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Abstract

This paper introduces an on-line common break test designed to identify optimal timing for

portfolio adjustments especially under volatile market conditions. The key advantage of this on-

line approach lies in its potential to significantly mitigate losses stemming from market and eco-

nomic uncertainties. This is achieved through a robust estimation of the long memory parameter

in an ARFIMA model, referred to as the FEAR estimation, coupled with a predictive test for struc-

tural breaks in the aggregated return series. Comparative analyses underscore the superior efficacy

of the FEAR estimation relative to prevailing methodologies. Simulations validate the theoretical

underpinnings and illustrate the promising finite sample performance of the proposed procedure.

Key findings include: (i) the long memory property in the aggregation of multiple time series,

with or without breaks, and (ii) the effectiveness of the on-line common break test in accurately

detecting the location of common breaks in each series of the portfolio. Empirical results fur-

ther underscore the practicability and effectiveness of the on-line common break test from a risk

management perspective.
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1 Introduction

The timely adjustment of asset allocations within a portfolio has long posed a formidable challenge
for both academic researchers and practitioners, including policy makers and fund managers. This
challenge becomes especially pronounced during periods of significant market shocks or heightened
turbulence. The ability to adeptly track market fluctuations and assess market stability emerges as a
pivotal factor in successfully predicting market returns and subsequently optimizing portfolio alloca-
tions. This paper addresses this challenge by introducing an easy-to-implement and forward-looking
methodology designed to efficiently detect changes in the persistence level within a portfolio. The
proposed approach is particularly relevant when the aggregation of a portfolio follows a long-memory
process. It aims to provide a discernible signal for portfolio adjustments, offering a practical solution
for navigating dynamic market conditions.

The conventional approach to portfolio adjustment primarily revolves around predicting the returns
of individual assets within the portfolio, wherein the overall portfolio is constructed by aggregating
each individual return forecast. Studies such as Lustig et al. (2014) and Lyle and Wang (2015) have
explored this methodology, delving into the prediction of portfolio outcomes using information from
each single asset. However, this conventional strategy overlooks the correlations among diverse types
of financial assets. These correlations may arise from common trends, shocks, or policy changes, see
Ramchand and Susmel (1998), Solnik and Roulet (2000), Pesaran (2015) and Wang et al. (2021) for
example. That induce simultaneous movements across various financial assets. In an era of increas-
ingly integrated international financial markets, comprehending and identifying these correlations be-
comes pivotal for gaining insights into global market dynamics, thereby offering valuable information
to adjust portfolios and enhance performance. In particular, the identification of common breaks in a
multivariate system, where a change occurs in each time series at a common point (Lütkepohl (1989)
and Wang and Wan (2020)), holds particular importance.

Distinct from the conventional approach, this paper specifically concentrates on evaluating the
aggregation of time series, capturing the correlations among them. In practice, common shocks or
events induce simultaneous movements among market assets, leading to changes in their interactions
or correlations. This suggests the potential existence of common breaks or shifts in the time series of
individual assets within a portfolio. Consequently, tracking the locations of breaks becomes essential
as they signify the adjustment times for portfolio allocations. It is noteworthy that the aggregation
of autoregressive (AR) time series often manifests statistical properties indicative of a long memory
process, when examining the aggregation of asset series. This phenomenon was initially investigated
by Robinson (1978) and Granger (1980). Subsequently, Zaffaroni (2004) generalized these findings
by considering the aggregation of heterogeneous ARMA time series. In a related body of research,
the association between structural breaks and long memory properties has also been extensively ex-
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plored. For example, Diebold and Inoue (2001) show that the low-frequency periodogram of the
Markov-switching process can be approximated well by a long memory process. The detailed regard-
ing discussion could be found in Granger and Hyung (2004) and Choi et al. (2010). Thus, drawing
inspiration from the findings of the aforementioned studies, our first step in identifying signals for port-
folio adjustment entails aggregating the asset returns within the considered portfolio and subsequently
estimating the long memory parameter of this aggregated return series.

It is pertinent to note that in practice, single asset returns are often modeled as autoregressive (AR)
processes, providing empirical support for considering the aggregated return series for a portfolio as
a long-memory process (Ferson et al. (2003) and Dai et al. (2021)). In this paper, we employ an
ARFIMA(p, d, q) model to characterize the aggregated time series, with parameter d capturing the
persistence level of the time series.

One contribution of this paper is the introduction of an easily implementable method, denoted
as FEAR, designed for estimating the fractional integrated order d for aggregated return series. The
literature contains numerous studies on parameter d estimation, encompassing methods such as ex-
act maximum likelihood estimation (MLE) by Sowell (1992), generalized minimum distance estima-
tion(GMD) by Mayoral (2007), local Whittle estimation (ELW) by Shimotsu and Phillips (2005), and
GPH estimation by Geweke and Porter-Hudak (1983). However, Sowell (1992) points out the exact
MLE of the fractional parameter d is quite time-consuming and is not very accurate in finite samples,
especially when d is close to 0.5 and the sample size is small (T = 100 and 200). In addition, the
presence of AR parameters greatly complicate the computation of the corresponding autocovariance
functions. Biased estimated ds generated by the GPH are also found in small finite samples and when
d is close to 0, even being less computational burden (see Crato and Ray (1996)). ELW of Shimotsu
and Phillips is sensitive to bandwidth selection while GMD of Mayoral needs prior information of
parametric setups and weighting matrix but is less efficient than exact MLE.

Diverging from existing approaches, the FEAR method, proposed herein, estimates d by minimiz-
ing the sum of squared forecast errors. A key advantage lies in its independence from the estimation of
the p autoregressive parameters and the q moving average parameters in an ARFIMA model. Instead,
we approximate the ARFIMA model using an AR(k) model, with the autoregressive order k easily
selected through information criteria such as AIC. Poskitt (2007) has theoretically established the uni-
form convergence and asymptotic distribution of estimated coefficients in an AR(k) model when the
finite-order autoregressive model is employed to approximate fractionally integrated processes. The
AR approximation of the fractionally integrated process not only reduces the number of parameters
requiring estimation but also mitigates forecasting errors stemming from model misspecification in
estimating the values of p and q. This dual advantage enhances the practicality and robustness of the
FEAR method in estimating d for aggregated return series.

This paper theoretically shows the consistency and asymptotic normality of the FEAR estima-
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tion. The range of d ∈ (−0.5, 0.5) can be covered by the FEAR estimation rather than the limitation
on d ∈ (−0.5, 0.25) by Tieslau et al. (1996). Our simulation results also affirm the promising per-
formance of the FEAR estimation, as evidenced by lower root mean squared errors (RMSEs) and
reduced computation time compared to the widely used estimations under consideration. In addition,
we conduct simulations on time series featuring both cross-sectional and time dependence, estimating
the integrated order of the aggregated series using our newly designed FEAR estimation and the GPH
estimation, known for its robustness to short-run dynamics. Broadly, the aggregate series of time-
dependent variables consistently exhibit long-memory properties. Furthermore, as cross-sectional cor-
relations strengthen, the aggregate series display increased persistence, contributing to the enhanced
efficiency of aggregate forecasting.

The second step we advocate for identifying signals for portfolio adjustment involves implementing
a recursive predictive t-test. This test is formulated based on the estimate of the fractional differencing
parameters d using the FEAR estimation, as proposed in the first step. Additionally, we establish that
the limiting distribution of this predictive test follows a standard normal distribution under the null
hypothesis of no break in d. The recursive FEAR predictive test scheme is computed as follows: given
a training sample of size t, we estimate the first d value, denoted as d̂FEAR,t, using the training sample
with the FEAR estimation. Subsequently, we add one observation to the estimation sample and gener-
ate the second estimate of d, d̂FEAR,t+1. We then test for the difference between d̂FEAR,t and d̂FEAR,t+1

using the predictive t-test. This process continues until the null hypothesis is rejected, i.e., a shift or
break in d is detected. In this regard, this procedure inherently possesses an on-line feature. Given
the strong connection between persistence in aggregate time series and correlation across individual
time series, any statistically significant change in d may indicate a shift in the underlying dependent
structure among assets, thereby serving as a signal for portfolio adjustment.

The Monte Carlo simulations illustrate the finite sample performance of the FEAR estimation and
test. Our findings indicate that FEAR estimates are generally consistent across various data generating
processes characterized by long memory. Notably, the performance of FEAR surpasses that of several
classical estimation methods for fractional differencing parameters, particularly in scenarios where d
is close to 0.5 and the sample size is small (T = 100 and 200). Additionally, we simulate multiple time
series characterized by short memory processes and cross-sectional correlations. Employing the FEAR
estimation method to estimate these time series, the results demonstrate that the aggregated time series
displays a typical long memory pattern. Furthermore, we conduct simulations involving multiple time
series with common breaks. The fractional differencing parameters of the aggregated time series are
estimated using the FEAR method, and the aggregation is examined through our FEAR-predictive test.
The simulation outcomes indicate that the test generally produces correct size and exhibits satisfactory
power performances.

In practical terms, identifying the timing of changes in the underlying dependent structure holds
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paramount importance for fund managers. Timely detection allows them to respond promptly to the
impacts of market shocks, thereby mitigating risks. In our empirical analysis, we establish three
country-specific portfolios to validate the effectiveness of our methodology. Our predictive test demon-
strates the ability to promptly capture significant market shocks, furnishing early warning signals for
fund managers to adjust their portfolios. In particular, empirical evidence reveals the stability of the
recursive estimates of fractional differencing parameters of three aggregated return series when there
is no common event around. But the jumps or down shifts promptly happened as long as common
down shocks come.

In summary, this paper makes a key contribution by introducing a two-step procedure for portfolio
adjustment. The initial step involves the FEAR estimation, a novel method for efficiently gauging the
fractional integrated order d and measuring the persistence of the aggregated return series, typically
following a long-memory process. Without the need to estimate the p autoregressive and q moving av-
erage parameters in an ARFIMA model, we demonstrate that the FEAR estimation attains asymptotic
consistency and efficiency, particularly when the ARFIMA model is well approximated by a finite-
order AR(k) model. The computational advantage of the FEAR estimation lies in its simplicity—
implemented by minimizing the sum of squared forecast errors—offering a practical alternative to
existing, often intricate and resource-intensive estimation methods. The second step involves the
FEAR-predictive test with a recursive window framework to easily detect structural changes in the un-
derlying dependence among assets, a factor typically overlooked in conventional portfolio adjustment
approaches. Simulation and empirical analysis results jointly underscore the substantial informational
value gained from a nuanced understanding of asset correlations. This knowledge proves instrumen-
tal in identifying market dynamics, facilitating informed portfolio construction, and enhancing risk
management strategies.

The paper is organized as follows. Section 2 presents the FEAR estimation of the fractional inte-
grated order d and its asymptotic properties. Section 3 describes the proposed tests used to detect the
change in d, proving signals for portfolio adjustment. In Section 4, we demonstrate the Monte Carlo
simulations. Section 5 conducts empirical analysis by establishing three country-specific portfolios.
Section 6 concludes.
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2 The FEAR Estimation of the Fractional Differencing Parame-
ter d

2.1 Model and Assumptions

The ARFIMA(p, d, q) model of a time series yt is defined by

ϕ(L)(1− L)dyt = ψ(L)ϵt, (2.1)

where ϕ(z) = 1 −
∑p

j=1 ϕjz
j and ψ(z) = 1 −

∑q
j=1 θjz

j are polynomials with roots outside the unit
circle. Without loss of generality, we assume that yt is a linear process without a deterministic term.
The lag operator L is defined by Lyt = yt−1. Also, the fractional difference is defined by its binomial
expansion:

(1− L)d =
∞∑
j=0

∆j(d)L
j,

where ∆j(d) =
Γ(j+d)

Γ(d)Γ(j+1)
with Γ(·) denoting the gamma (generalized factorial) function.

Assumption 1 Let It denote the σ−algebra of event determined by ϵs with s ≤ t. Assume that ϵt is

ergodic and that

E
[
ϵt|It−1

]
= 0, E

[
ϵ2t |It−1

]
= σ2

ϵ , E(ϵ4t ) <∞.

Assumption 2 The series yt in (2.1) is a covariance-stationary process with a fractional differencing

parameter d ∈ (−1/2, 1/2). 1

Following Brockwell and Davis (2009), the long-memory process in (2.1) can be effectively rep-
resented by an infinite order autoregressive process:

(1− L)dyt = ψ(L)/ϕ(L)ϵt = ut, (2.2)

yt =
∞∑
j=1

βjyt−j + ut, (2.3)

where ut follows an ARMA process. In practice, however, we will need a finite autoregression model
to serve as an approximation to reality. Poskitt (2007) shows that yt can be approximated by an AR(k)

1This assumption can be generalized to accommodate any value of d. For example, Beran (1995) demonstrates how to
estimate any real d > −1/2 using an approximate maximum likelihood method.
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model where k can be selected using the Akaike information criterion (AIC):

yt =
k∑

j=1

βjyt−j + vt, (2.4)

where vt is the prediction error. Note that the autoregressive coefficient βj is a function of d where
βj = ∆j(d). By Equation (2.4), vt can be expressed as a function of d:

vt(d) = yt −∆j(d)yt−j. (2.5)

2.2 The FEAR Estimation of d and its Asymptotic Properties

For a time series yt following an ARFIMA process as defined in Equation (2.1), we propose an easily
implementable method to estimate the fractional differencing parameter d. This method estimates d
by approximating the ARFIMA model with an AR(k) model, thus termed the FEAR estimation. The
estimation process involves the following steps:

1. Approximation by AR(k): First, we approximate the long-memory process yt by an AR(k)
model, with the autoregressive order k selected using AIC. Subsequently, we obtain the estimated
coefficients (β̃j) and the estimated prediction error (ṽt).

2. Estimation of d: Next, we estimate the fractional differencing parameter d by minimizing the
squared distance between vt and ṽt using the following optimization problem:

d̂ = argmin
d
ST (d), (2.6)

where ST (d) ≡
∑T

t=1

[
vt(d)− ṽt

]2.
To solve (2.6), we compute the first order derivative of the objective function, ST (d), with respect

to d:
∂ST (d)

∂d
= 2

T∑
t=1

[vt(d)− ṽt] v
′
t(d), (2.7)

where v′t(d) is the first order derivative of vt(d) with respect to d.
By the expression of vt(d) in (2.5), we have

vt(d)− ṽt =

(
yt −

k∑
j=1

βjyt−j

)
−

(
yt −

k∑
j=1

β̃jyt−j

)

=
k∑

j=1

[
∆j(d)− β̃j

]
yt−j (2.8)
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Now consider v′t(d). Note that the derivative of the gamma function Γ(z) with respect to z is:

d

dz
Γ(a) = Γ(z)ψdi(z), (2.9)

where ψdi(z) is the digamma function with ψdi(z) = Γ′(z)/Γ(z). Hence, by applying the chain rule
and the derivative of the gamma function in (2.9), we can show that the derivative of ∆j(d) with respect
to d, for j = 1, 2, . . . , k, is:

Γ(j + d)

Γ(d)Γ(j + 1)
ψdi(j + d)− Γ(j + d)

(Γ(d))2Γ(j + 1)
ψdi(d). (2.10)

Based on the definition of vt(d) and summing up (2.10) over the range of j from 1 to k, we get:

v′t(d) = −
k∑

j=1

(
Γ(j + d)

Γ(d)Γ(j + 1)
ψdi(j + d)− Γ(j + d)

(Γ(d))2Γ(j + 1)
ψdi(d)

)
yt−j

= −
k∑

j=1

[
ψdi(j + d)− 1

Γ(d)
ψdi(d)

]
∆j(d)yt−j. (2.11)

Utilizing (2.8) and (2.11), Equation (2.7) can now be expressed as:

∂ST (d)

∂d
= 2

T∑
t=1

[
k∑

j=1

(
∆j(d)− β̃j

)
yt−j

][
−

k∑
j=1

(
ψdi(j + d)− 1

Γ(d)
ψdi(d)

)
∆j(d)yt−j

]

= −2
T∑
t=1

[
k∑

j=1

(
∆j(d)− β̃j

)
yt−j

][
k∑

j=1

(
ψdi(j + d)− 1

Γ(d)
ψdi(d)

)
∆j(d)yt−j

]

= −2
T∑
t=1

k∑
j=1

k∑
i=1

(
∆j(d)− β̃j

)(
ψdi(i+ d)− 1

Γ(d)
ψdi(d)

)
∆i(d)yt−jyt−i

= −2
k∑

j=1

k∑
i=1

(
∆j(d)− β̃j

)(
ψdi(i+ d)− 1

Γ(d)
ψdi(d)

)
∆i(d)

(
T∑
t=1

yt−jyt−i

)
. (2.12)

Lastly, the estimator d̂ can be computed by letting ∂ST (d)
∂d

= 0, which indicates

k∑
j=1

k∑
i=1

(
∆j(d̂)− β̃j

)(
ψdi(i+ d̂)− 1

Γ(d̂)
ψdi(d̂)

)
∆i(d̂)

(
1

T

T∑
t=1

yt−jyt−i

)
= 0. (2.13)

Let γτ = γ−τ = E(ytyt+τ ) for τ = 0, 1, ..., denote the autocovariance function of yt. Then the sample
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autocovariance function can be defined by γ̂τ = 1
T

∑T
t=1 ytyt+τ . So (2.13) can be rewritten as

k∑
j=1

k∑
i=1

(
∆j(d̂)− β̃j

)(
ψdi(i+ d̂)− 1

Γ(d̂)
ψdi(d̂)

)
∆i(d̂)γ̂j−i = 0.

Numerical methods or optimization techniques are necessary to determine d̂, as it lacks an analytical
solution.

In comparison to traditional approaches for estimating d, the preceding discussion highlights the
efficacy of FEAR estimation as a viable alternative. Following Poskitt (2007), who theoretically es-
tablished the uniform convergence and asymptotic distribution of estimated coefficients in an AR(k)
model when a finite-order AR model is employed to approximate an ARFIMA model, the FEAR
estimation approximates an ARFIMA(p, d, q) model using an AR(k) model. This approximation sig-
nificantly streamlines the estimation process. Unlike conventional methods, there is no requirement to
accurately specify the autoregressive order p and moving average order q. Consequently, there is no
need to estimate the p autoregressive parameters and the q moving average parameters in an ARFIMA
model. This not only simplifies the estimation and computation procedures but also diminishes esti-
mation errors arising from model misspecification.

Subsequently, we lay down the theoretical groundwork for the consistency and asymptotic distribu-
tion of the estimated fractional differencing parameter d through the utilization of the FEAR method.

Theorem 2.1 (Consistency of d̂) If yt is a stationary process that satisfies Assumption 1 and Assump-

tion 2, then the FEAR estimation of d is consistent.

Let D̂j =
∑k

i=1
∂∆i(d)

∂d
ρ̂j−i and Dj =

∑k
i=1

∂∆i(d)
∂d

ρj−i for j = 1, .., k. The sample autocorrelation
of yt is defined by ρ̂j−i =

∑T
t=1 yt−jyt−i∑T

t=1 y
2
t

. Define a 1 × k vector Ŵ = (D̂1, D̂2, · · · , D̂k). Since ρ̂

is a consistent estimator for the population autocorrelation ρ (see Appendix), we have D̂j →p Dj

for j = 1, ..., k, and Ŵ →p W , where W = (D1, D2, · · · , Dk). Also, we define a 1 × k vector
C = (∂∆1(d)

∂d
, ∂∆2(d)

∂d
, · · · , ∂∆k(d)

∂d
).

Theorem 2.2 (Asymptotic Normality of d̂) Under Assumption 1 and Assumption 2, the FEAR esti-

mator d̂ asymptotically follows a normal distribution:

√
T (d̂− d) →d N

(
0, σ2

ϵ

WΓ−1
k W ′

(CW ′)2

)
, (2.14)

where Γk = [γj−i]j,i=1,...,k and γ denotes the autocovariance function of yt.
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3 The On-line Common Break Test

A common break in multivariate system of time series means that a structural break occurs in each
series at a common date. Similar with ”fixed τ model” considered in Joseph and Wolfson (1992) and
a consequent common break model in multivariate system considered in Lütkepohl (1989) and Wang
and Wan (2020), here we consider the following model

Yit = µ1 + eit, t = 1, 2, . . . , k0

Yit = µ2 + eit, t = k0 + 1, . . . , T

i = 1, 2, . . . , N

where N is finite and E (eit) = 0 for all i and t. In this model, a structural break occurs at the same
point k0 in each series, which we call the common break date. Before the break, the mean of Yit is µ1,
while the mean becomes µ2 after the break. Here the mean shift µ2 − µ1 indicates the magnitude of
break. To assure the existence of a break, we set 1 < k0 < T , i.e. k0 = [τ0T ] with 0 < τ0 < 1.

Inspired by the finding of Granger (1980) illustrating the aggregation of autoregressive (AR) time
series can exhibit long memory properties, thus when summing up multiple individual time series, the
aggregated time series could be a long memory process. Zaffaroni (2004) subsequently generalized
these findings by considering the aggregation of heterogeneous ARMA time series. Moreover, Diebold
and Inoue (2001) show that a mean structural break model displays a long memory process as well2.
Granger and Hyung (2004) show that an increase of the number of mean breaks makes the memory of
the process seemingly more persistent. Choi et al. (2010) support this phenomenon by examining the
breaks in a realized volatility with long memory property. That implies when common breaks occur
in each series of a multivariate system, there exists a sudden change in the value of the long memory
parameter of the aggregated series3. To be more specific, when common break in mean comes, a
sudden change in the fractional differencing parameter happens.

We then introduce a predictive test leveraging the FEAR estimation to identify common breaks in
a multivariate system. The detailed implementation of this predictive test is outlined below.

• Step 1. Based on the aforementioned argument, we first sum up N time series to generate an
aggregated series St, i.e. St =

∑N
i=1 Yit, which follows a long memory process.

• Step 2. We estimate the fractional differencing parameter of St by the new proposed FEAR
estimation with the recursive window scheme. That means when one new observation arrives,
we reestimate the fractional differencing parameter of the new aggregated series St by the FEAR

2In fact, Diebold and Inoue (2001) also show that the low-frequency periodogram of the Markov-switching process can
be approximated well by a long memory process.

3This phenomenon is also supported by our Monte Carlo simulations in Section 4.2.

9



estimation until the end of observation T , given a training sample of size W = δT , δ ∈ (0, 1).
We can thus obtain a series of estimated fractional differencing parameters.

• Step 3. Intuitively, in order to detect the sudden change in ds, we construct the following
predictive-t test called the on-line common break test,

t̂ =
d̂FEAR,t+1 − d̂FEAR,t

σ̂t+1

where d̂FEAR,t denotes FEAR estimation of d value in the recursive scheme with the t observa-
tions, while d̂FEAR,t+1 denotes d estimator with t+1 observations. σ̂t+1 is the standard deviation
of d̂FEAR,t+1 − d̂FEAR,t. That is to say, this recursive FEAR predictive test scheme is computed
as follows: given a training sample of size t, we estimate the first d value, say d̂FEAR,t, using
the training sample with the FEAR estimation. Then we add one observation to the estimation
sample, and generate the second estimate of d, d̂FEAR,t+1. We then test for difference between
d̂FEAR,t and d̂FEAR,t+1 by this new test. We continue like this until the null hypothesis of no
break is rejected, i.e. we can find a shift or break in d.

The resulting limiting distribution of this t̂ is summarized in Theorem 3.1.

Theorem 3.1 When a data generating process (DGP) displays a long memory process and satisfies

(2.1), under the null hypothesis of no change in d, the on-line common break test built up on the FEAR

estimation asymptotically follows a standard normal distribution,

t̂→d N (0, 1) .

4 Monte Carlo Simulations

In this section, we examine the finite sample performances of FEAR estimation and the on-line com-
mon break test. Each Monte Carlo simulation experiment in this section is conducted 1000 times.

4.1 Simulations for Estimations of Fractional Differencing parameters

In order to present comprehensive comparison of FEAR and other methods, we consider DGPs of three
different long memory processes including fractional white noise process ARFIMA (0, d, 0), special
one ARFIMA (1, d, 0), general case ARFIMA (1, d, 1). In particular, these DGPs are designed as
following,

(1− L)d (yt − µ) = εt, (4.1)
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(1− ϕL) (1− L)d (yt − µ) = εt, (4.2)

(1− ϕL) (1− L)d (yt − µ) = (1 + θL) εt, (4.3)

where µ = 2 and εt ∼ i.i.d.N (0, σ2) with σ2 = 1.5. ϕ and θ are both set to be 0.4, while the
fractional differencing parameter d is set as −0.2, 0.2, 0.3, 0.4, 0.49, such that a larger range of d is
covered compared to Tieslau et al. (1996), who only consider the range of d from −0.5 to 0.25. The
sample sizes considered here are 100, 200, 300, and 500.

For each of the above DGPs, we firstly obtain the estimates of d by GPH, MLE, ELW, GMD
and FEAR respectively, in all of which AIC is used to select the orders of models. We compute and
compare the estimation bias (BIAS) and the root mean squared error (RMSE) of these estimators. The
simulation results are reported in Tables 1-3. Generally it is shown in all these tables that the RMSEs
produced by the FEAR estimation decrease with the increase of the sample size T regardless of the
value of d, which indicates the FEAR estimation achieves consistency for all of the three different long
memory processes. It is noteworthy that the consistency of FEAR estimation is even achieved for high
level of fractional differencing parameter, therefore this outcome completes the shortage of Tieslau
et al. (1996) whose method can only cover the range of d ∈ (−0.5, 0.25).

Table 1 reports the simulation results for estimating fractional white noise. It can be seen in most
of cases, FEAR estimator has relatively small RMSEs, which highlights the estimator is relatively ef-
ficient. For instance, when d = −0.2 and d = 0.2, RMSEs of GPH, ELW and GMD are all larger than
that of FEAR for all choices of T . Compared to that, although GPH estimator is better at generating
smaller biases for different combinations of d and T , its RMSEs are too large to be sufficiently effi-
cient which indicates the estimator’s variance is of high level. Table 2 presents the simulation results
for estimating special ARFIMA model. It shows FEAR estimation performs best when considering
both bias and RMSE, especially when d ranges from 0.2 to 0.4. Again it is observed that GPH es-
timation generally produces the smaller biases, but it is dominated by FEAR estimation in terms of
small RMSE. The other alternative methods generate larger absolute values of bias and larger RMSE
than FEAR. Table 3 reports the simulation results for estimating general ARFIMA model. It can be
seen that when d ranges from −0.2 to 0.3, FEAR estimation performs relatively well in terms of both
bias and RMSE. It is also observed that for other values of d, FEAR estimation still has comparatively
advantages over GPH, MLE and GMD in producing smaller level of bias and RMSE.

To summarize, in all cases GPH estimation generally has small bias, but meanwhile causes large
RMSEs. MLE estimation has relatively good finite sample performance when estimating ARFIMA
(0, d, 0), but it produces large bias and RMSEs when estimating ARFIMA (1, d, 0) and ARFIMA
(1, d, 1). Similarly, ELW method has bad performance when estimating ARFIMA (1, d, 0). GMD
method also produces large RMSEs when estimating ARFIMA (1, d, 0) and ARFIMA (1, d, 1). Com-
pared to that, simulation outcomes of FEAR estimation keep relatively small RMSEs in all cases, es-
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Table 1: Performance of various estimation methods for ARFIMA (0, d, 0)

GPH MLE ELW GMD FEAR
d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

-0.2

100 0.0116 0.2953 -0.0371 0.0998 0.0255 0.1339 -0.0321 0.1158 0.0051 0.0912
200 -0.0090 0.2241 -0.0238 0.0601 0.0065 0.0970 -0.0195 0.0679 0.0053 0.0637
300 -0.0141 0.2020 -0.0150 0.0510 0.0032 0.0814 -0.0120 0.0557 0.0087 0.0548
500 0.0021 0.1703 -0.0120 0.0380 0.0006 0.0641 -0.0104 0.0402 0.0056 0.0416

0.2

100 0.0030 0.2776 -0.0428 0.1017 0.0236 0.1313 -0.0270 0.1098 -0.0595 0.0921
200 0.0036 0.2336 -0.0220 0.0649 0.0131 0.0945 -0.0166 0.0702 -0.0394 0.0626
300 0.0010 0.2102 -0.0144 0.0500 0.0101 0.0786 -0.0111 0.0522 -0.0322 0.0505
500 -0.0039 0.1775 -0.0094 0.0389 0.0071 0.0637 -0.0073 0.0409 -0.0251 0.0417

0.3

100 0.0148 0.2925 -0.0409 0.1011 0.0353 0.1337 -0.0289 0.1081 -0.0928 0.1130
200 0.0067 0.2346 -0.0204 0.0649 0.0104 0.0970 -0.0146 0.0719 -0.0713 0.0843
300 0.0167 0.1992 -0.0124 0.0517 0.0099 0.0813 -0.0106 0.0554 -0.0601 0.0707
500 0.0060 0.1727 -0.0109 0.0382 0.0043 0.0648 -0.0095 0.0403 -0.0536 0.0608

0.4

100 0.0121 0.2973 -0.0420 0.1012 0.0287 0.1287 -0.0301 0.1100 -0.1405 0.1511
200 -0.0059 0.2358 -0.0204 0.0663 0.0141 0.0982 -0.0155 0.0727 -0.1155 0.1218
300 0.0250 0.2033 -0.0118 0.0486 0.0136 0.0790 -0.0096 0.0506 -0.1019 0.1069
500 0.0041 0.1751 -0.0098 0.0367 0.0053 0.0659 -0.0079 0.0390 -0.0942 0.0977

0.49

100 0.0148 0.2975 -0.0355 0.1027 0.0304 0.1335 -0.0256 0.1232 -0.1912 0.1980
200 0.0211 0.2433 -0.0197 0.0641 0.0131 0.0924 -0.0159 0.0699 -0.1648 0.1684
300 0.0315 0.2069 -0.0115 0.0497 0.0117 0.0772 -0.0099 0.0534 -0.1523 0.1549
500 0.0154 0.1732 -0.0053 0.0374 0.0099 0.0664 -0.0038 0.0403 -0.1417 0.1434

Note: The simulation results are for DGP (4.1).

pecially when ARFIMA (1, d, 1) is estimated, which most possibly reflect the realistic economic data
among the three long memory processes considered in the simulations. It also indicates the variance
of FEAR estimation is relatively small, which justifies the stability of the method. Overall compre-
hensively considering all the cases, we find that FEAR estimation is generally competitive to the four
alternatives estimation methods.

4.2 Simulations for Aggregations of Cross-sectional and Time Dependent Se-
ries

Firstly, we generate a multivariate system of time series as following which will be used for aggrega-
tion,

yi,t = εit, (4.4)

(1− 0.5L) yit = (1 + 0.3L) εi,t, (4.5)
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Table 2: Performance of various estimation methods for ARFIMA (1, d, 0)

GPH MLE ELW GMD FEAR
d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

-0.2

100 0.0711 0.3010 -0.2212 0.3276 0.2601 0.2909 -0.0399 0.2851 0.2891 0.2952
200 0.0403 0.2352 -0.1597 0.2658 0.1714 0.1972 -0.0721 0.2301 0.2934 0.2961
300 0.0342 0.1994 -0.1179 0.2162 0.1439 0.1639 -0.0576 0.1840 0.2968 0.2988
500 0.0174 0.1667 -0.0719 0.1549 0.1078 0.1264 -0.0476 0.1365 0.2982 0.2993

0.2

100 0.0804 0.2914 -0.2641 0.3680 0.2620 0.2952 -0.0577 0.2782 0.0726 0.0835
200 0.0336 0.2309 -0.1861 0.2899 0.1766 0.2023 -0.0703 0.2175 0.0862 0.0913
300 0.0271 0.2074 -0.1428 0.2521 0.1473 0.1686 -0.0725 0.2014 0.0919 0.0950
500 0.0236 0.1731 -0.0883 0.1836 0.1089 0.1268 -0.0496 0.1464 0.0957 0.0975

0.3

100 0.0656 0.3100 -0.2523 0.3664 0.2607 0.2910 -0.0591 0.2790 0.0060 0.0390
200 0.0353 0.2305 -0.1927 0.2967 0.1741 0.1989 -0.0683 0.2132 0.0207 0.0332
300 0.0270 0.2026 -0.1429 0.2488 0.1449 0.1651 -0.0630 0.1966 0.0272 0.0345
500 0.0245 0.1711 -0.0859 0.1763 0.1054 0.1250 -0.0521 0.1504 0.0317 0.0364

0.4

100 0.0808 0.3048 -0.2513 0.3638 0.2606 0.2915 -0.0719 0.2663 -0.0660 0.0741
200 0.0389 0.2422 -0.1900 0.3024 0.1756 0.1994 -0.0844 0.2232 -0.0497 0.0551
300 0.0329 0.1995 -0.1403 0.2438 0.1409 0.1605 -0.0729 0.1876 -0.0434 0.0474
500 0.0236 0.1715 -0.0836 0.1812 0.1122 0.1304 -0.0503 0.1523 -0.0363 0.0394

0.49

100 0.0903 0.3059 -0.2412 0.3538 0.2632 0.2960 -0.0647 0.2571 -0.1346 0.1380
200 0.0497 0.2334 -0.1740 0.2887 0.1802 0.2046 -0.0691 0.2156 -0.1179 0.1197
300 0.0475 0.2080 -0.1294 0.2325 0.1450 0.1627 -0.0746 0.1894 -0.1105 0.1117
500 0.0377 0.1722 -0.0787 0.1746 0.1101 0.1274 -0.0458 0.1435 -0.1043 0.1051

Note: The simulation results are for DGP (4.2).

Table 3: Performance of various estimation methods for ARFIMA (1, d, 1)

GPH MLE ELW GMD FEAR
d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

-0.2

100 0.0131 0.2841 -0.2204 0.4159 0.0162 0.1293 0.0463 0.4632 0.0015 0.0890
200 0.0163 0.2262 -0.1191 0.3228 0.0137 0.0945 0.0782 0.3878 0.0054 0.0671
300 0.0068 0.2049 -0.0963 0.2587 0.0038 0.0788 0.0838 0.3731 0.0072 0.0528
500 -0.0003 0.1693 -0.0483 0.1806 -0.0006 0.0675 0.0657 0.3190 0.0074 0.0430

0.2

100 -0.0002 0.2877 -0.3504 0.5552 0.0320 0.1373 -0.0893 0.3927 -0.0583 0.0925
200 0.0143 0.2313 -0.2132 0.4181 0.0131 0.0945 -0.0488 0.2989 -0.0373 0.0603
300 0.0027 0.2083 -0.1343 0.3179 0.0102 0.0819 -0.0194 0.2319 -0.0312 0.0516
500 -0.0006 0.1669 -0.0883 0.2235 0.0045 0.0645 -0.0176 0.1729 -0.0259 0.0408

0.3

100 0.0130 0.2959 -0.3548 0.5687 0.0225 0.1337 -0.1109 0.3919 -0.0958 0.1159
200 0.0050 0.2378 -0.2244 0.4223 0.0112 0.0986 -0.0505 0.2735 -0.0704 0.0831
300 0.0070 0.2008 -0.1542 0.3474 0.0108 0.0790 -0.0265 0.2391 -0.0603 0.0707
500 0.0033 0.1741 -0.0923 0.2331 0.0055 0.0643 -0.0243 0.1684 -0.0529 0.0606

0.4

100 0.0167 0.2892 -0.3701 0.5863 0.0282 0.1325 -0.0976 0.3669 -0.1398 0.1511
200 0.0130 0.2329 -0.2274 0.4370 0.0194 0.0970 -0.0416 0.2835 -0.1128 0.1193
300 0.0156 0.2061 -0.1362 0.3210 0.0111 0.0801 -0.0373 0.2119 -0.1042 0.1094
500 0.0090 0.1791 -0.0903 0.2432 0.0050 0.0634 -0.0227 0.1655 -0.0932 0.0969

0.49

100 0.0129 0.3036 -0.3948 0.6065 0.0351 0.1400 -0.1258 0.3905 -0.1901 0.1972
200 0.0243 0.2391 -0.2261 0.4369 0.0173 0.0956 -0.0642 0.2795 -0.1635 0.1671
300 0.0178 0.2025 -0.1543 0.3453 0.0112 0.0789 -0.0310 0.2192 -0.1533 0.1560
500 0.0195 0.1719 -0.0778 0.2186 0.0077 0.0634 -0.0222 0.1509 -0.1415 0.1433

Note: The simulation results are for DGP (4.3).
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for i = 1, 2, . . . , N and t = 1, 2, . . . , T , where the error term εi,t needs to be serially and cross-
sectionally correlated. To that end, we generate

e = (e1, e2, . . . , eN) =



e1,1 e2,1 · · · eN,1

e2,2 e2,2 · · · eN,2

...
...

...
...

e1,N e2,N · · · eN,N

e1,N+1 e2,N+1 · · · eN,N+1

...
...

...
...

e1,N+T−1 e2,N+T−1 · · · eN,N+T−1


(N+T−1)×N

where
et = (e1,t, e2,t, . . . , eN,t)

′ ∼ N (0,Σ)

with

Σ =


1 ρ · · · ρ

ρ 1 · · · ρ
...

... . . . ...
ρ ρ · · · 1

 .

Then the T ×N matrix of error terms in (4.4) and (4.5) is generated as

ε = (ε1, ε2, . . . , εN) =


ε11 ε21 · · · εN1

ε12 ε22 · · · εN2

...
... . . . ...

ε1T ε2T · · · εNT


T×N

=


e1,N e2,N−1 · · · eN,1

e1,N+1 e2,N · · · eN,2

...
... . . . ...

e1,N+T−1 e2,N+T−2 · · · eN,T


T×N

where εi = (ei,N+1−i, , . . . , ei,N+T−i)
′. By this design, it follows

E (εi,tεi+j,t+j) = ρ

for i = 1, 2, . . . , N, j = 1, 2, . . . , N − i and (4.4) and (4.5) imply yit is also serially and cross-
sectionally correlated. We consider ρ = 0.1, 0.5, 0.8 which correspond to weak, semi-strong and strong
serial and cross-sectional correlation. The sample size is set as combinations of N = 10, 15, 20, 30

and T = 100, 300, 500.
Now we examine potential long memory properties of the aggregated series St =

∑N
i=1 yit. In

particular, we apply the commonly used GPH and our newly built FEAR estimator to estimate the
fractional differencing parameter of St for each iteration. Then we calculate the average of the es-
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timated fractional differencing parameter over iterations, which are reported in Tables 4 and 5. It is
shown that as N and T are sufficiently large, the larger the value ρ is, the higher is the average of
the estimated integrated order. This finding is consistent regardless of whether GPH or FEAR is used
for estimation. It therefore provides strong evidences that the aggregation procedure generates long
memory process, of which the persistence can be strengthened as the cross-sectional and serial corre-
lations between the constitutes of the aggregated time series are increased. The simulation results also
shed light on portfolio analysis. As assets forming portfolio are often cross-sectionally and serially
correlated to certain degrees, it is reasonable to analyze the aggregated time series as a long memory
process.

Table 4: Estimated fractional differencing parameter using GPH

ARMA(0,0) model
ρ = 0.1 ρ = 0.5 ρ = 0.8

N\T 100 300 500 100 300 500 100 300 500
10 0.286 0.174 0.147 0.543 0.217 0.156 0.724 0.225 0.161
15 0.303 0.219 0.173 0.616 0.411 0.245 0.789 0.482 0.265
20 0.323 0.270 0.226 0.645 0.614 0.431 0.849 0.784 0.493
30 0.313 0.317 0.307 0.652 0.646 0.655 0.868 0.765 0.791

ARMA(1,1) model

ρ = 0.1 ρ = 0.5 ρ = 0.8
N\T 100 300 500 100 300 500 100 300 500
10 0.358 0.199 0.149 0.636 0.248 0.168 0.830 0.263 0.170
15 0.385 0.262 0.180 0.723 0.448 0.270 0.894 0.516 0.286
20 0.408 0.308 0.244 0.767 0.674 0.449 0.970 0.809 0.522
30 0.395 0.357 0.341 0.762 0.687 0.673 0.963 0.802 0.814

Note: The simulation results in the top panel are for DGP (4.4) while that in the bottom panel are for
DGP (4.5). ρ is the correlation coefficient used to generate errors in the two DGPs.

4.3 Simulations for the On-line Common Break Test

The DGP considered for the simulations of the on-line common break test is as following,

yit = eit, t = 1, 2, . . . , k0

yit = µ+ eit, t = k0 + 1, . . . , T

i = 1, 2, . . . , N
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Table 5: Estimated fractional differencing parameter using FEAR

ARMA(0,0) model

ρ = 0.1 ρ = 0.5 ρ = 0.8
N\T 100 300 500 100 300 500 100 300 500
10 0.157 0.123 0.123 0.346 0.338 0.326 0.300 0.117 0.084
15 0.167 0.155 0.158 0.386 0.396 0.397 0.368 0.212 0.177
20 0.179 0.185 0.190 0.399 0.431 0.435 0.403 0.291 0.257
30 0.201 0.239 0.258 0.405 0.461 0.461 0.414 0.391 0.393

ARMA(1,1) model

ρ = 0.1 ρ = 0.5 ρ = 0.8
N\T 100 300 500 100 300 500 100 300 500
10 0.256 0.217 0.188 0.251 0.139 0.097 0.292 0.213 0.201
15 0.276 0.249 0.221 0.340 0.265 0.242 0.333 0.159 0.124
20 0.285 0.257 0.246 0.393 0.378 0.371 0.358 0.202 0.130
30 0.299 0.288 0.277 0.431 0.466 0.475 0.376 0.327 0.297

Note: The simulation results in the top panel are for DGP (4.4) while that in the bottom panel are for
DGP (4.5). ρ is the correlation coefficient used to generate errors in the two DGPs.

where the error are generated as

eit = 0.8eit−1 + εit + 0.7εit−1

with εit ∼ i.i.d.N (0, 1) for all i and t. As shown before, the on-line common break test is then based
on the aggregated time series St =

∑n
i=1 yit, where a recursive window scheme is applied by setting

W = 100.
Firstly, we examine the case where there is no break by setting µ = 0. For each iteration, we

apply the FEAR estimator to St via recursive window scheme and obtain 151 estimates of fractional
differencing parameter. Then we compute the average of the values of these estimates over iterations.
The results for N = 30, 50 and T = 250 are presented in Figure 1, where the horizontal axis is the
number of additional observations compared to the first 100 observations and each plotted point is
based the average of 1000 replications of estimated fractional differencing parameter. It is shown in
Figure 1 that the estimated fractional differencing parameter rises as recursive window size increases.
Also the estimated value is larger when N = 50 than that when N = 30. It therefore indicates when
there are more observations used to aggregate, the fractional parameter d value becomes larger. This
finding is consistent with Granger (1980).
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Now we consider the case where there exists one break by setting µ = 0.5, N = 30, 50, T = 250

and k0 = 151. Similar to the case with no break, Figure 2 presents the graph of average estimated
fractional differencing parameters over iterations, which are computed via recursive window scheme.
It is noteworthy that the horizontal axis of true break location is 51 since the beginning window size
is 100. There are several interesting findings from these plots in Figure 2. Firstly, a sudden change
of the estimated parameter can be observed at the true break location k0 = 151 regardless of the
value N . Secondly, comparing the two subplots, we can intuitively find that the change magnitude of
estimates becomes larger when N is larger. It therefore implies that the detection of common break
in multivariate system might be more precise and more obvious when N is larger, which could be
explained by the reason that the summation of structural break in univariate series can magnify the
common break in multivariate system.

Figure 1: Aggregation without break

Then we consider applying the on-line common break test to St to detect the break point. To that
end, the combinations of N = 5, 10, 20, 30, 50 and T = 100, 250 are considered for the sample size
and the break location k0 is set to 75 and 150 for different T respectively. The size and power of the
test are shown in Table 6, which reports rejection rates of the on-line common break test at nominal
5% significance level, and the values in size row are computed by letting µ = 0 while that in the power
row are computed by letting µ = 0.5. In particular, the rejection rates in size rows are all smaller than
5% no matter what values N and T are. It indicates the test has small Type I error for different sample
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Figure 2: Aggregation with break

sizes. In addition to that, the rejection rates in power rows are sufficiently large, implying the test has
satisfactory power. Moreover, it is observed that the rejection rates rise significantly when the value
of N is increased. This finding implies the on-line common break test is more powerful when larger
number of time series are aggregated.

Table 6: Rejection rates of the on-line common break test at 5% significance level

N 5 10 20 30 50

T = 100
size 3.06% 3.16% 3.09% 3.14% 3.01%
power 44.90% 47.70% 56.20% 64.60% 70.60%

T = 250
size 2.24% 2.25% 2.30% 2.35% 2.35%
power 41.90% 47.40% 56.50% 70.00% 94.30%
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5 Empirical Application

Understanding the optimal timing for adjusting a portfolio comprising financial assets is crucial for
practitioners, especially in the presence of unexpected common shocks or systemic risks. Therefore,
a common break test for detecting changes in the time series properties of portfolio returns becomes
essential, as it can mitigate risks stemming from market fluctuations. Financial assets are often se-
rially and cross-sectionally dependent, attributed to common shock effects, sequential technological
innovations, increasing globalization, and spillover effects among other factors. Based on the theo-
retical discussions and Monte Carlo simulation studies outlined earlier, it is evident that the return
aggregation of assets in a portfolio is likely to follow a long memory process. Consequently, the
FEAR-predictive test, designed to identify structural breaks in the fractional differencing parameter,
emerges as a promising and effective on-line tool for signaling the timing of portfolio adjustments. To
underscore the utility and effectiveness of this FEAR-predictive test, we present an empirical applica-
tion that tests for impending collapses and crises by detecting changes in the long memory parameters
of the aggregation of various stock market indices. In essence, our aim is to identify opportune times
to adjust portfolio allocations using the FEAR-predictive test.

The data under consideration is sourced from Bloomberg and encompasses the daily returns of
stock market indices for 19 countries, spanning from the beginning of 2000 to May 2022. These coun-
tries comprise a mix of developed nations (US, UK, Japan, Switzerland, Europe, Norway, Sweden,
South Korea) and developing nations (South Africa, China, Turkey, Thailand, Saudi Arabia, Philip-
pines, India, Mexico, Chile, Brazil, Malaysia). We analyze three scenarios of aggregated series. Sce-
nario 1 involves aggregating the stock returns of 8 developed countries over the entire duration, while
Scenario 2 entails summing up the stock returns of 11 developing countries. These two time series
allow us to discern distinct patterns between developed and developing countries. To provide a more
comprehensive analysis of globalization, we further construct Scenario 3, aggregating stock returns
for all 19 countries across the entire sample period. In brief, these three scenarios can be interpreted
as three distinct portfolio settings. The first two scenarios focus on stock indices of developed and
developing countries, respectively, while the third setting encompasses all 19 countries, facilitating a
holistic perspective on global market dynamics.

For each aggregated time series, we employ the FEAR-predictive test to recursively identify chang-
ing patterns in the long memory parameter d. This process initiates with a training sample size of 100.
Without the loss of generality, we anticipate detecting breaks when the values of the estimated d shift,
even if the shift is subtle. The Figures 3-5 present the recursively FEAR-estimated d values and the
identified break dates for the three scenarios. On these figures, the horizontal axis represents time, and
the vertical axis denotes the estimated d values. Additionally, we mark the detected dates and provide
indications of their corresponding influential economic events.
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Notably, significant crises or crashes in the market align closely with the detected dates, under-
scoring the practical feasibility of the FEAR-predictive test. Several compelling findings emerge from
the analysis. Figure 3 illustrates six detected breaks for Scenario 3, with the line representing the re-
cursive FEAR-estimates. The first break in May 2006 anticipates the subsequent eruption of the 2007
subprime crisis. The second break in January 2008 precedes the bankruptcy of Lehman Brothers and
the onset of the global financial crisis. The third break in May 2010 aligns with the outbreak of the
Greek debt crisis, marking the inception of the European debt crisis. The fourth break around August
2011 foreshadows the diffusion of the 2012 European debt crisis. The fifth break in August 2015
coincides with the Chinese stock crash and subsequent stock market crashes. The most recent break
detected in early March 2020 correlates with the global spread of the 2020 Covid-19 pandemic. The
identified patterns strongly imply that changes in d values are not only informative but also closely
linked to substantial fluctuations in the fundamental economic system. This underscores the practical
utility and effectiveness of the FEAR procedure in capturing and signaling these important shifts in
market dynamics.

Figure 3: Recursive FEAR-d estimates for aggregated stock market index return from both developed
and developing countries

Figures 4 and 5 depict the recursive estimates for Scenarios 1 and 2, respectively. We find that
the breaks detected by the FEAR-predictive test for these two scenarios closely mirror those found
for Scenario 3 in Figure 3, with the exception of the 2010 Greek debt crisis and the 2012 European
debt crisis in Figure 5. An explanation for this phenomenon is that the Greek debt crisis and the
European debt crisis are comparatively regional, and most of the considered developing countries are
not located in Europe. Specifically, six breaks are detected for Scenario 1, with break dates in May
2006, September 2008, May 2010, September 2011, September 2015, and March 2020. Meanwhile,
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four detected dates for Scenario 2 are in May 2006, January 2008, August 2015, and March 2020,
but two of them are earlier compared to those for Scenario 1. This suggests that stock markets of
developing countries may be more sensitive to these crises. Additionally, it is worth highlighting that
the magnitudes of most breaks for Scenario 2 are often larger than those for Scenario 1.

Figure 4: Recursive FEAR-d estimates for aggregated stock market index return from developed coun-
tries

In summary, the majority of detected breaks for Scenarios 1-3 precede the occurrence or widespread
impact of significant global events. The recursive FEAR-estimates of d exhibit remarkable stability
in periods devoid of common events. However, notable jumps or downward shifts occur promptly
when the market becomes more volatile or experiences common shocks. This finding underscores the
stability and accuracy of the FEAR estimation. Collectively, these results affirm the efficacy of the
FEAR-predictive test as a reliable early warning measure for signaling impending financial crises and
systemic risks. Such insights can be instrumental in guiding portfolio adjustments and minimizing
risks.

6 Conclusion

In this study, we introduce the FEAR estimation designed for estimating the fractional differencing pa-
rameter d in a stationary long-memory process. This is particularly valuable for portfolio adjustment,
given that most aggregated return series exhibit characteristics of long-memory time series. Theoreti-
cal foundations are provided to demonstrate the consistency and asymptotic distribution of the FEAR
estimator. This enables the construction of a FEAR-predictive test, aiding in the detection of changes
in the time series properties of portfolio returns and offering valuable insights for adjusting a portfolio
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Figure 5: Recursive FEAR-d estimates for aggregated stock market index return from developing
countries

based on market dynamics. Both simulation experiments and empirical studies affirm the practicality
and robustness of the FEAR estimation and the proposed on-line test.

A Technical Appendix

Proof of Theorem 2.1. The FEAR estimator solves the first-order condition ∂ST (d)/∂d̂ = 0. By the
Taylor expansion, we write:

∂ST (d)

∂d̂
=
∂ST (d)

∂d
+
∂2ST (d)

∂d̄2
(d̂− d) = 0,

where d̄ lies between d and d̂. Then we solve for (d̂− d) and get:

(d̂− d) = −
[∂2ST (d)

∂d̄2

]−1∂ST (d)

∂d
= −

[ 1

2T ρ̂0

∂2ST (d)

∂d̄2

]−1 1

2T ρ̂0

∂ST (d)

∂d
, (A.1)

where ρ̂0 ≡ (1/T )
∑T

t=1 y
2
t denotes the sample variance of yt.

By Equation (2.12),

1

2T ρ̂0

∂ST (d)

∂d
=

k∑
j=1

k∑
i=1

(
β̃j −∆j(d)

) ∂∆i(d)

∂d

∑T
t=1 yt−jyt−i∑T

t=1 y
2
t

=
k∑

j=1

k∑
i=1

(
β̃j −∆j(d)

) ∂∆i(d)

∂d
ρ̂j−i, (A.2)
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where ρ̂j−i is the sample autocorrelation of yt. The derivative of ∆j(d) with respect to d is:

∂∆i(d)

∂d
=

Γ(j + d)

Γ(d)Γ(j + 1)
ψdi(j + d)− Γ(j + d)

(Γ(d))2Γ(j + 1)
ψdi(d).

and ψdi(z) is the digamma function with ψdi(z) = Γ′(z)/Γ(z).
As is shown in Theorem 5 of Poskitt (2007), if yt is a stationary process that satisfies Assumption 1

and Assumption 2, β̃j is a consistent estimate for βj , we know that
(
β̃j −∆j(d)

)
is op(1). In addition,

because the sample autocorrelation ρ̂ is consistent and asymptotically follows a normal distribution as
is provided by Hosking (1984, 1996), we obtain ρ̂ = Op(1/

√
T ), and thus

1

2T ρ̂0

∂ST (d)

∂d
= op(1). (A.3)

Differentiating the objective function ST (d) twice yields:

∂2ST (d)

∂d2
=

∂

∂d

[
2

T∑
t=1

(
vt(d)− ṽt

)
v′t(d)

]

= 2
T∑
t=1

[
v′t(d)

2 + vt(d)v
′′
t (d)− ṽtv

′′
t (d)

]
= 2

T∑
t=1

v′t(d)
2 + 2

T∑
t=1

[vt(d)− ṽt] v
′′
t (d)

Since vt(d) = yt −
∑k

j=1
Γ(j+d)

Γ(d)Γ(j+1)
yt−j = yt −

∑k
j=1 ∆j(d)yt−j , we have

v′t(d) = −
k∑

j=1

∂∆j(d)

∂d
yt−j, v′′t (d) = −

k∑
j=1

∂2∆j(d)

∂d2
yt−j.

The second derivative of ST (d) multiplied by 1
2T ρ̂0

can be rewritten as:

1

2T ρ̂0

∂2ST (d)

∂d2
=

1

T ρ̂0

T∑
t=1

[
−

k∑
j=1

∂∆j(d)

∂d
yt−j

]2
− 1

T ρ̂0

T∑
t=1

[vt(d)− ṽt]

[
k∑

j=1

∂2∆j(d)

∂d2
yt−j

]

=
k∑

j=1

k∑
i=1

[
∂∆j(d)

∂d

∂∆i(d)

∂d

(∑T
t=1 yt−jyt−i∑T

t=1 y
2
t

)]

− 1

T ρ̂0

T∑
t=1

[
k∑

j=1

(
∆j(d)− β̃j

)
yt−j

][
k∑

j=1

∂2∆j(d)

∂d2
yt−j

]
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=
k∑

j=1

k∑
i=1

[
∂∆j(d)

∂d

∂∆i(d)

∂d

(∑T
t=1 yt−jyt−i∑T

t=1 y
2
t

)]

−
k∑

j=1

k∑
i=1

[(
∆j(d)− β̃j

)∂2∆i(d)

∂d2

(∑T
t=1 yt−jyt−i∑T

t=1 y
2
t

)]

=
k∑

j=1

k∑
i=1

[
∂∆j(d)

∂d

∂∆i(d)

∂d
ρ̂j−i

]
−

k∑
j=1

k∑
i=1

[(
∆j(d)− β̃j

)∂2∆i(d)

∂d2
ρ̂j−i

]

=
k∑

j=1

k∑
i=1

[
∂∆j(d)

∂d

∂∆i(d)

∂d
ρ̂j−i

]
+ op(1). (A.4)

The second term in (A.4) is op(1) because ρ̂ is a consistent estimator of ρ as is shown by Hosking
(1984, 1996). In addition,

(
β̃j −∆j(d)

)
is op(1) under Assumption 1 and Assumption 2 by Poskitt

(2007). From Equation (A.1), the results in (A.3) and (A.4) imply that (d̂− d) = op(1).

Proof of Theorem 2.2. Under Assumption 1 and Assumption 2, the FEAR estimator d̂ is consistent
by Theorem 2.1. It follows that d̄ in (A.1) converges to d in probability. Thus, by (A.4) we have

plim
(

1

2T ρ̂0

∂2ST (d)

∂d̄2

)
=

k∑
j=1

[
∂∆j(d)

∂d

(
k∑

i=1

∂∆i(d)

∂d
ρj−i

)]
= CW ′. (A.5)

Let β = (β1, β2, ..., βk)
′. Poskitt (2007) shows the asymptotic distribution of β̃:

√
T (β̃ − β) →d N (0, σ2

ϵΓ
−1
k ), (A.6)

where Γk = [γj−i]j,i=1,...,k and γ denotes the autocovariance function of yt. Therefore, we have

√
T (β̃j −∆j(d)) →d N (0, σ2

ϵ [Γ
−1
k ]jj),

where [Γ−1
k ]jj is the j-th diagonal term of Γ−1

k . In (A.2),

√
T

(
1

2T ρ̂0

∂ST (d)

∂d

)
=

k∑
j=1

([√
T
(
β̃j −∆j(d)

)]( k∑
i=1

∂∆i(d)

∂d
ρ̂j−i

))
. (A.7)

By the asymptotic distribution of β̃ in (A.6), the right-hand side of this equation thus is a linear function
of random variables that are jointly normally distributed. Equation (A.7) can be expressed in matrix
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form as:

√
T

(
1

2T ρ̂0

∂ST (d)

∂d

)
= Ŵ

[√
T
(
β̃ −∆(d)

)]
, (A.8)

where ∆(d) = (∆1(d),∆2(d), · · · ,∆k(d))
′.

Given (A.6) and (A.8), it follows that

√
T

(
1

2T ρ̂0

∂ST (d)

∂d

)
→d N (0, σ2

ϵWΓ−1
k W ′). (A.9)

Finally, using (A.1), (A.5) and (A.9), we obtain the desired result:

√
T (d̂− d) →d N

(
0, σ2

ϵ

WΓ−1
k W ′

(CW ′)2

)
. (A.10)

Proof of Theorem 3.1. According to Theorems 2.1 and 2.2, Theorem 3.1 sustains immediately.
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