s)b(V n,Y

t ) dt+
∫ t

0
K n,Y (t − s)σ(V n,Y

t ) dWt

(12)

As in the non-randomized case:
I V n,Y

t can be expressed using the solution of an n-dimensional
SDE.

I The L2-error is controlled by the kernel approximation error:

E[|VT − V n,Y
T |2] ≤ CE

[ ∫ T

0
|K(t)− Kn,Y (t)|2 dt

]
=

C
n

∫ T

0
Var[ZY (t)]dt.

(13)
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Selection of density fY
To minimize

∫ T
0 Var[ZY (t)] dt, the optimal density is given by:

fY (y) =
y−H−1

√
1 − e−2yT∫∞

0 y−H−1
√

1 − e−2yT dy
. (14)

However, this optimal density is impractical for random number
generation.

Instead, use a mimic density fY as an alternative:

fY (y) =
{

C1y−α, 0 < y ≤ G ,

C2y−β, G < y .
(15)
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Variance Reduction Techniques

Objective:
Reduce

∫ T
0 Var[ZY (t)] dt to minimize the kernel approximation error.

Control Variates (CV):
I Use an auxiliary variable with a known expectation to adjust

the kernel approximation.
I Minimize variance by introducing an optimal correction

term.

Antithetic Variates (AV):
I In the case where n = 2, construct antithetic pairs (Y1,Y2).
I Leverage negative correlation to reduce variance.
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Effect of Large Node in Markovian Approximation

In the Markovian approximation, the SDE (8) includes the
mean-reverting term:

−
∫ t

0
yiV n,i

s ds. (16)

Large yi leads to rapid decay, increasing discretization error.

This issue arises in both quadrature-based and randomized
approximation:

I Quadrature: Large nodes may be inevitable due to the
integration rule.

I Randomized: Since Y has support on (0,∞), large nodes can
occasionally appear.
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Strategy to Mitigate Large Node
Truncation of PDF:
For L > 0, let cL := P(Y ≤ L) =

∫ L
0 fY (y) dy .

Define a density fY L as:

fY L(y) :=
{

fY (y)
cL

, y < L
0, L ≤ y .

(17)

The random variable Y L ∼ fY L takes values in (0,L).
Kernel Approximation Error:

E
[ ∫ T

0
|K(t)− K n,Y L

(t)|2 dt
]
=

1
n

∫ T

0
Var[ZY L(t)] dt

+

∫ T

0
(

∫ ∞

L
cHy−H− 1

2 e−yt dy)2 dt (truncation error).
(18)
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Numerical Result
Model: Rough Heston model
Option Type: European Call Option
Parameters:

H = 0.1, λ = 0.3, ν = 0.3, θ = 0.02,
ρ = −0.7, V0 = 0.02, S0 = 1, T = 1.

(19)

Monte Carlo Paths: 107

Discretization: Multi-Factor Euler Scheme [Alfonsi and
Kebaier, 2024]
Time Steps: 512
Number of Nodes: n = 2
Benchmark: Fourier-based Option Price
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Maximum Relative Error (MRE)

MRE = max
k∈[−0.2,0.2]

|IVanalytical(k)− IVapproximation(k)|
IVanalytical(k)

× 100 (20)

IVanalytical(k): IV obtained using the Fourier-based method

IVapproximation(k): IV obtained using the Markovian
approximation and Monte Carlo simulation

k: Log-moneyness

The error is computed over the log-moneyness range [−0.2, 0.2],
using 17 equally spaced points.
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MRE of IV for different values of L

Natsuno Sawamura (Graduate School of Business Administration, Tokyo Metropolitan University)Randomized Markovian approximation for rough volatility models 22 / 28



IV: Deterministic vs Randomized

AE ([Abi Jaber and El Euch, 2019]), AK ([Alfonsi and Kebaier, 2024]), GG ([Bayer and Breneis,
2023a]), BL2 ([Bayer and Breneis, 2023b, Appendix F]), and RMA (Randomized Markovian
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MRE: Deterministic vs Randomized

AE AK GG BL2 RMA
Error 6.77% 1.45% 2.87% 0.48% 0.96%

RMA outperforms AE, AK, and GG.

BL2 has the lowest error but relies on numerical optimization
with weak theoretical justification.
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Improvement
The current approximation kernel only approximates the integral
representation of K(t) over [0, L].
As an improvement, the approximate kernel is scaled by a
constant C to reduce the approximation error.
Specifically, we seek to minimize the error

E
∫ T

0

∣∣K(t)− C K n,Y (t)
∣∣2 dt. (21)

The optimal constant C is given by

C =
E
∫ T

0 K(t)K n,Y (t) dt
E
∫ T

0 (K n,Y (t))2 dt
. (22)
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Improvement Result

BL2 RMA
Error 0.48% 0.82%

MRE for logmoneyness in [−0.2, 0.2].

BL2 RMA
Error 0.48% 0.41%

MRE for logmoneyness in [−0.1, 0.1].
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Summary
Introduced the probabilistic approach to determining weights
and nodes in the Markovian approximation.

Provided the optimal density and the mimic density to minimize
the kernel approximation error.

Demonstrated the effectiveness of variance reduction techniques.

Showed that the randomized Markovian approximation
outperforms all quadrature methods except BL2.

Future Work
Analyze the impact of specific nodes and weights on
approximation accuracy and develop alternative strategies to L2

minimization.
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